Tina en el bosque de Charnia, la vida que no podía existir

El enigma del Bosque de Charnwood.

Soto de Swithland, Bosque de Charnwood (Leicestershire, UK.)

El soto de Swithland, parte del bosque de Charnwood (Leicestershire, Reino Unido.) Fue en una cantera situada en este bosque donde primero Tina Negus y luego Roger Mason, ambos de 15 años, se encontraron con algo que según el mundo entero no podía existir. Imagen: Wikimedia Commons.

Cuando era niña, Tina Negus (Reino Unido, 1941) le tomó gusto a eso de los fósiles. Es que en aquella época no había videojuegos, ni móviles, y ni siquiera muchas teles. Así que los críos salían a la calle a jugar y hacían sus travesuras, como meterse en sitios que a sus padres no les gustaban. Según sus propias palabras, Tina se aficionó jugando “ilícitamente” (vamos, que si en casa se llegan a enterar, seguramente se habría llevado una buena azotaina como era corriente por aquella época) en una cantera abandonada próxima a su domicilio en Gratham, Lincolnshire. Ahí había un montón de fósiles de amonites, belemnites y cosas así fijados a sus calizas azules del entonces llamado Liásico Superior, que desde chiquitaja cautivaron su imaginación.

Tina Negus buscando fósiles, cuando era adolescente.

Una Tina Negus adolescente buscando fósiles cerca de su casa allá por la primera mitad de los años ’50 del pasado siglo. Foto: Propiedad de Tina Negus vía trowelblazers.com

Puesto que también faltaba bastante para que inventasen Internet, y Tina era muy curiosa, su afición le llevó a la biblioteca pública local. Ahí leyó un montón de cosas sobre geología, biología, paleontología y esos rollos de científicos. El caso es que conforme se adentraba en la adolescencia, acabó bastante enterada de estos temas. Y a principios del verano de sus quince años, Tina pidió a sus padres que la llevaran al cercano Bosque de Charnwood. Ya habían estado varias veces, pero esta vez Tina no deseaba simplemente hacer picnic en un lugar hermoso como ese. En la biblioteca había leído un ensayo sobre su geología y le llamó la atención que existiese una cantera con depósitos de ceniza volcánica surgida bajo el mar, cuando aquello fue un mar. Eso era algo que Tina nunca había visto y, como además conocía muchos de los lugares mencionados gracias a las excursiones anteriores, se motivó. Así que copió todos los mapas del ensayo a mano –tampoco había fotocopiadoras– y con la excusa de ir a recolectar arándanos, convenció a sus sufridos padres de que la llevasen otra vez en junio o principios de julio de 1956; no recuerda bien la fecha exacta. Pero tuvo que ser por ahí, porque los arándanos todavía no estaban maduros.

Y para el Bosque de Charnwood marcharon. En cuanto pudo, Tina se metió por el camino de cabras que conducía a la cantera en cuestión. Durante un buen rato, se quedó flipada con aquellas rocas de color gris oscuro y tono verdeazulado, como era su gusto. Entonces sus ojos cayeron sobre algo más: uno de sus amados fósiles. Parecía una especie de hoja de helecho fosilizada, sin nervio central, sino con sus foliolos dispuestos como en zigzag. Pero había un pequeño problema. Según sus mapas y notas copiados tan cuidadosamente, la piedra donde se hallaba el fósil era precámbrica. Y todos los libros gordos y los grandes sabios y sus profesores y el mundo entero afirmaban taxativamente que la vida compleja apareció en el Cámbrico, o sea después. Aquel fósil que tenía ante sus ojos no tenía el menor derecho a existir. Faltaría más. Una forma de vida compleja antes del Cámbrico, y encima con aspecto de planta terrestre, ¡menuda idiotez!

Fósil índice de Charnia Masoni en el New Walk Museum & Art Gallery de Leicester, UK.

El fósil índice de Charnia en su roca precámbrica que observó Tina, con unos 580 millones de años de antigüedad, actualmente expuesto en el New Walk Museum & Art Gallery de Leicester, Inglaterra. Cuando Tina reparó en él, todo el mundo daba por sentado que la vida pluricelular compleja se originó en el Cámbrico, decenas de millones de años después, y esto simplemente no podía existir. Imagen: Wikimedia Commons. (Clic para ampliar)

Sólo que aquella especie de fronda estaba allí, casi mirando desafiantemente a Tina desde la profundidad del tiempo. Mucho, mucho tiempo: bastante más de medio millar de millones de años. Cuando aquel ser estuvo vivo, los días sólo duraban 22 horas y los años tenían 400 días divididos en 13 meses. El Sol y la Tierra estaban en otro lugar de la galaxia y las estrellas nocturnas eran completamente distintas de las actuales. El oxígeno todavía estaba acumulándose en el aire. Aquel bosque y aquella cantera estaban muy cerquita del Polo Sur, en el fondo de un superocéano al que ahora llamamos Panthalassa, que bañaba las costas extrañas de un único supercontinente hoy denominado Pannotia. Y dijeran lo que dijesen los libros gordos, los grandes sabios, sus profes y el mundo entero, el fósil imposible de Tina llevaba ahí desde entonces.

Tina hizo lo que hacen los buenos científicos. Como faltaban muchas décadas para que una chavala de 15 años pudiera tener un móvil con su cámara de nosecuántos megapíxeles, primero se limitó a no tocar nada. Al día siguiente, en el colegio, se acercó a su profesora de geografía para contarle que había encontrado un fósil en una roca precámbrica. La profe contestó al instante: “No hay fósiles en las rocas precámbricas.” Tina le dijo que ya lo sabía, pero ella lo había visto con sus propios ojos. Sin ni siquiera mirarla, la profe replicó: “¡Pues entonces no será una roca precámbrica!” Tina insistió: ese fósil estaba en una roca precámbrica. Su profe repitió: “Ya te he dicho que no hay fósiles en las rocas precámbricas.” Y completado así el círculo, se marchó dejándola con la palabra en la boca.

Pero Tina, a fuer de curiosa, era cabezona. Pidió una vez más a sus padres que la llevaran de nuevo al lugar. Y esta vez, un poquito obcecada, no tuvo una idea tan buena: se llevó el martillo de minero de papá. Contaremos en su defensa que seguía teniendo quince años y necesitaba saber qué era aquella cosa. Y también que tuvo el buen juicio de no dar un solo golpe cerca del fósil. Lo que intentaba era sacar el trozo de roca entero, fósil incluido, pero intacto. Por fortuna, al poco rato descubrió que aquella piedra era demasiado dura y sus martillazos apenas tenían algún efecto. Ya a la desesperada, la buena científica volvió a su sesera adolescente. Ese día les acompañaba su abuelo, que siempre llevaba encima un bloc de notas con su correspondiente lapicero. Tina le pidió un par de hojas, el lápiz, y sacó un calco del fósil como los científicos verdaderos. Con él se fue al museo local, para intentar compararlo con las piezas que tenían allí, sin ningún éxito. Repasó todos los libros de geología y paleontología a los que pudo poner las manos encima. Nada. Finalmente se cansó y, desilusionada, guardó el calco en su carpeta.

Aún intentó un último viaje al Bosque de Charnwood hacia finales del año siguiente, 1957. Entonces descubrió, para su horror, que su fósil ya no estaba. Ni el fósil ni la roca. En su lugar había marcas de agujeros de perforación y las herramientas que habían usado para extraerla. Lo único que la consoló fue que, a juicio de sus familiares, parecía un trabajo profesional y no la barbarie de algún vándalo. Supusieron que el fósil de Tina habría pasado a formar parte de la colección de alguien. Así quedó la cosa.

Aunque Tina no se olvidó de él. En 1961 se graduó en zoología, botánica y geografía en la Universidad de Reading, especializándose en zoología. Luego estuvo dos años investigando la ecología de los mejillones de agua dulce. En ese periodo, la universidad organizó un viaje al famoso Museo de Historia Natural de Londres, con sus casi 80 millones de especímenes. Tina pensó que quizá ahí encontraría la respuesta a aquel misterio de su adolescencia. Se lo repasó entero, sala por sala y era geológica por era geológica, buscando alguna pieza que coincidiera con su fósil… sin encontrar nada. Cabezota, escribió a casa para que le mandaran aquellos calcos que tomó con el bloc y el lápiz del abuelo. En cuanto los recibió, se presentó en el Departamento de Geología de su universidad a preguntar si alguien tenía alguna idea de qué demonios podía ser aquello. Al principio la miraron raro, pero entonces alguien recordó algo y le mostró un paper recién publicado por un cierto doctor Trevor Ford, de la Universidad de Leicester.

El título era, ni más ni menos, Fósiles precámbricos del bosque de Charnwood. ¡Y allí estaba el suyo! Se trataba de un descubrimiento revolucionario: ni más ni menos que uno de los dos primeros ejemplares confirmados de la biota ediacárica, formas de vida complejas decenas de millones de años más antiguas que lo asegurado por los libros gordos, los grandes sabios, los profesores y el mundo en general hasta entonces. Tina siempre tuvo razón: su fósil era un ser complejo anterior al Cámbrico y ahora se llamaba Charnia masoni, con unos 580 millones de años de antigüedad.

Molde e impresión artística de Charnia masoni.

Arriba: Molde del holotipo de Charnia masoni. Abajo: Impresión artística de cómo pudo ser cuando vivía fijada a los fondos del superocéano Panthalassa precámbrico. Imágenes: Wikimedia Commons / Andy Kerr (Clic para ampliar)

Roger Mason, descubridor oficial de Charnia masoni, a los 15 años.

Roger Mason, también de 15 años, con el primitivo equipo de escalada que usaba cuando observó a Charnia en la cantera del Bosque de Charnwood. A diferencia de la familia de Tina, su padre conocía al Dr. Trevor D. Ford del Departamento de Geología de la Universidad de Leicester y llamó su atención sobre el descubrimiento. A partir de ahí se confirmó que lo imposible era posible. Foto: © Leicester Mercury, 1957. (Clic para ampliar)

Lo de masoni era por otro chaval de 15 años, Roger Mason, igualmente aficionado a los fósiles. Un año después de que Tina lo observara por primera vez, Roger fue a practicar escalada con sus colegas a la cantera en cuestión y reparó en su extrañeza igual que Tina. Pero a diferencia de Tina, la familia de Roger tenía vinculación con el mundo académico y así su redescubrimiento llegó rápidamente a oídos del Dr. Trevor D. Ford.

El Dr. Ford se mostró escéptico al principio, pero accedió a ir a echar un vistazo y quedó atónito. E inmediatamente pasó a la acción. Así pues, el fósil no había sido retirado de la cantera por ningún coleccionista, sino por un equipo de la Universidad de Leicester dirigido por el Dr. Ford. De ahí que el trabajo fuese tan profesional. Y además del Charnia masoni también habían extraído otro fósil precámbrico, el Charniodiscus concentricus, con una forma circular que también había llamado la atención de Tina pero no le dio mayor importancia. Actualmente se encuentran en el New Walk Museum & Art Gallery de Leicester como los primeros especímenes confirmados de que la vida compleja fue posible antes de que fuese posible la vida compleja. Tina y Roger acababan de descubrir –o demostrar, como ahora veremos– un ámbito completo de la vida que existió durante decenas de millones de años, llamado la biota ediacárica.  Moraleja: mientras sigas el método científico –y eso vale para todo o casi todo en esta vida, no sólo para las “cosas científicas”– nunca te fíes excesivamente de los libros gordos, los grandes sabios, los profesores, el mundo en general y los adultos en particular. Ser más viejos no nos hace ni más inteligentes ni necesariamente más sabios y a veces somos unos cretinos bastante soberbios. Unos idiotas, vamos.

La biota ediacárica.

Charnia masoni y Charniodiscus concentricus sólo son dos ejemplos de una vasta vida marina compuesta por seres pluricelulares complejos que aparecieron poco después de la descongelación del periodo Criogénico (sobre todo a partir de la llamada explosión de Avalon) y comenzaron a difuminarse poco antes de principios del Cámbrico; es decir, coincidiendo a grandes rasgos con el periodo ediacárico (hace entre 635 y 542 millones de años.) Con alguna excepción que luego veremos, fueron los primeros seres complejos que aparecieron y perduraron largo tiempo sobre la faz de este planeta. Algún autor objeta al uso de la expresión biota ediacárica como si fuesen seres aparte del proceso evolutivo global de la vida terrestre y prefiere restringir el término a la mera datación estratigráfica. Sea como fuere, muchos de estos seres presentan características que los distinguen de la vida que seguimos adelante a partir de la explosión cámbrica.

Hay que reseñar que Tina, Roger y el Dr. Ford no fueron los primeros en darse cuenta de que algo raro pasaba con la supuestamente imposible vida compleja precámbrica. De hecho, el Ediacárico toma su nombre de las colinas de Ediacara, al Sur de Australia. Ahí fue donde en 1946 el geólogo Reg Sprigg encontró unas ciertas “medusas” en un yacimiento que parecía muy anterior al Cámbrico. Tampoco él había sido el primero. Ya en 1868, el escocés Alexander Murray había hallado fósiles de Aspidella terranovica en eso, Terranova, por debajo del entonces denominado “estrato primordial.” En 1933, el alemán Georg Gürich se topó con fósiles de Rangea schneiderhoehoni en la Formación Nama de la actual Namibia, donde también han aparecido restos de Ausia fenestrata. Pero como la creencia en que la vida compleja surgió a partir del Cámbrico estaba tan firmemente establecida, estos hallazgos se disputaron por todas las vías: que si la datación de los estratos no estaba clara, que si había habido contaminación de las muestras, que si en realidad no eran fósiles sino formaciones minerales curiosas, etcétera. Lo habitual en estos casos.

Fondo marino de Ediacara en el Precámbrico.

Impresión artística del fondo marino precámbrico que hoy en día son las colinas de Ediacara, Australia, que dan nombre al periodo ediacárico. Imagen: Wikimedia Commons. (Clic para ampliar)

La importancia del descubrimiento de Tina, Roger y el Dr. Ford radica en que fue un auténtico manotazo que tiró todas estas objeciones por la borda. La geología de las Midlands británicas está extremadamente bien documentada y datada, el fósil permanecía prístino en su roca precámbrica y claramente Charnia masoni fue alguna clase de ser vivo, se ponga como se ponga quien se ponga. Qué clase de ser vivo es cuestión aparte. La biota ediacárica es tan distinta de lo habitualmente conocido y tan diversa –se han encontrado muchísimos seres más, a cuál más peculiar– que se sigue discutiendo qué son exactamente. Para ser más rigurosos, cuál es su clasificación taxonómica. Distintos especialistas han intentado encuadrarla prácticamente en todas las categorías, desde los cnidarios (o sea, animales) y los metazoos basales hasta las algas, los hongos, los líquenes, los protistas gigantes (al estilo de los Xenophyophorea), los organismos coloniales e incluso en su propio filo o reino aparte. Actualmente se tiende a pensar que fueron alguna clase de metazoos, o sea animales, pero sumamente difíciles de emparentar con quienes vinimos después.

Dendrogramma enigmatica.

Dendrogramma enigmatica. La muestra fue recogida en 1986 a entre 400 y 1.000 metros de profundidad en el talud continental del Estrecho de Bass que separa Australia de Tasmania. En 2014 fue identificada, o más bien “no-identificada”, como una especie animal sin relación taxonómica aparente alguna con ninguna otra conocida pero presentando similitudes con algunos medusoides ediacáricos. (Just, J.; Kristensen, R. M.; Olesen, J.: “Dendrogramma, New Genus, with Two New Non-Bilaterian Species from the Marine Bathyal of Southeastern Australia (Animalia, Metazoa incertae sedis) – with Similarities to Some Medusoids from the Precambrian Ediacara.” PLoS One, 3 de septiembre de 2014; 9(9):e102976. doi: 10.1371/journal.pone.0102976. eCollection 2014.) (Clic para ampliar.)

En suma, que ni puñetera idea. Para acabar de arreglarlo, en 2014 se identificaron unos bichitos marinos en forma de seta llamados Dendrogramma que parecen compartir algunas características con seres ediacáricos como Albumares brunsae, Anfesta stankovskii y Rugoconites. Aunque se les ha ubicado en el reino animal, tampoco saben muy bien dónde más colocarlos en el “árbol de la vida.” El nombre se les puso por la disposición de sus canales digestivos, que recuerdan a un dendrograma… y punto. Así que por el momento son los únicos miembros de la familia… eso, Dendrogrammatidae. Para todo lo demás, son incertae sedis, o sea que quién sabe. Van a intentar secuenciarles el ADN, a ver si nos enteramos de algo más. Encuentro de lo más acertado el “apellido” que le han adjudicado a uno de ellos: Dendrogramma enigmatica, porque representan un auténtico enigma. Y eso que estamos hablando de seres perfectamente existentes hoy en día y que podemos estudiar (y están estudiando) con todo detalle. Ahora imagínate la pesadilla de catalogar a unos seres todavía más enigmáticos, quizá emparentados con estos o quizá no, que desaparecieron hace como medio millar de millones de años dejándonos sólo un puñado de fósiles.

Como te decía, la biota ediacárica parece presentar una serie de características distintivas comunes, o eso nos parece con el material que ha quedado para trabajar. Para empezar, fueron todos seres marinos, entre otras cosas porque –con permiso de estas personas– en la tierra y el aire no había aún ningún ser vivo complejo. Pero no, no es sólo por eso: todos los fósiles han aparecido en estratos que permanecieron sumergidos durante el Ediacárico, aunque exista alguna opinión divergente. Y además bastante sumergidos, por debajo de la zona fótica (o sea, la capa del mar que puede atravesar la luz solar), así que no pudieron usar la fotosíntesis. Pueden presentar casi cualquier clase de simetría, incluyendo simetría bilateral como nosotros, o ninguna.

Algunos como Funisia dorothea pudieron reproducirse sexualmente. Dado que en su época los depredadores macroscópicos aún no existían, la respetable agencia Reuters calificó su existencia como muy agradable, imaginando que hubiesen dispuesto de un sistema nervioso capaz de apreciarlo: ningún depredador, mucho sexo. Pero creemos que la mayor parte eran asexuados; a cambio, algunos de estos últimos se reproducían de maneras francamente sofisticadas. También se ganaban la vida con gran facilidad: en su mayor parte debían ser seres sésiles, o sea que se fijaban al fondo para alimentarse del tapete microbiano subyacente o, mediante filtración, de cualquier cosa alimenticia que les pasara a través. Un lugar tranquilo para vivir, esos mares precámbricos. No obstante, Guy Narbonne opina que diversas características propias de los animales modernos fueron apareciendo en esta biota a lo largo del Ediacárico, como la movilidad (hace más de 555 millones de años), la calcificación (550 millones de años) y finalmente el comportamiento depredador (hace menos de 549 millones de años, ya aproximándose al Cámbrico.)

Cloudina carinata, fósil ediacárico terminal hallado en Extremadura.

Cloudina carinata del Ediacárico terminal (hace unos 540 millones de años) con exoesqueleto mineralizado, hallada en las dolomías del anticlinal del Ibor-Guadalupe, Extremadura. Foto: Geoparque Villuercas-Ibores-Jara.

La misma extinción de la biota ediacárica es objeto de debate. No estamos seguros de cuándo y como se marcharon estos seres exactamente. Parece que aunque la inmensa mayoría ya se habían esfumado antes de que comenzara el Cámbrico, algunas comunidades pudieron pervivir hasta el Cámbrico Medio. Y no tenemos claro si fue una extinción rápida por sus propias razones, una sustitución al ser desplazados por los seres cámbricos o lo que llaman un modelo del gato de Cheshire, en el que la progresiva desaparición de los tapices microbianos del fondo marino precámbrico los habría ido haciendo desaparecer hasta que finalmente no quedó ninguno. Se discute también hasta qué punto constituyeron un verdadero ecosistema en el sentido moderno del término; es decir, si interactuaban más o menos entre sí o cada uno estaba ahí fijado a su trocito de tapiz microbiano cual percebe a la roca ignorando por completo lo que hubiera a su alrededor. Si como dice Narbonne desarrollaron comportamientos como el movimiento y la depredación, algo de ecosistema tuvieron que tener.

Por cierto que estos seres no han aparecido únicamente en esos países donde hablan raro. Cerca de Villarta de los Montes (Badajoz)  científicos de la Facultad de Ciencias de la Universidad de Extremadura han hallado una estupenda colección de fósiles ediacáricos terminales que incluyen Cloudinas –el primer metazoo conocido con un esqueleto externo–, Sinotubulites, Namacalathus y algo que se parece a las Protolagena. Si te interesa el tema, puedes preguntar en el Geoparque de Villuercas – Ibores – Jara. Por su parte, Rusia, Ucrania, Canadá y China están plagadas. Esa vida que no podía existir estuvo repartida por todas partes durante millones de años, ahora ya sólo esperando a que un par de quinceañeros curiosos con la mirada limpia y la cabeza despejada se fijasen bien.

Cada vez más vida, cada vez más pronto.

Y es que como creo que ya te he contado varias veces, cuanto más sabemos, vemos que antes apareció la vida en la Tierra. Y la vida pluricelular también, como apunté en este otro excelente sitio.

Fósil francevillense

Uno de los fósiles francevillenses con 2.100 millones de años de antigüedad. Literalmente, no sabemos lo que fue. Pero fue. Imagen: Wikimedia Commons. (Clic para ampliar)

Pero es que incluso todo esto comienza a quedarse algo obsoleto. Ahora mismo vamos teniendo dudas de que la biota ediacárica represente la primera vez que surgieron seres complejos en este planeta. Hoy tengo el gusto de presentarte también a la biota francevillense, con… ¡2.100 millones de años de antigüedad! A ver si nos entendemos tú y yo, compi: dos mil cien millones de años es más de la séptima parte de la edad del universo. Hace 2.100 megas de años, el Sol brillaba casi un 20% menos que ahora, los años tenían 465 días divididos en 14 meses y medio y apenas comenzaba a haber oxígeno libre. El maldito uranio todavía era lo bastante rico como para encender un reactor nuclear natural con agua corriente 400 millones de años después (los materiales radiactivos van decayendo con el paso del tiempo.) Y de hecho lo hizo muy cerca de ahí, en Oklo (Gabón), a pocos kilómetros de Franceville. Por eso a la biota francevillense también se le llama gaboniontes: tanto Oklo como Franceville están en Gabón. Francia extrae uranio para sus reactores nucleares en el sector.

Sabemos todavía muy, muy poco de estos gaboniontes. Pero, al igual que pasó con Charnia, ahí están: fósiles circulares y elipsoidales de hasta doce centímetros, muy probablemente pluricelulares. En realidad, la vida pluricelular ha evolucionado al menos 25 veces independientemente en la historia de la Tierra, desapareciendo a continuación en la mayoría de las ocasiones. Lo que ya no es tan normal es que evolucione hasta crear seres macroscópicos tridimensionales de 12 centímetros. Y sin embargo, en el delta de un olvidado río paleoproterozoico, seguramente bajo una columna de agua con algo de oxígeno disuelto, estos bichos –no hay ninguna otra condenada manera de clasificarlos hoy por hoy– medraron durante una larga temporada antes de dejarnos sus fósiles en la pirita del lugar. Así que la biota ediacárica pudo no ser la primera vez que aparecieron seres complejos macroscópicos en este planeta. La biota francevillense, aunque seguramente mucho más simple, pudo adelantárseles en un millar y medio de millones de años o así.

Tina Negus y Roger Mason

Tina Negus y Roger Mason en la actualidad. Ahora ya no son ningunos quinceañeros, pero siguen haciendo lo que siempre amaron: Tina fotografiando aves y Roger con un yacimiento precámbrico a la espalda. Fotos: Birdnote Team / The Thought Stash

¿Y qué pasó al final con los protas humanos de esta historia? Bueno, pues como ya sabemos Tina se hizo zoóloga, y además poetisa, fotógrafa y pintora; ahora, ya jubilada, sigue dedicándose a esto último. Roger, el otro quinceañero que redescubrió definitivamente a Charnia, acabó siendo profesor universitario de geología y aunque jubilado también, continúa colaborando con la Universidad China de Geociencias en Wuhan.  El Dr. Trevor D. Ford, nombrado miembro de la Orden del Imperio Británico y esas cosas de los isleños, está jubiladísimo pero hace poco aún seguía organizando charlas y seminarios sobre estos temas en su Leicester natal. En 2007, Roger y el Dr. Ford invitaron a Tina a participar en uno de estos seminarios como predescubridora de ese fósil que demostró la existencia de la vida que no podía existir.

El otro protagonista, la ciencia, salió ganando como hace siempre. Los científicos, como humanos que son, pueden resultar a veces más duros de mollera. :-P Pero el poder y la grandeza de la ciencia radica precisamente en que siempre es capaz de cambiarse a sí misma y corregir sus propios errores, siguiendo el método científico, para perfeccionarse cada vez más y más y así darnos todo lo que nos ha dado, y nos dará. Y en la misma raíz de la ciencia está la curiosidad, ese observar algo que quizá muchos hayan visto pero nadie había observado antes –como seguramente muchos habrían visto el fósil del Bosque de Charnwood, empezando por quienes trabajaron en la cantera durante muchos años, pero nadie lo había observado–, pensar aquello de “¡qué curioso!” y no parar hasta descubrir lo que es y cómo funciona. La misma curiosidad que nos ha llevado a lo largo de los milenios desde preguntarnos qué demonios serían aquellas lucecitas que brillan en el cielo por la noche hasta pasear nuestras naves-robot por las proximidades de Plutón. Desde preguntarnos por qué la gente caía enferma hasta tener la mayor esperanza de vida y las menores tasas de mortalidad infantil de toda la historia de la humanidad. Desde preguntarnos qué sería el rayo y esas chispitas de las prendas de lana hasta construir los dispositivos electrónicos que estamos usando ahora mismo tú y yo. La misma curiosidad que, si no cometemos ninguna estupidez monumental por el camino, nos llevará adonde ahora mismo ni siquiera podemos imaginar.

Bibliografía:

46 Comentarios
¡Qué malo!Pschá.No está mal.Es bueno.¡¡¡Magnífico!!! (9 votos, media: 5,00 de 5)
Loading...Loading...
Be Sociable, Share!

Las ciudades que se salvaron y las gentes que no

Hace hoy 70 años, Hiroshima fue aniquilada.
El día 9, le tocó a Nagasaki.
Y para el 15, había otra bomba en camino.

Portada del memorando secreto de la 2ª reunión del Comité de Objetivos para la bomba atómica, 10-11/05/1945

Para esta entrada contamos con los documentos secretos originales del Comité de Objetivos y otra información de la época desclasificada décadas después. Imagen: Archivos de Seguridad Nacional de los Estados Unidos de América.

Nagasaki antes y después del ataque atómico

Fotografías aéreas del valle de Urakami, Nagasaki, antes y después del bombardeo atómico del 9 de agosto de 1945. Imágenes: Archivos Nacionales de los Estados Unidos. (Clic para ampliar)

Los historiadores siguen discutiendo si Japón se rindió por los bombazos atómicos de Hiroshima y Nagasaki, por la declaración de guerra soviética acordada en Yalta con los EEUU y el Reino Unido, o por una combinación de estos y otros factores. No obstante, lo que quedaría nítidamente impreso en la memoria humana para las generaciones futuras fue el abrumador poder del núcleo atómico liberado sobre esas dos ciudades hace 70 años. Pero es menos sabido que cuando Japón capituló, el día 15, había una tercera bomba en camino para lanzarla “no más tarde de mediados o finales de agosto”, dependiendo de la meteorología. Bueno, en realidad lo que estaba en camino era el núcleo de plutonio, porque el resto de componentes para ensamblar varias bombas más ya estaban esperando en la Base Aérea de Tinian (Islas Marianas), desde donde operaba el Grupo Combinado 509 de la USAAF, encargado de los ataques atómicos.

Decidiendo qué ciudades aniquilamos.

Es preciso detenerse primero en la peculiar manera como el llamado Comité de Objetivos (Target Committee) decidió los blancos para esta nueva arma. Hasta bien entrada la primavera de 1945, con la guerra en Europa ya terminando y el Proyecto Manhattan para construir la bomba atómica muy avanzado, los Estados Unidos no tenían muy claro dónde y cómo iban a utilizarla si es que todo aquel invento funcionaba. Uno de sus problemas fundamentales radicaba en que los blancos más jugosos ya estaban reducidos a cenizas por los grandes bombardeos incendiarios de los meses anteriores. Media Tokio, por ejemplo, había desaparecido. Hasta 67 ciudades japonesas estaban destruidas en mayor o menor grado, junto a un enorme número de otros objetivos. Remover ruinas con un petardazo fenomenal no tendría el mismo impacto psicológico, ni causaría el mismo daño, que desintegrar una ciudad intacta con toda su población. Además, los investigadores estadounidenses querían estudiar los efectos de un arma nuclear sobre un blanco real previamente virgen o casi. En palabras del asesor de Defensa John J. McCloy (un cargo parecido a lo que ahora sería el consejero de Seguridad Nacional), “no nos quedaban más ciudades que bombardear, más portaaviones que hundir o más acorazados que cañonear; teníamos problemas para encontrar objetivos.”

Así pues, el 27 de abril de 1945, tres días antes de que Hitler se suicidase en su búnker berlinés, este Comité de Objetivos se reunió por primera vez en el Pentágono. Presidía el general Leslie Groves, director del Proyecto Manhattan, aunque la voz cantante la llevó su asistente Thomas Farrell. Estaban también el general de brigada Lauris Norstad de la USAAF (predecesora de la actual Fuerza Aérea de los Estados Unidos) y científicos nucleares como John von Neumann o William Penney. Curiosamente, Robert Oppenheimer –director científico del Proyecto– no fue invitado y menos curiosamente, tampoco Leó Szilárd –el inventor original de la bomba atómica y otras cosas muy destructivas, pero totalmente contrario a su uso contra zonas habitadas–. En la práctica, esta reunión inicial se limitó a definir unos criterios generales y una lista provisional de objetivos, donde ya aparece Hiroshima como primera opción y Nagasaki entre las alternativas:

Lista inicial de blancos del Comité de Objetivos de los EEUU para la bomba atómica

Fragmento del memorando original de la primera reunión del Comité de Objetivos, tomado por el general de brigada Lauris Norstad de la USAAF (antecesora de la actual USAF) el 28 de abril de 1945, con la lista inicial de objetivos. Puede observarse que ya aparece Hiroshima con un “1” manuscrito al lado y Nagasaki como posible alternativa. Nótese que hay varias erratas, como “Kamasaki” por Kawasaki, “Yokahama” por Yokohama, “Osake” por Osaka o posiblemente “Shimosenka”, que no he logrado identificar. Imagen: Archivos Nacionales de los Estados Unidos.

Los criterios son todavía más interesantes, pues revelan claramente la política de selección de blancos:

  1. Deben tomarse en consideración las grandes áreas urbanas, con no menos de 3 millas de diámetro, en las zonas más pobladas.
  2. Los objetivos deben estar entre las ciudades japonesas de Tokio y Nagasaki.
  3. El objetivo debe tener un alto valor estratégico.
  4. Se considera apropiado estudiar las siguientes áreas: Bahía de Tokio, Kawasaki, Yokohama, Nagoya, Osaka, Kobe, Kioto, Hiroshima, Kure, Yawata, Kokura, Shimosenka [?], Yamaguchi, Kumamoto, Fukuoka, Nagasaki, Sasebo.
  5. El Grupo de Objetivos conjunto de la Armada y la Fuerza Aérea descartará cualquiera de estas 17 áreas que ya hayan sido destruidas.

–De las notas de la reunión inicial del Comité de Objetivos,
Archivo de Seguridad Nacional de los EEUU.

Alcance de un B-29 cargado con una bomba atómica (1.500 millas náuticas) desde la base aérea de Tinian-Norte

Alcance de un B-29 cargado con una bomba atómica (1.500 millas náuticas) desde la base aérea de Tinian-Norte, según las Notas de la reunión inicial del Comité de Blancos de 27 de abril de 1945 celebrada en el Pentágono, Washington DC (pág. 1.) La posición de Hiroshima y Nagasaki está indicada con puntos rojos. Este alcance dejaba a los bombarderos cierto margen de combustible para localizar el objetivo, realizar varios intentos o, en su caso, dirigirse al blanco alternativo. Mapa base: © Google Maps / Mapping and Distance Tools.

Es decir, desde el principio iban a por grandes áreas urbanas con mucha población, situadas entre Tokio y Nagasaki (por el alcance de los bombarderos B-29, añadiendo cierto margen), que no hubiesen sido ya abrasadas. Lo del “alto valor estratégico” es un poco más discutible; evidentemente, en tiempos de guerra, toda ciudad grande y muy poblada va a tener algo con valor estratégico (industria, un puerto, un nudo de comunicaciones, cualquier cosa), lo que a todos los efectos convierte a este tercer punto en una carta blanca para atacar cualquier localidad de buen tamaño. El hecho de que el punto de mira fuese en todos los casos el centro urbano en vez de las áreas donde pudieran estar esas instalaciones de alto valor estratégico y que buscaran el máximo impacto psicológico, como veremos más adelante, refuerza esta idea (en Hiroshima le dieron casi de lleno, en Nagasaki se les desvió debido a la nubosidad.)

La segunda reunión del Comité de Objetivos, mucho más decisiva, se celebró dos semanas escasas después, con la guerra en Europa recién terminada: el 10 y 11 de mayo de 1945. Esta vez Oppenheimer sí estaba presente; tanto, que la hicieron en su despacho de Los Álamos (el “sitio Y.”) Con él se encontraban el general Farrell (el asistente del director Groves), el coronel Seeman, el capitán Parsons, el mayor Derry y varios científicos e ingenieros, incluyendo de nuevo a Von Neumann y Penney. En el memorando de esta reunión, donde se contemplan numerosos aspectos técnicos y operacionales, ya queda claro que buscan el máximo efecto psicológico tanto en Japón como en el mundo entero y que no desean apuntar a un objetivo militar aislado:

7. Factores psicológicos en la selección del objetivo.

A. Hubo acuerdo en que los factores psicológicos de la selección del objetivo son de gran importancia. Dos aspectos de esto son:

1. Conseguir el mayor efecto psicológico en Japón y
2. Hacer que el uso inicial sea lo bastante espectacular como para que la importancia del arma se reconozca internacionalmente cuando se le dé publicidad.

B. Con respecto a esto, Kioto tiene la ventaja de que su población es más inteligente y por tanto más capaz de apreciar el significado del arma. Hiroshima tiene la ventaja de que su tamaño y la posible focalización [ocasionada por] las montañas cercanas [favorecerán que] una gran parte de la ciudad resulte destruida. El Palacio del Emperador en Tokio tiene una fama mayor pero es de menor valor estratégico.

8. Uso contra objetivos “militares.”

A. Hubo acuerdo en que para el uso inicial del arma cualquier objetivo pequeño y estrictamente militar debe hallarse en un área mucho mayor sujeta a daños [ocasionados por] la explosión, para evitar el riesgo de que el arma se pierda debido a [un mal lanzamiento.]

–Del memorando de la segunda reunión del Comité de Objetivos,
Archivo de Seguridad Nacional de los EEUU.

Fragmento de las notas de la 2ª reunión del Comité de Blancos (pág. 6), especificando que se desea el máximo impacto psicológico, que no se deben atacar pequeños blancos militares a menos que se encuentren en "un área más extensa" donde los efectos de la bomba se evidencien, y que los bombarderos deben hallarse al menos a 2,5 millas náuticas de la explosión para reducir los efectos de la radiactividad.

Fragmento del memorando de la 2ª reunión del Comité de Blancos (pág. 6), especificando que se desea el máximo impacto psicológico, que no se deben atacar pequeños blancos militares a menos que se encuentren en “un área más extensa” donde los efectos de la bomba se evidencien, y que los bombarderos deben alejarse al menos 2,5 millas náuticas de la explosión para reducir los efectos de la radiactividad. Imagen: “The atomic bomb and the end of World War II: a collection of primary sources. National Security Archive electronic Briefing Book,” nº 162 (2005-2007). Universidad George Washington, Washington D.C (Clic para ampliar)

También se evidencia que conocen sobradamente los efectos perniciosos de la radiactividad:

9. Efecto radiológico.

A. El Dr. Oppenheimer presentó un memorándum que había preparado sobre los efectos radiológicos del dispositivo. Este memorándum no se reproducirá en este resumen pero se le envía al general Groves como un documento separado. Sus recomendaciones básicas son:

1. Por razones radiológicas, ninguna aeronave debe hallarse a menos de 2,5 millas del punto de detonación (por la explosión, esta distancia debería ser mayor) y
2. Las aeronaves deben evitar la nube de materiales radiactivos. Si otras aeronaves realizan misiones poco después de la detonación, un avión de monitorización debería determinar las áreas a evitar.

10. Operaciones aéreas coordinadas.

A. Se discutió la posibilidad de proseguir el ataque con una misión de bombardeo incendiario. Esto presenta la gran ventaja de que la capacidad de lucha contra incendios del enemigo habrá sido probablemente paralizada por el dispositivo, de tal modo que podría producirse una conflagración muy severa. No obstante, hasta que se sepa más sobre los fenómenos asociados a la detonación del dispositivo, como hasta qué punto habrá nubes radiactivas, debe evitarse ninguna misión de bombardeo incendiario inmediatamente [posterior.] (…)

–Del memorando de la segunda reunión del Comité de Objetivos,
Archivo de Seguridad Nacional de los EEUU.

Finalmente, en este segundo encuentro la anterior lista de 17 objetivos queda reducida al estudio de 6, de los que al final recomiendan 4:

6. Estado de los objetivos.

El Dr. Stearns describe el trabajo que ha realizado sobre la selección de objetivos. Ha estudiado posibles blancos con las siguientes características: (1) Son objetivos importantes en una gran área urbana con más de 3 millas de diámetro; (2) Pueden ser dañados efectivamente por una detonación; y (3), es improbable que sean atacados antes del proximo agosto. El Dr. Stearns tenía una lista de 5 blancos que la Fuerza Aérea podría reservar para nuestro uso a menos que aparezcan circunstancias imprevistas. Son los siguientes:

  1. Kioto – Este objetivo es un área urbana industrial con un millón de habitantes. Es la antigua capital de Japón y mucha gente e industrias se están trasladando ahí ahora tras la destrucción de otras áreas. Desde el punto de vista psicológico tiene la ventaja de que Kioto es un centro intelectual de Japón y su población es más capaz de apreciar el significado de un arma como el dispositivo. (Calificado como objetivo AA.)
  2. Hiroshima – Este es un importante almacén del ejército con un puerto de embarque en medio de un área urbana industrial. Constituye un buen objetivo por radar y tiene unas dimensiones que podrían hacer que una gran parte de la ciudad resulte extensamente dañada. Hay unas colinas adyacentes que probablemente producirán un efecto de focalización que puede incrementar de modo significativo los daños causados por la explosión. Debido a sus ríos no es un buen objetivo incendiario. (Calificado como un objetivo AA.)
  3. Yokohama – Este objetivo es una importante área urbana industrial que hasta ahora no ha sido atacada. Sus actividades industriales incluyen la fabricación de aviones, máquinas herramienta, puertos, equipo eléctrico y refinerías de petróleo. Conforme los daños a Tokio han aumentado, más industrias se han mudado a Yokohama. Tiene la desventaja de que las áreas más importantes están separadas por una gran extensión de agua y ahí se encuentra la mayor concentración de fuerzas antiaéreas de Japón. Para nosotros tiene ventajas como un blanco alternativo para uso en caso de mal tiempo, dado que se encuentra bastante lejos de los otros objetivos considerados. (Calificado como un objetivo A.)
  4. Arsenal de Kokura – Este es uno de los mayores arsenales de Japón y está rodeado por estructuras urbanas industriales. El arsenal es importante por [contener] artillería ligera, armamento antiaéreo y materiales defensivos para cabezas de playa. Sus dimensiones son 4.100 x 2.000 pies [1.250 x 610 metros.] Debido a sus dimensiones, si la bomba fuese correctamente lanzada se obtendría la máxima ventaja de las altas presiones inmediatamente debajo para destruir las estructuras más sólidas y al mismo tiempo habría daños considerables a las estructuras más débiles situadas a mayor distancia. (Clasificado como un objetivo A.)
  5. Niigata – Este es un puerto de embarque en la costa Noroeste de Honshu. Su importancia está creciendo conforme otros puertos resultan dañados. Cuenta con industria de máquinas herramienta y es un centro potencial de dispersión industrial. Tiene refinerías de petróleo y almacenes. (Calificado como un objetivo B.)
  6. Se debatió la posibilidad de bombardear el Palacio Imperial. Hubo acuerdo en que no debíamos recomendarlo, sino que cualquier acción para este bombardeo debe proceder de las autoridades que hacen la política militar. Acordamos que deberíamos obtener información para determinar la efectividad de nuestra arma contra este objetivo.

B. Los presentes en la reunión recomendaron que la primera elección de objetivos para nuestra arma debería ser la siguiente:

a. Kioto.
b. Hiroshima.
c. Yokohama.
d. Arsenal de Kokura.

–Del memorando de la segunda reunión del Comité de Objetivos,
Archivo de Seguridad Nacional de los EEUU.

Blancos primarios iniciales para la bomba atómica establecidos por la 2ª reunión del Comité de Objetivos.

Blancos primarios iniciales establecidos por la 2ª reunión del Comité de Objetivos (pág. 5 del acta.) De izquierda a derecha: arsenal de Kokura, en la periferia Este de Kitakyushu (calificado “A”); Hiroshima (“AA”); Kioto (“AA”) y Yokohama (“A”). Puede observarse la posición de Tokio en el extremo superior derecho. Otras 67 ciudades, incluyendo Tokio, habían quedado excluidas porque ya estaban demasiado arrasadas por los grandes bombardeos incendiarios de los meses anteriores. Mapa base: © Google Maps. (Clic para ampliar)

Podemos observar así que Nagasaki ha salido de la lista primaria de blancos y ahora está encabezada por Kioto, seguida de Hiroshima (ambas con la máxima calificación: “AA.”) Un enorme punto de mira acababa de aparecer sobre la milenaria capital imperial construida en el año 793 CE, con su millón de habitantes, su centralidad cultural y su relevancia simbólica y religiosa en el sistema tradicional de creencias japonesas. Un punto de mira situado exactamente sobre su playa ferroviaria principal, justo encima de donde hoy en día se encuentra el Museo de Locomotoras de Vapor. Durante las siguientes semanas, esta fue la zona cero para el primer ataque nuclear de la historia de la humanidad:

La "zona cero" del ataque nuclear contra Kioto que nunca llegó a producirse, según un mapa de la USAAF de junio de 1945.

La “zona cero” del ataque nuclear contra Kioto que nunca llegó a producirse, según un mapa de la USAAF de junio de 1945. Puede observarse que en este caso no apuntaban directamente al centro urbano como sucedería con Hiroshima y Nagasaki, sino al nudo ferroviario principal situado en los barrios del Sur. No obstante, gran parte de la ciudad habría resultado incendiada y destruida. En todo caso, a partir de la tercera reunión se decidió abandonar esta política de apuntar a zonas específicas para dirigir el ataque directamente contra el centro urbano, con lo que las áreas históricas y de importancia religiosa y cultural de Kioto habrían sido muy probablemente aniquiladas. Imagen: Archivo de Seguridad Nacional de los EEUU. (Clic para ampliar.)

Salvando a Kioto, condenando a Hiroshima.

Henry L. Stimson

El Secretario (Ministro) de la Guerra Henry L. Stimson (1867-1950), que se emperró en que Kioto no fuese bombardeada, condenando así a Hiroshima. Imagen: Wikimedia Commons.

Entonces ocurrió algo singular: el Secretario (Ministro) de la Guerra Henry L. Stimson dijo que ni en broma. Que Kioto tenía que salir de la lista del Comité de Objetivos. Sus razones nunca han quedado claras. Suele contarse que cuando era embajador en las Filipinas, se casó y pasó la luna de miel en esta ciudad, con lo que le tenía un cariño especial; a veces la historia se escribe con letra pequeña. Obviamente sus argumentos, con los que presionó al presidente Truman una y otra vez, no fueron esos. Afirmó que un ataque nuclear contra la emblemática Kioto, en vez de empujar a los japoneses a la rendición, los electrizaría para seguir peleando hasta el fin o al menos buscar una paz separada con los soviéticos. Que en realidad no constituía un blanco estratégico tan importante. Y de hecho, llegó a convencer a Truman de que constituía un blanco “civil” por oposición a Hiroshima, que le vendió como un blanco “militar.” Incluso se negó a que entrara en la lista para los bombardeos convencionales. Puede que también pesara el precedente de Dresde, pues ya en aquellos tiempos había levantado publicidad negativa para la causa aliada como una atrocidad sin sentido. El caso es que se abrió una batalla interna entre el general Groves, partidario de mantener a Kioto como objetivo nº 1, y Stimson, decidido a sacarla por completo de la lista.

Como hemos visto en la imagen de más arriba, Kioto seguía siendo un objetivo durante el mes de junio, con los militares determinando el mejor punto para arrojarle la bomba atómica. Aunque éste quedara establecido sobre las playas ferroviarias de los distritos industriales del Sur, probablemente la ciudad entera habría quedado arrasada por una tormenta ígnea debido a los materiales de construcción típicos en el Japón del período, la cercanía de varias fábricas con abundantes materiales inflamables y los extensos parques y bosquecillos que la caracterizan (como ocurriría en amplias zonas de Hiroshima.) No obstante, el acta de la tercera reunión del Comité de Objetivos (30 de mayo) se centra en Kioto, Hiroshima y Niigata como objetivos primarios, y recomendaba un punto de mira menos selectivo:

  1. No especificar lugares [precisos] para hacer puntería; esto se determinará posteriormente en la base [de los bombarderos] cuando se conozcan las condiciones meteorológicas.
  2. Ignorar la ubicación de las áreas industriales como un blanco preciso, dado que en estos tres objetivos tales áreas son pequeñas, extendidas por los límites de las ciudades y bastante dispersas.
  3. Intentar ubicar el primer dispositivo en el centro de la ciudad seleccionada; esto es, que no sea necesario [utilizar] los siguientes 1 o 2 dispositivos para destruirla completamente. (…)

–Del memorando de la tercera reunión del Comité de Objetivos (pág. 3),
Archivo de Seguridad Nacional de los EEUU.

Fragmento del memorando de la 3ª reunión del Comité de Objetivos para la bomba atómica, donde ya se recomienda apuntar directamente a los centros urbanos.

Fragmento del memorando de la 3ª reunión del Comité de Objetivos (pág. 3), donde ya se recomienda ignorar blancos precisos de interés industrial o militar y apuntar directamente a los centros urbanos. Imagen: “The atomic bomb and the end of World War II: a collection of primary sources. National Security Archive electronic Briefing Book,” nº 162 (2005-2007). Universidad George Washington, Washington D.C.

Observamos así que, como te conté al principio, la idea de lanzar las armas nucleares contra objetivos militares o estratégicos exactos (típicamente situados en áreas más periféricas) va perdiendo fuerza en favor de aniquilar la ciudad entera atacando directamente el centro urbano; como al final se hizo en Hiroshima y se intentó en Nagasaki. En este caso, Kioto no habría recibido el bombazo en los barrios industriales y ferroviarios del Sur, sino sobre el área del antiguo palacio imperial, con el grueso de la población de un millón de habitantes concentrada alrededor. El 27 de junio, todavía aparece en la lista de ciudades que no deben ser bombardeadas por medios convencionales para que estén prístinas cuando llegue la bomba nuclear y poder así estudiar sus efectos con todo detalle.

La prueba Trinity, 16 milisegundos después de la detonación.

La prueba Trinity, 16 milisegundos después de la detonación. En ese instante, la “cúpula” tiene unos 200 metros de altura. Esta bomba, muy parecida a la utilizada después en Nagasaki, estalló a las 05:29:21 hora local del 16 de julio de 1945 en el Desierto Jornada del Muerto de Nuevo México (EEUU), con una potencia de unos 20 kilotones. Fue la primera explosión nuclear producida por el ser humano y su éxito abrió paso inmediatamente a los bombardeos atómicos contra Japón. Imagen: Gobierno de los EEUU / Wikimedia Commons. (Clic para ampliar)

Pero al final se impuso el criterio de Stimson, un político poderoso y bastante próximo al presidente Truman: Kioto salió de la lista, tanto para bombardeos nucleares como convencionales. El nombre de la antigua capital imperial va desapareciendo a lo largo de los siguientes documentos para no volver a mencionarse desde mediados de julio. Así, Kioto fue la primera ciudad que se salvó. Pero, automáticamente, el otro objetivo clasificado como “AA” pasó a ocupar la pole position para la aniquilación nuclear: Hiroshima. Población: 350.000 personas, parecida a la de las actuales Bilbao o Alicante, y civiles en su inmensa mayoría. Sobre todo, en torno al centro urbano. Y Nagasaki, con su cuarto de millón de habitantes (como Coruña o Vitoria), regresó a la lista extendida de blancos alternativos para el caso de que la meteorología impidiese bombardear los objetivos ahora primarios: Hiroshima, Kokura, Niigata.

La siguiente parte de la historia es bastante conocida, al menos a grandes rasgos, así que no nos extenderemos demasiado. Mientras Leó Szilárd y otros científicos atómicos intentan desesperadamente que la nueva arma no se use contra lugares habitados(1, 2, 3, 4, 5, 6, 7…), la dirigencia política y militar de los Estados Unidos, junto a otro buen número de científicos e ingenieros atómicos, deciden que conviene emplearla en cuanto esté disponible del modo más destructivo posible, causando así el máximo impacto sobre Japón y el mundo entero. De hecho ya un mes antes, el 15 de junio, una carta firmada por Oppenheimer, Fermi, Compton y Lawrence recomendaba su “empleo inmediato”, afirmando que “no podían proponer ninguna demostración técnica que pudiera terminar la guerra y no veían ninguna alternativa a su uso militar directo.” El impresionante éxito de la Prueba Trinity del 16 de julio –la primera detonación nuclear de la historia de la humanidad– probablemente terminó de firmar la sentencia de muerte para los blancos del Comité de Objetivos.

Iósif Stalin, Harry Truman y Winston Churchill en la Conferencia de Potsdam, 17 de julio de 1945.

Iósif Stalin, Harry Truman y Winston Churchill al inicio de la Conferencia de Potsdam, 17 de julio de 1945. Fue ahí donde el día 24 Truman comunicó a Stalin, de modo algo ambiguo, que los EEUU habían desarrollado “una nueva arma con una potencia destructiva inusual.” Stalin no mostró ninguna reacción en particular y tan solo contestó que “esperaba que hicieran buen uso de ella contra los japoneses.” Resultó que estaba totalmente al tanto del Proyecto Manhattan desde sus orígenes gracias a su extensa red de espionaje y la URSS ya había comenzado su propio programa nuclear en 1943, tras la filtración del Informe MAUD británico al NKVD. Foto: United States Army Signal Corps, Harry S. Truman Library & Museum, Administración Nacional de Archivos y Registros de los EEUU. (Clic para ampliar)

El día 24, en Potsdam, Truman comunica oblicuamente a Stalin que los Estados Unidos disponen ahora de “una nueva arma con una potencia destructiva inusual.” Según el propio Truman, Stalin no se muestra ni impresionado (ni intimidado) en absoluto, y sólo contesta que “espera que hagan buen uso de ella contra los japoneses.” En aquel momento Churchill, Truman y otros presentes se limitaron a pensar que Stalin ignoraba el verdadero poder de esa nueva arma. El hecho es que Stalin estaba perfectamente al tanto del Proyecto Manhattan, por duplicado, o más. Mucho más. Su nombre en clave para los servicios de inteligencia soviéticos fue ENORMOZ (ЭНОРМОЗ, “enorme”) desde al menos finales de 1941 o principios de 1942, cuando todavía era un estudio británico. El programa soviético para hacer su propia bomba atómica se había originado en 1940 y arrancó como muy tarde en 1943, tras obtener una copia del Informe MAUD, al amparo del laboratorio nº2 de la Academia de Ciencias de la URSS (ahora conocido como el Instituto Kurchátov). Sólo había quedado ralentizado por las brutales exigencias de la guerra en Europa y sobre todo por la ausencia de minas de uranio conocidas en la Unión Soviética (luego, cuando se pusieron a ello, encontraron un montón.) Y para cuando Truman le contó el secretito a Stalin, muy posiblemente la inteligencia soviética ya tenía en su poder los planos básicos de la bomba por implosión de plutonio utilizada en Trinity y Nagasaki, así como de los reactores para producir plutonio en Hanford y la tecnología de enriquecimiento del uranio por difusión gaseosa empleada en Oak Ridge, junto a incontables detalles científico-técnicos más.

El Proyecto Manhattan y sus trabajos precedentes estuvieron plagados de espías soviéticos desde el primer momento; incluso se cree que algunos de ellos jamás fueron descubiertos y, a estas alturas, seguramente permanecerán en la oscuridad para los restos. Así que Stalin, sus servicios secretos y sus científicos atómicos no tenían ningún motivo para impresionarse. De hecho, estaban ya construyendo lo suyo y en cuanto Stalin comentó el asunto con sus asistentes en privado, el Ministro de Asuntos Exteriores soviético Mólotov (según Zhukov) propuso: “Dejémosles. Pero hay que hablar con Kurchátov y decirle que acelere las cosas.”

El coronel Paul W. Tibbets saluda desde su bombardero B-29 "Enola Gay"  poco antes de despegar de Tinian-Norte con la bomba atómica "Little Boy" hacia Hiroshima.

El entonces coronel Paul W. Tibbets (1915-2007) saluda desde su bombardero B-29 “Enola Gay” (llamado así por el nombre de su madre), poco antes de despegar de Tinian-Norte con la bomba por disparo de uranio “Little Boy” en dirección a Hiroshima. Foto: Gobierno de los EEUU / Wikimedia Commons. (Clic para ampliar)

El caso es que los Estados Unidos, tal como sugería la carta de Oppenheimer, Fermi, Compton y Lawrence mencionada antes, no tardaron ni tres semanas en emplear esta nueva arma. Inmediatamente tras la Prueba Trinity, los componentes para montar las dos primeras bombas salieron hacia la Base Aérea de Tinian: una por disparo de uranio altamente enriquecido llamada Little Boy, y otra por implosión de plutonio que bautizaron como Fat Man, muy parecida a la de Trinity. Allí ya esperaban los técnicos, ingenieros y aviadores del Grupo Combinado 509º, comandado por el entonces coronel Paul W. Tibbets Jr., para ensamblarlas y cargarlas en los bombarderos B-29. Fue este mismo coronel Paul Tibbets quien despegó muy de madrugada el 6 de agosto de 1945 en su bombardero Enola Gay, con once tripulantes más y la bomba Little Boy a bordo en dirección a Hiroshima, según lo indicado en la orden operacional nº 35 del día anterior. Les acompañaban otros dos B-29, uno con instrumentación para tomar mediciones y otro con cámaras para grabar el ataque para la posteridad. Sus blancos alternativos eran Kokura y Nagasaki.

Pero salió una mañana muy buena y los tres aviones alcanzaron Hiroshima poco después de las ocho, tal como estaba previsto, con la ciudad perfectamente visible bajo el sol matutino. Unas condiciones ideales, porque debido a las limitaciones tecnológicas de la época preferían evitar el bombardeo por radar, optando por el visual. A sus pies, 350.000 personas terminaban de desayunar o se dirigían ya a sus escuelas y trabajos, si es que no habían llegado y se disponían a comenzar el lunes (luego veremos por qué los niños seguían yendo a clase durante las vacaciones veraniegas.) Sobre las 08:09, Tibbets inició el ataque y su especialista en bombardeo Thomas Ferebee lanzó a Little Boy a las 08:15, apuntando al Puente de Aioi, justo en el centro urbano y fácil de reconocer desde sus 9.470 metros de altitud. A continuación echaron a correr a toda velocidad, para alejarse tanto como fuera posible. Un suave viento cruzado desvió la bomba unos 240 metros hasta que estalló 44,4 segundos después, a 580 metros sobre el Hospital Shima. La potencia calculada fueron unos 15 o 16 kilotones.

El centro urbano de Hiroshima aniquilado tras el ataque nuclear.

El centro urbano de Hiroshima aniquilado tras el ataque nuclear. El “Enola Gay” apuntó al puente de Aioi con su característica forma de T (en el recuadro amarillo), pero el viento desvió la bomba atómica hasta la vertical del Hospital Shima (en la cruz central.) Cada círculo tiene un radio de 1.000 pies (aprox. 305 metros.) Foto: Gobierno del Japón / Wikimedia Commons.

Fuera de Hiroshima, el primero en darse cuenta de que algo malo pasaba fue el controlador en Tokio de la radio pública japonesa NHK al constatar que la conexión con esta ciudad se había cortado súbitamente. Intentó comunicar por otra línea, pero tampoco hubo manera: la central telefónica de Hiroshima estaba totalmente offline. Unos minutos después, los servicios telegráficos ferroviarios constataron igualmente que sus líneas se habían cortado en algún punto al Norte de la ciudad. Pero desde algunas estaciones y apeaderos situadas a más distancia comenzaron a llegar informes histéricos de que había ocurrido alguna clase de enorme explosión. Entonces el Ejército intentó ponerse en contacto con su cuartel en Hiroshima, sin obtener más que el silencio por respuesta. Esto les extrañó mucho, porque todavía no les constaba que se hubiese producido ningún bombardeo importante en el sector y tampoco había ninguna gran cantidad de explosivos almacenada en la ciudad o sus cercanías. Un buen rato después mandaron un avión de reconocimiento desde Tokio para ver qué había pasado, pensando todavía que se trataba de algún tipo de accidente envuelto en los rumores habituales de los tiempos de guerra.

Cuando el avión llegó a 160 km de Hiroshima, su piloto apenas pudo dar crédito a sus ojos. Desde esa distancia podía ver perfectamente la enorme nube de humo que se alzaba de la ciudad incinerada. Al acercarse más, observó que todo el centro urbano había resultado aniquilado y numerosas áreas periféricas ardían como teas. Los supervivientes se arrastraban como podían hacia las colinas circundantes, heridos, quemados y enfermos de síndrome radiactivo agudo, en busca de precaria ayuda; la mayoría de hospitales y personal médico se encontraban en el centro o cerca del centro y habían desaparecido igualmente con la explosión (más del 90% de los médicos y el 93% del personal de enfermería perecieron o sufrieron graves lesiones.) Luego se supo que entre 60.000 y 80.000 personas murieron al momento, y al menos otras tantas durante los siguientes meses debido a sus heridas y a las enfermedades asociadas a la radiación. La dificultad para establecer la cifra inicial de víctimas con mayor precisión es que muchas, incluyendo a familias enteras, simplemente desaparecieron y no quedó nadie para preguntar por ellas.

Dieciséis horas más tarde, sobre el mediodía hora de Washington D.C., el presidente Truman informaba a los Estados Unidos y al mundo de que “una bomba atómica” “con más potencia que 20.000 toneladas de TNT” había sido lanzada sobre Hiroshima, “destruyendo su utilidad para el enemigo.” Añadió: “es un uso de la fuerza básica del universo; la misma fuerza de la que el sol obtiene su poder ha sido liberada contra quienes empezaron la guerra” (en realidad no lo era; para eso habría que esperar a las armas termonucleares.) Advirtió que “estas bombas están ahora en producción y otras más poderosas, en desarrollo.” Y amenazó: “Si [la dirigencia japonesa] no acepta ahora nuestros términos, deben esperar una lluvia de ruina (rain of ruin) desde el aire como jamás ha visto esta Tierra.”

Korechika Anami

El Ministro de la Guerra japonés y general Korechika Anami (1887-1945) fue uno de los más firmes oponentes a la rendición incondicional exigida por los aliados de Potsdam, bloqueando así durante varios días la capitulación. Sólo la aceptó cuando el emperador se la ordenó formalmente; el mismo día 15, cometió suicidio mediante seppuku (“harakiri”.) Foto: Gobierno del Japón / Wikimedia Commons.

Sin embargo, desde Japón sólo contestaron con el silencio. La razón fundamental fue que ya desde algún tiempo atrás, había en el Gobierno una lucha más o menos abierta entre partidarios de buscar la paz en distintos términos y partidarios de seguir peleando hasta el final. La aniquilación de Hiroshima no hizo más que recrudecer esta pelea, provocando un bloqueo político, con el emperador Shōwa (Hirohito) inclinado hacia el bando de la paz pero de forma un tanto dubitativa, dado que una rendición incondicional podía suponer el final del kokutai (incluyendo a la dinastía imperial.) Los científicos atómicos japoneses, que no ignoraban la posibilidad de construir armas nucleares e incluso tuvieron algún pequeño proyecto, sabían de su enorme coste y dificultad hasta el punto de que algunos dijeron que los Estados Unidos no podían tener más bombas que la ya utilizada contra Hiroshima. Esto dio argumentos al almirante Soemo Toyoda, que se radicalizó junto al duro jefe del Estado Mayor Yoshijirō Umezu y el Ministro de Defensa Korechika Anami para rechazar la rendición exigida desde la Conferencia de Potsdam. Ni siquiera la notificación soviética de que la URSS se disponía a denunciar el Pacto de Neutralidad de 1941 y declararles la guerra, tal como se habían comprometido con Estados Unidos y el Reino Unido, les hizo cambiar de opinión.

Unos por otros, no lograron alcanzar ningún acuerdo y por tanto no pudieron emitir ningún comunicado. Mientras, en Tinian, el 509º Grupo Combinado terminaba de ensamblar una segunda bomba, esta vez por implosión de plutonio, similar a la de la Prueba Trinity. Por su forma regordeta, se llamaba Fat Man.

Fat Man despegó a las 03:47 del 9 de agosto de 1945 en el bombardero Bockscar comandado por el mayor Charles W. Sweeney con Kokura como blanco primario. Si recuerdas, Kokura ocupaba el tercer lugar en la lista de blancos del Comité de Objetivos, detrás de la excluida Kioto y la devastada Hiroshima. Pero a diferencia de lo ocurrido el lunes, este jueves la meteorología no acompañó. Cuando llegaron, se la encontraron cubierta de nubes y de humo procedente del bombardeo incendiario de Yawata, atacada la noche anterior por 224 B-29. Como ya te dije, no se fiaban mucho del bombardeo por radar y las condiciones en Kokura les impidieron localizar visualmente el área del blanco. Tras varias pasadas, con la defensa antiaérea japonesa activándose y empezando a hacer cortos de combustible, decidieron alejarse hacia el blanco secundario: Nagasaki. De este modo Kokura, que había sido blanco nuclear dos veces (como objetivo secundario en el ataque del 6 de agosto y primario en este del día 9) fue la segunda ciudad condenada en salvarse.

Nagasaki también estuvo a punto de salvarse, pero al final no tuvo tanta suerte. Al llegar los bombarderos, había igualmente mucha nubosidad, tanto que tuvieron que hacer la aproximación final orientados por radar. Estaban a punto de intentar también el bombardeo por radar, del que como te dije no se fiaban mucho, cuando el capitán Kermit K. Beahan divisó Nagasaki a través de un hueco en las nubes. Pero sin poder avistar los puntos característicos del centro urbano, lanzaron al bulto, en la dirección general de la ciudad, a las 10:58 AM. Así pues, la bomba estalló con 21 kilotones de potencia a unos 2,5 kilómetros del centro, sobre el valle y distrito industrial de Urakami, cerca de la mayor catedral católica de Asia Oriental, donde se realizaba una celebración multitudinaria en ese momento por la proximidad de la Virgen de Agosto. Murieron todos los presentes junto a otras 39.000 personas en el momento, en su mayoría obreros industriales con sus familias, y 40.000 más durante los siguientes meses. No obstante, las colinas que rodeaban el valle del Urakami desviaron una parte significativa de la energía de la explosión, con lo que “sólo” resultó destruido el 44% de la ciudad. Algunas zonas situadas “a espaldas” de las colinas salieron casi intactas pese a su proximidad a la vertical de la detonación. Eso sí, donde dio, no quedó mucho que ver:

Nagasaki a la mañana siguiente del bombardeo atómico

Nagasaki a la mañana siguiente del bombardeo atómico, aproximadamente a 800 metros de la vertical de la detonación. Pueden distinguirse cadáveres calcinados entre los restos de las casas. Foto: Yosuke Yamahata vía Universidad de California en Los Angeles.

El tercer objetivo.

Ofensiva soviética a través la Manchuria ocupada por los japoneses entre el 9 y el 20 de agosto de 1945

Ofensiva soviética a través la Manchuria ocupada por los japoneses entre el 9 y el 20 de agosto de 1945, tal como habían pactado con los Estados Unidos y el Reino Unido. En menos de 3 semanas, ocuparon un área mayor que Europa Occidental donde se concentraba la mayor parte de la industria japonesa que no estaba en el propio Japón, llegando a avanzar 150 km en algunos puntos durante el primer día. Se discute si la “puntilla final” para la rendición nipona fueron las bombas de Hiroshima y Nagasaki o este desastre militar que les dejaba definitivamente aislados internacionalmente y sin recursos exteriores. Imagen: Archivos de la Federación Rusa. (Clic para ampliar)

Para acabar de estropearle el día a los japoneses, esa misma madrugada, un minuto después de medianoche, la URSS había cumplido su promesa a Estados Unidos y el Reino Unido: cuando estalló la bomba de Nagasaki, el Ejército Rojo ya estaba atacando la Manchuria japonesa por tres frentes distintos (donde, por su parte, las fuerzas japonesas habían hecho una especie de maratón para cometer tantos crímenes de guerra y contra la humanidad como fuese posible.) Calentitos y bien entrenados y equipados como venían después de ganar la guerra en Europa, los soviéticos arrasaron velozmente a las fuerzas japonesas en el continente, llegando a avanzar hasta 150 km en un solo día. El antes prestigiosísimo Ejército de Kwantung, donde se habían labrado la carrera militares del calibre del general Tōjō, se derrumbaba por horas ante las 80 divisiones del mariscal Vasilevsky. Comenzaron a correr rumores (posiblemente falsos) de que la URSS incluso pretendía desembarcar en Japón por Hokkaido, adelantándose así a la planeada Operación Downfall de los aliados occidentales.

Todo esto comenzó a poner nerviosos a los estadounidenses: el avasallador éxito de las fuerzas soviéticas en el continente (que terminarían ocupando un territorio mayor que Europa Occidental entre el 9 y el 20 de agosto), el rumor sobre su posible desembarco en Hokkaido y el hecho de que el Gobierno japonés continuara sin decir ni mú a pesar de estas rápidas derrotas y los dos bombazos atómicos empezaba a sugerir un desenlace imprevisto para la Guerra en el Pacífico. Entonces el general Curtis LeMay llamó por teléfono al coronel Paul Tibbets, el comandante del 509º Grupo Combinado que había lanzado la bomba sobre Hiroshima, para preguntarle:

Curtis LeMay

El general Curtis LeMay (1906-1990), comandante de la campaña de bombardeos estratégicos sobre Japón, incluyendo Hiroshima y Nagasaki. Posteriormente, durante la Guerra Fría, dirigiría el Mando Aéreo Estratégico de los EEUU. Imagen: Fuerza Aérea de los EEUU / Wikimedia Commons.

–¿Tienen otra de esas malditas cosas?
–Sí, señor –contestó Tibbets.
–¿Dónde está?
–Ahí en Utah.
–Tráigala aquí. Usted y su tripulación van a lanzarla.
–Sí, señor.

En efecto, los Estados Unidos contaban ya con un tercer núcleo de plutonio para ensamblar otra bomba como la de Nagasaki con los componentes disponibles en Tinian. Bueno, lo cierto es que tenían la capacidad de producir 3 núcleos al mes con los reactores de Hanford, o incluso 4 si forzaban la máquina. Estados Unidos no había desarrollado un programita experimental de armas nucleares como el que manejó sin éxito la Alemania Nazi, sino un auténtico programa industrial-militar para producirlas en serie, análogo al que después montaría también la URSS. Durante una conversación secreta entre el general Hull y el coronel Seeman (asistente del director del Proyecto Manhattan Leslie Groves) del día 13 de agosto, este último dice a Hull que puede disponer de otras siete bombas para usarlas antes del 31 de octubre, y una cada 10 días a partir de noviembre. El arma nuclear había dejado de ser un experimento de científicos. Ahora ya era un producto industrial a gran escala.

Cumpliendo las órdenes del general LeMay, el coronel Tibbets viaja a Utah en avión para recoger el tercer núcleo ya listo. Pero cuando llega a California con él dispuesto a salir hacia Tinian, el día 15, Japón anuncia que ha decidido rendirse tras un intento de golpe de estado fallido por parte de los partidarios de seguir peleando hasta el final. Así, este tercer núcleo no llegó a abandonar los Estados Unidos y nunca ha quedado claro cuál era la siguiente ciudad en la lista. Unos dicen que habrían vuelto a intentarlo contra Kokura, o quizá Yokohama. Pero el historiador Richard B. Frank, en su reconocida obra Downfall: The end of the Imperial Japanese Empire (pág. 303), menciona que los blancos originales del Comité de Objetivos habían quedado ya desfasados y habla de una nueva lista elaborada bajo el mando del general Twining, dado que “los resultados habían superado las expectativas más optimistas”:

Los siguientes 6 blancos para los bombardeos atómicos entre mediados de agosto y finales de octubre de 1945 si Japón no se hubiese rendido

Los siguientes 6 blancos para los bombardeos atómicos entre mediados de agosto y finales de octubre de 1945 si Japón no se hubiese rendido, según Richard B. Frank (1999): “Downfall: The end of the Imperial Japanese Empire.” Hiroshima y Nagasaki, ya destruidas, están marcadas con una “X”. Mapa base: © Google Maps.

  1. Sapporo.
  2. Hakodate.
  3. Oyabu (?) [posiblemente en la Prefectura de Kagawa.]
  4. Yokosuka.
  5. Osaka.
  6. Nagoya.

Llaman la atención Sapporo y Hakodate, situadas en la isla norteña de Hokkaido, porque están fuera del alcance de 1.500 millas náuticas (2.778 km) establecido en documentos previos para que el B-29 pudiese ir cargando una bomba atómica y regresar con un margen de seguridad. O bien estaban ya tan confiados como para forzar un poco las cosas (son unas 200 millas más), o consideraban la posibilidad de que los aviones, después de lanzar la bomba (y por tanto sin nada especialmente secreto a bordo), aterrizasen a repostar en territorio soviético como hicieron durante la Operación Frantic de 1944. En todo caso estás seis ciudades, más quizás Kokura, fueron las que se salvaron de las siete bombas que los Estados Unidos habrían podido producir entre mediados de agosto y finales de octubre si la guerra no hubiese terminado y hubieran tenido que desembarcar en noviembre como estaba planeado. (Otra posibilidad que se contempló fue fabricar 20 y reservarlas para abrirse paso a lo largo de la invasión, como armas tácticas en vez de estratégicas, pero esto no pasó del nivel de conversaciones privadas.)

Efectos.

Una niña de Nagasaki que perdió el cabello a causa de la radiactividad.

Una niña de Nagasaki que perdió el cabello a causa de la radiactividad. Muchas personas enfermaron y murieron durante las dos décadas siguientes debido a la radiación; no obstante, estos males no pasaron a las siguientes generaciones como se temía. Esta foto estuvo censurada hasta 1952. Imagen: Gobierno del Japón.

Tan pronto como los Estados Unidos ocuparon Japón, empezaron a realizar esos estudios sobre los efectos de la nueva arma. Serían secretos durante muchos años, pero actualmente está casi todo desclasificado. Uno de los primeros hechos que pudieron observarse claramente tras los bombardeos de Hiroshima y Nagasaki fue la enorme eficacia de las armas nucleares para causar la máxima muerte y destrucción en áreas urbanas, comparadas con los bombardeos convencionales realizados hasta entonces. Por ejemplo, los grandes bombardeos convencionales de Dresde mataron a unas 25.000 personas de 350.000 habitantes más un número indeterminado de refugiados, que podrían elevar la cifra a medio millón de personas presentes en el área; es decir, un 5% – 7% de mortalidad. La Operación Gomorra que incineró Hamburgo exigió 3.000 aviones y 9.000 toneladas de bombas para matar a unas 43.000 personas de aproximadamente 1.700.000 habitantes (según el censo de 1939): poco más del 2,5% de mortalidad. Y los apoteósicos bombardeos incendiarios de Tokio mataron a entre 75.000 y 200.000 personas del millón y medio que se encontraban en las zonas afectadas: del 5% al 13% de mortalidad, una exageración.

Por el contrario, la única bomba de Hiroshima mató instantáneamente a 60.000 – 80.000 personas de 350.000: una mortalidad del 17% – 23% y pocos meses después habían fallecido unas 166.000, elevándola al 47%. En cuanto a Nagasaki, pese a marrar el centro urbano por dos kilómetros y medio y estallar entre las colinas de Urakami que protegieron al resto de la ciudad, murieron 39.000 personas de 250.000 habitantes totales en los primeros momentos (el 15,6%) y unas 80.000 para finales de año, sumando el 32%. Esto es: incluso aquellas bombas primitivas de potencia ridícula en comparación con lo que vendría después duplicaron e incluso triplicaron las tasas de mortalidad ocasionadas por los peores bombardeos convencionales urbanos de la historia de la humanidad.

Niña cegada en Hiroshima

Esta otra niña, de Hiroshima, llegó a ver “la luz que brilla como mil soles”… y después ya no volvió a ver nada más, nunca jamás. Imagen: Gobierno del Japón.

Uno de los estudios más escalofriantes que hicieron –lógico, pero escalofriante– analizó la mortalidad entre escolares en colegios a distintas distancias del punto de detonación. Aunque en principio estaban de vacaciones veraniegas, en tiempos de guerra, y con la miseria y rápida pérdida de recursos humanos a que se enfrentaba Japón, eso de las vacaciones era muy relativo. Numerosas escuelas permanecían abiertas. El alumnado de primaria o estaba en sus casas –típicamente próximas al cole– o acudía al centro para recuperar clases perdidas durante el año. El de secundaria, a partir de los 12 o 13 años, participaba en “tareas patrióticas” relacionadas con el esfuerzo de guerra (gakuto giyutai) como abrir cortafuegos (al aire libre) o trabajar en industrias (a cubierto), todo ello cerca de sus colegios o en lugares conocidos por los profesores y directivos de los centros, que lo llevaban muy controlado. Tras los bombardeos, muchos de los profesores y directivos que habían sobrevivido hicieron grandes esfuerzos por localizar a sus alumnos o al menos, sus familias. Así que existía un registro exhaustivo de la posición de toda esta chavalería cuando estallaron las bombas, y lo que les pasó.

Como consecuencia, el volumen 6 del informe de la Comisión Conjunta para el estudio de los efectos de la bomba atómica en Japón (“efectos médicos”), elaborado por el Ejército y la Comisión de Energía Atómica de los EEUU, dedica al menos 32 de sus 256 páginas a investigar el destino del alumnado de las escuelas de Hiroshima (donde, al estallar la bomba tan cerca del centro urbano, había muchas.)  En un radio de 900 metros alrededor del eje del ataque, sólo hay supervivientes entre quienes se hallaban fuera de ese radio de 900 metros dedicándose a estas “tareas patrióticas.” Por ejemplo, en el colegio de primaria Motokawa (a 500 metros), sus 192 alumnos “en la escuela o en casa” resultaron muertos. En la 1ª Escuela Prefectural para Niñas (a 800 metros), las 174 que había dentro perecieron también. Sin embargo, entre el 1º y 2º cursos del instituto de secundaria de Koamicho, que estaban abriendo cortafuegos a distancias de entre 800 y 1.100 metros de la explosión, sobrevivieron 174 de sus 497 alumnos (es de suponer que quienes estaban a mayor distancia y “a la sombra” de edificios resistentes.) Con estos y otros datos, el área de aniquilación para esta bomba primitiva de 15 kilotones escasos quedó establecida en un radio de un kilómetro alrededor del eje del ataque.

Fragmento del listado de los colegios de Hiroshima indicando la distancia a la vertical de la detonación, la ubicación de su alumnado y el número de víctimas.

Fragmento del listado de los colegios de Hiroshima indicando la distancia a la vertical de la detonación, la ubicación de su alumnado y el número de víctimas. Imagen: U.S. Army Institute of Pathology (6 de julio de 1951): “The Report of the Joint Commission for the Investigation of the Effects of the Atomic Bomb in Japan, vol. 6. – Medical effects of atomic bombs”, pág. 26. United States Atomic Energy Commission, Technical Information Service, Oak Ridge, Tennessee.

Los investigadores estadounidenses prestaron particular atención a las alumnas del instituto femenino privado de Yasuda, porque se encontraban repartidas entre el colegio (a 1.200 metros de la explosión) y distintas “tareas patrióticas” que se extendían desde abrir cortafuegos cerca del edificio prefectural (a 900 metros) hasta trabajar en varias fábricas situadas a una distancia de entre 1.400 y 2.000 metros. O sea, dispuestas a lo largo de las zonas límite. Entre las 300 alumnas que hacían cortafuegos a la intemperie a menos de 1 km de la detonación, sólo hubo 8 supervivientes confirmadas (5 heridas graves.) En el propio instituto (1,2 km) se salvaron 30 de 75 (con 14 de ellas gravemente heridas.) Pero de las 9 que había en el dormitorio (1,6 km), sobrevivieron todas (2 heridas graves.) Y en las fábricas (1,4 a 2 km y además protegidas por la estructura de los edificios) salieron con vida 515 de las 555 que trabajaban en ellas (con 30 heridas graves y 4 sufriendo radiotoxicidad.)

Gráfica general de bajas totales y mortalidad para Hiroshima, en función de la distancia a la vertical de la detonación.

Gráfica general de bajas totales y mortalidad para Hiroshima, en función de la distancia a la vertical de la detonación. Recordemos que se trataba de una bomba primitiva de escasamente 15 o 16 kilotones. Imagen: U.S. Army Institute of Pathology (6 de julio de 1951): “The Report of the Joint Commission for the Investigation of the Effects of the Atomic Bomb in Japan, vol. 6. – Medical effects of atomic bombs”, pág. 70. United States Atomic Energy Commission, Technical Information Service, Oak Ridge, Tennessee. (Clic para ampliar)

Lógicamente, la resistencia de los edificios y la situación de las personas dentro de los mismos jugó un papel relevante para la supervivencia. Hubo un puñado de supervivientes incluso bien dentro del área de aniquilación. El caso más extremo es el de Eizo Nomura, a apenas 170 metros de la vertical de la detonación. Eizo, de 47 años, trabajaba en la unidad de racionamiento de combustibles, situada en un edificio de hormigón armado; y él, personalmente, se encontraba en el sótano buscando unos documentos. Ni en el edificio ni en sus alrededores sobrevivió nadie, pero Eizo salió básicamente ileso. Las múltiples paredes y suelos de hormigón y la tierra a su alrededor le protegieron como si fuesen una especie de refugio antiatómico casual. En sus memorias relataba cómo al escapar del edificio entre las llamas, el humo y un paraje de absoluta devastación, pudo oír el llanto de un bebé que “calló poco después.” Eizo sufrió síndrome radiactivo agudo durante los días siguientes, pero se recuperó y vivió hasta los 84 años, muriendo en 1982.

Hablando de radiación, como ya te supondrás, ha habido un intenso debate sobre los efectos a medio y largo plazo de la radiactividad sobre las poblaciones afectadas. Hiroshima y Nagasaki son los casos en los que más gente quedó expuesta a mayores cantidades de irradiación directa, de forma incontrolada y brutal, a lo largo de toda la historia (en Chernóbil, por ejemplo, las personas que absorbieron grandes dosis fueron muchas menos y todas ellas en la central accidentada o sus inmediaciones más próximas; a cambio, la cantidad de deposición secundaria fue mayor.) Como consecuencia, se han hecho cientos de estudios sobre la salud de quienes sobrevivieron a las heridas y quemaduras ocasionadas por las bombas y a la radiotoxemia aguda subsiguiente.

Exceso de muertes por leucemia atribuíbles a las dosis de radiación recibidas para supervivientes de Hiroshima y Nagasaki con respecto a la población general, 1950-2002

Exceso de muertes por leucemia atribuibles a las dosis de radiación recibidas para supervivientes de Hiroshima y Nagasaki con respecto a la población general, 1950-2002 (indicado en tono violeta más claro.) Sin embargo, teniendo en cuenta que la cohorte total de individuos estudiados ascendió a 120.000 personas situadas en áreas próximas a las explosiones (y en otros estudios llega a 200.000 personas), puede observarse que el número de muertes por esta causa es relativamente bajo (219 fallecimientos.) Gráfica: Douple, Evan B. et al (2011): “Long-term radiation-related health effects in a unique human population: Lessons learned from the atomic bomb survivors of Hiroshima and Nagasaki.” Disaster Med Public Health Prep. Marzo 2011; 5(0 1): S122–S133. DOI: 10.1001/dmp.2011.21 (Clic para ampliar)

Los resultados, aunque relevantes, no son tan catastróficos como muchos temen. Hubo un claro incremento de los casos de leucemia unos 6-8 años después de los ataques, y de cataratas y tumores sólidos durante las dos a tres décadas siguientes (incluso entre quienes habían recibido dosis muy bajas), pero no tanto como para meterle una dentellada importante a la población. No se produjo un aumento de las malformaciones congénitas ni del riesgo de sufrir cánceres entre la descendencia de los supervivientes, salvo en el caso de las embarazadas de 8 a 15 semanas en el momento de los ataques que recibieron altas dosis de irradiación directa. Puede que influyera el hecho de que ambas explosiones fueran aéreas, para aumentar el área de destrucción, pero generando por tanto mucha menos contaminación secundaria que las detonaciones en superficie (las cuales proyectan grandes cantidades de material activado a la atmósfera.) Hoy en día Hiroshima y Nagasaki, lejos de ser eriales radiactivos, son dos ciudades perfectamente habitables donde los niveles de radiación apenas se distinguen de la radiactividad natural y sus habitantes presentan un estado de salud similar al del resto de Japón. Por fortuna, los peores temores no se cumplieron, al menos en el largo plazo.

Una coletilla poco conocida es que la Academia de Ciencias de la URSS desplegó un equipo en el área de Vladivostok, a unos mil kilómetros de distancia, para tomar mediciones radioisotópicas del aire que llegaba desde las ciudades japonesas bombardeadas. Aunque registraron unas cifras muy bajas, al analizar su composición, pudieron confirmar que las bombas reales coincidían con los datos de inteligencia que habían ido recibiendo durante todos esos años. Así, los bombardeos de Hiroshima y Nagasaki, en vez de intimidar a la URSS, terminaron de afianzarla en el camino para crear sus propias armas nucleares apenas cuatro años después. A insistencia de Lavrenti Beria, priorizaron una bomba que era prácticamente una copia de la de Nagasaki (llamada RDS-1) pese a que tenían en marcha diseños autóctonos más avanzados (RDS-2 y RDS-3); Beria quería confirmar que toda la información que habían recibido era correcta, que podían desarrollar una copia casi idéntica de la bomba americana (y estudiar sus efectos con todo detalle) y, de paso, lograrlo lo antes posible, convirtiendo así rápidamente a la URSS en la otra superpotencia nuclear.

La “maldición” del tercer núcleo (y del USS Indianapolis).

USS Indianapolis

El crucero pesado USS Indianapolis frente a Mare Island, California, el 10 de julio de 1945. A partir del día 16, sería utilizado para trasladar los componentes de la bomba de Hiroshima a la base de Tinian. Y el 30 de julio fue torpedeado por el submarino japonés I-58, con gran parte de su tripulación pereciendo de modo bastante atroz. Imagen: Armada de los Estados Unidos / Wikimedia Commons. (Clic para ampliar)

Tres incidentes casuales contribuyeron a incrementar el “aura maldita” que rodeó a todo este asunto de lo nuclear desde el principio (como si la aniquilación de dos ciudades en plan “presentación en sociedad” no fuese suficiente…) El primero fue lo sucedido al crucero pesado USS Indianapolis, encargado de transportar los componentes para ensamblar la bomba de Hiroshima en Tinian. Tras entregar el material, el día 26 de julio, se hizo de nuevo a la mar con rumbo a Leyte.

A las 00:14 del día 30, fue avistado y torpedeado por el submarino japonés I-58. El Indianapolis se hundió en apenas 12 minutos, dando la vuelta de campana por completo antes de sumergirse en unas aguas plagadas de tiburones y sin tiempo para agarrar muchos chalecos ni botes salvavidas. Trescientos de sus 1.196 tripulantes se fueron a fondo con el buque, pero la pesadilla sólo acababa de comenzar. Al Indianapolis no le había dado tiempo de transmitir nada antes de hundirse y el Alto Mando estadounidense no pensó que pasara nada de particular. Sólo cuando un avión de reconocimiento avistó casualmente a algunos náufragos tres días y medio después se percataron de lo sucedido. Para entonces sólo quedaban 321 supervivientes, de los que se salvaron 317. El resto habían muerto de sed, envenenados por beber agua del mar, comidos por los tiburones o simplemente ahogados. Fue la última pérdida de un gran buque de superficie estadounidense en la II Guerra Mundial y, como puede verse, de manera especialmente desagradable. (El último de todos fue el submarino USS Bullhead, hundido por aviones japoneses el mismo día del bombardeo de Hiroshima.)

Haroutune Krikor Daghlian, Jr.

El físico Harry K. Daghlian Jr. (1921-1945), primera persona muerta en un accidente de criticidad, mientras trabajaba con el “tercer núcleo” que estuvo a punto de ser utilizado contra Japón. Imagen: Wikimedia Commons.

Por su parte, el tercer núcleo también hizo de las suyas. Dos veces, hasta tal punto que llegaron a apodarlo el núcleo del demonio. Como te conté antes, al rendirse Japón, este núcleo se encontraba en California de camino a Tinian y no llegó a abandonar los Estados Unidos. En vez de eso, lo llevaron a Los Alamos para experimentar con él. Y el primer accidente ocurrió menos de una semana más tarde. El físico Harry Daghlian, de 24 años de edad, estaba trabajando en reflectores neutrónicos con el propósito de reducir la masa crítica necesaria para hacer una bomba atómica (una característica de todas las armas nucleares modernas.) Así pues, empezó a envolverlo con bloques de carburo de wolframio, uno de estos reflectores neutrónicos, para ir tomando medidas de criticidad. A mano, como se hacían las cosas en la época. Richard Feynman dijo de estos experimentos que eran como “hacerle cosquillas a la cola de un dragón dormido” por su extremo peligro, dado que cualquier error podía provocar un grave accidente de criticidad.

Cuando Daghlian iba a tapar el conjunto con el último bloque, los detectores neutrónicos le indicaron que aquello estaba a punto de tornarse supercrítico. Vamos, que iba a empezar la reacción en cadena. Fue a apartarlo… y se le resbaló de la mano, cayendo directamente sobre el núcleo. Al instante, éste se volvió casi-crítico, iniciando así un accidente de criticidad con fuerte emisión de radiación neutrónica. En vez de echar a correr, Daghlian intentó quitar el bloque de un manotazo, pero no pudo y se puso a desensamblar el montaje hasta que consiguió detener la reacción. Para entonces, había absorbido varios sieverts de radiación gamma y neutrónica, además de sufrir quemaduras beta. Murió el 15 de septiembre, 25 días después, víctima del síndrome radiactivo agudo. Un vigilante del laboratorio recibió también su dosis, mucho más baja, y pereció 33 años después (a los 62) de leucemia mieloide aguda. Esta es una enfermedad asociada a la radiación, que también sufrieron no pocos supervivientes de Hiroshima y Nagasaki; pero con 33 años por medio, vaya usted a saber si fue a consecuencia del accidente o porque le tocaba.

Accidente de Louis Slotin

A la izquierda, el físico Louis Slotin (1910-1946), segunda víctima de un accidente de criticidad trabajando con el “tercer núcleo.” A la derecha, reconstrucción de cómo “le hacía cosquillas a la cola del dragón dormido” cuando se le resbaló el destornillador y el dragón tosió. Imágenes: Gobierno de los EEUU / Wikimedia Commons. (Clic para ampliar)

Tras este suceso se establecieron numerosos protocolos de seguridad para trabajar con estos primitivos núcleos apenas subcríticos (tan solo “5 centavos” por debajo del punto de criticidad.) Sin embargo, había otro físico más conocido, llamado Louis Slotin, que era muy bueno en lo suyo pero tenía sus peculiaridades, el hombre. Por un lado parece ser que era pelín chulo y vacilón, con cierto gusto por epatar a quien se le pusiera por medio. Un poco notas, vamos. Por otro lado, una vez terminada la guerra, estaba hasta los mismísimos del Proyecto Manhattan (como muchos otros de sus científicos) y quería volverse a sus estudios en Biofísica. Según sus propias palabras, seguía en el tajo porque “soy uno de los pocos que quedan aquí con experiencia en ensamblar bombas.” Y lo cierto es que había ensamblado Trinity y se le conocía como “el Armero en Jefe de los Estados Unidos”; el tipo tenía su valía y su prestigio. Así que estaba enseñando a otros a montar las bombas atómicas antes de largarse, si bien, por lo visto, con una cierta actitud de “para lo que me queda en el convento…”

Y así estaban las cosas el 21 de mayo de 1946, cuando Slotin estaba explicando el tema a otros siete técnicos y científicos… utilizando el mismo núcleo del demonio que nunca llegó a salir hacia Japón pero ya había matado a un hombre. Y estaba también contándoles lo de la criticidad, ahora ya con dos semiesferas de berilio (que fue el reflector neutrónico definitivo para las siguientes generaciones de armas nucleares.) Sólo que Slotin, con ese carácter y esa actitud, les hizo la demo manteniendo separadas las semiesferas de berilio… a mano, con la punta de un destornillador de cabeza plana, en contra de las nuevas normativas de seguridad y de la sensatez en general. Según dicen, no era la primera vez que le hacía cosquillas a la cola del dragón con el destornillador de marras. Ya te digo que iba un poco de sobrado.

Tanto va el cántaro a la fuente que al final se rompe y aquel día a Slotin se le resbaló el destornillador, siendo las 15:20. Las dos semiesferas de berilio se unieron y el núcleo del demonio se volvió supercrítico instantáneamente por segunda vez. Hubo un fuerte destello de luz azul, seguramente debido a la ionización del aire al recibir el violento golpe neutrónico. Slotin notó un sabor agrio en la boca y una intensa quemazón en su mano izquierda. Aún así, de un tirón, lanzó al suelo la semiesfera superior de berilio, deteniendo la reacción casi al momento. Pero era demasiado tarde. En cuanto escaparon del edificio Slotin ya estaba comenzando a vomitar, puede que por los nervios o por el síndrome radiactivo agudo de los 12 grays de radiación gamma y neutrónica que acababa de comerse en seco. O las dos cosas.

Posición de las personas que se encontraban alrededor de Louis Slotin  cuando sufrió el accidente de criticidad.

Posición de las personas que se encontraban alrededor de Louis Slotin (marcado con el cuadrado amarillo) cuando sufrió el accidente de criticidad. Curiosamente, aunque Slotin murió a los pocos días de radiotoxemia aguda, el resto de los presentes vivieron muchos años y algunos llegaron a avanzada edad. Imagen: Gobierno de los EEUU / Wikimedia Commons. (Clic para ampliar)

Louis Slotin murió muy malamente 9 días después, el 30 de mayo de 1946. Sin embargo, el resto de los presentes (con tres de ellos a menos de 2,5 metros de distancia) no sufrió más que episodios de debilidad o ningún síntoma en absoluto. El único que murió joven fue el guardia al otro lado de la puerta… porque era un soldado y lo mataron en la Guerra de Corea, a los 27 años de edad. El siguiente falleció 19 años más tarde, de un infarto (los problemas coronarios han sido vinculados a la radiación, pero durante los 18 años anteriores esta persona había presentado una salud excelente, o sea que pudo deberse a ese o cualquier otro motivo.) En general, el resto de los presentes en el accidente Slotin fueron muriéndose un poco cuando les tocaba; sí, típicamente con enfermedades asociadas a la radiación, pero al menos un par de ellos con más de ochenta años de edad (entre ellos, uno de los que estaban más próximos al núcleo, detrás de Slotin; parece que su cuerpo le protegió.)

De estos y otros hechos por el estilo emana parte del interminable debate de los efectos de la radiactividad sobre la salud humana: está claro que si absorbes una dosis muy alta en un plazo breve va a “freírte” y te morirás de tu síndrome radiactivo agudo, o como mínimo sufrirás lesiones y posiblemente secuelas (los llamados efectos no-estocásticos); pero si absorbes dosis menores o en plazos más prolongados, las consecuencias son mucho más ambiguas y retardadas (los llamados efectos estocásticos.) Si te mueres de una leucemia borde 25 años después de sufrir un accidente radiactivo, ¿es a consecuencia del accidente radiactivo o simplemente porque te dio una leucemia borde como a cualquier otro hijo de vecina? En estos casos, donde la irradiación del personal procede de una emisión primaria con poca o nula contaminación secundaria (fallout) que pueda permanecer en el ambiente y el organismo, el asunto es más confuso todavía. El caso es que el tercer núcleo acabó matando gente. Ya no hicieron más experimentos con él y finalmente lo usaron en la prueba Able, cinco semanas después, donde desapareció liberando 21 kilotones de potencia.

Como comprenderás, me he tenido que saltar un montón de cosas para que esta entrada no se me alargase hasta el infinito… más aún. ;-) Pero a grandes rasgos, esta es la historia de las ciudades que se salvaron y las gentes que no durante la única campaña de bombardeos atómicos que ha presenciado la humanidad, comenzando hace justo ahora 70 años (día 6 de agosto a las 01:15 hora peninsular CEST, 08:15 hora de Japón.) Ojalá nunca volvamos a ver nada igual. O, más probablemente, si llegara a suceder, mucho peor.

Si te ha gustado esta entrada, puede que también te interese:

Bibliografía:

98 Comentarios
¡Qué malo!Pschá.No está mal.Es bueno.¡¡¡Magnífico!!! (41 votos, media: 4,90 de 5)
Loading...Loading...
Be Sociable, Share!

Viviendo en un planeta joven de un universo bebé

Esta fiesta acaba de empezar.

Impresión artística del aspecto que tendrá la Tierra dentro de unos cinco a siete mil millones de años, con el Sol ya convertido en una gigante roja.

Impresión artística del aspecto que tendrá la Tierra dentro de unos cinco a siete mil millones de años, con el Sol ya convertido en una gigante roja. En esos momentos, la vida terrestre que conocemos ya no será posible. Imagen: Wikimedia Commons.

Fósiles de microbios hallados en la formación Strelley Pool del cratón de Pilbara, Australia, con unos 3.400 millones de años de antigüedad.

Fósiles de microbios hallados en la formación Strelley Pool del cratón de Pilbara, Australia, con unos 3.400 millones de años de antigüedad. Imagen: D. Wacey, Universidad de Australia Occidental / AFP.

Como te apunté al final del post anterior y en algún otro, la vida presente en la Tierra es sobrecogedoramente antigua. Tanto que no sabemos todavía cuándo surgió, pero no pudo ser mucho después del Bombardeo Intenso Tardío. Con certeza, tenemos fósiles de microorganismos complejos –posiblemente eucariontes– de hace 2.000 millones de años y microbios con 3.400 millones (como los de la foto a la derecha.) Con casi total certeza, hubo cianobacterias empezando a liberar oxígeno mediante fotosíntesis hace 3.500 millones de años. Hay grafito de origen probablemente biológico en Groenlandia Occidental, generado hace 3.700 millones de años. Por ahí, por ahí estimamos que anda LUCA, o sea el último antepasado común a todo lo que ahora mismo alienta sobre la faz de este planeta.

Estudios más inciertos sugieren que pudo haber alguna clase de vida basada en el carbono antes del Bombardeo Intenso Tardío, ocurrido hace unos 3.900 millones de años: uno habla de 4.250 millones de años y otro apunta a los 4.400, conforme la Tierra terminaba de recolocarse la osamenta y enfriarse después del impacto que dio lugar a la Luna. Si esto fuese verdad, o la vida sobrevivió a una clase de meteoritos que dejan al que mató a los dinos como una mera anécdota de mínima importancia, o apareció más de una vez. En todo caso, cuanto más sabemos, más retroceden los orígenes de la vida, tanto la simple como la compleja. Tú y yo, por ir a lo seguro, nos quedaremos con las estimaciones actuales para LUCA: llevamos aquí al menos 3.700 o 3.800 millones de años.

Durante muchísimo tiempo, este fue un mundo de seres unicelulares o pluricelulares muy básicos, cuando no de mero ARN. Hubo que esperar bastante para que los primeros animales comenzáramos a ver la luz. Aunque seguramente hubo algunos protoanimales antes, a todos los efectos nacimos y conquistamos el mar entre el Ediacárico y la explosión del Cámbrico (635 – 542 millones de años.) Por entonces, las tierras emergidas eran un erial inhóspito y deshabitado, a menos que estos señores tengan razón. Pero hubo que esperar otro centenar de millones de años para que algunos milpiés comenzaran a aventurarse fuera del mar, envueltos en peligrosas concentraciones de oxígeno, lejos del cálido líquido que nos vio nacer, bajo el duro sol. Ahora nos parece tan normal, pero eso es porque la evolución nos ha adaptado a vivir así. Desde este punto de vista, todos los seres que vivimos fuera del agua somos una especie de extremófilos. Venga, en serio: ¿a quién se le ocurre salir del placentero mar que nos vio nacer y donde teníamos de todo para seguir existiendo, mudándonos a un inhóspito pedregal donde no hay apenas agua, con una atmósfera tan oxidante que hasta permite el fuego, expuestos a niveles cancerígenos y genotóxicos de radiación solar…? Bueno, pues lo hicimos. No sólo eso: perseveramos hasta que la evolución nos adaptó y cambió tanto que ahora no podemos regresar al mar sin medios técnicos. A excepción de las ballenas, delfines y demás, claro, que dijeron ahí os quedáis y se volvieron a los océanos como haría cualquier tipo sensato. Eso sí, después de haberse convertido en mamíferos con pulmones que aún hoy les obligan a seguir asomándose al aire para respirar.

Bien, y… ¿cuánto tiempo vamos a seguir aquí?

Nebulosa del Cangrejo

Nebulosas como esta del Cangrejo (NGC 1952) son los restos de una estrella que acabó estallando en forma de supernova; la luz de esta detonación en particular alcanzó la Tierra en el año 1054. Sin embargo, nuestro Sol no tiene masa suficiente para convertirse en una supernova; en vez de eso, “crecerá” hasta convertirse en una gigante roja que luego colapsará como enana blanca antes de irse enfriando muy, muy lentamente hasta terminar en forma de enana negra. Imagen: Wikimedia Commons.

Me supongo que ya sabrás eso de que un día el sol, en su evolución estelar, crecerá tanto que se tragará a la Tierra o al menos la dejará tan churruscada que cualquier cosa parecida a la vida presente será difícilmente posible. También sabrás que falta mucho para que esto suceda: unos 5.000 millones de años para que Sol abandone la secuencia principal y empiece a convertirse en una gigante roja y 7.600 para que alcance sus mayores dimensiones antes de contraerse hasta convertirse en una enana blanca. Luego irá enfriándose muy poquito a poco y finalmente se apagará como una enana negra dentro de mil billones de años o cosa así.  Si no ha aniquilado a la Tierra durante su fase de gigante roja, ésta continuará dando vueltas a su alrededor hasta estamparse contra tal enana negra por deterioro orbital dentro de cien mil veces más tiempo: un uno seguido de veinte ceros de años. O por ahí.

No obstante, las cosas desagradables empezarán a ocurrir mucho antes. Antes en términos cósmicos, quiero decir; no esperes ningún apocalipsis en tiempos humanos. Pero el futuro de la vida compleja terrestre se mide más en cientos que en miles de millones de años. Gran parte de ella se sustenta en la fotosíntesis, y particularmente en la fotosíntesis por la vía de los tres carbonos. Este tipo de fotosíntesis requiere una cierta cantidad de dióxido de carbono (CO2) en el ambiente. Pese a lo mucho que ahora estamos haciendo el chalado con el dióxido de carbono, conforme la luminosidad del sol vaya aumentando, el ciclo geoquímico del carbonato-silicato –parte del esencial ciclo del carbono– irá debilitándose mediante la meteorización de los silicatos. Eso irá fijando cada vez más y más carbono en el suelo, arrebatándoselo a la atmósfera y al mar. Tanto, que en unos 600 millones de años a partir de ahora la fotosíntesis por la vía de los tres carbonos quedará interrumpida por falta de CO2, y con ella buena parte de la vida que conocemos.

Tolypothrix sp.

Las cianobacterias (en la imagen, Tolypothrix sp.) obtienen su energía a partir de la fotosíntesis, absorbiendo dióxido de carbono y liberando oxígeno. Hace unos 2.300 millones de años, esto provocó la llamada “catástrofe del oxígeno”, que llenó la atmósfera terrestre con este gas, dando lugar al aire que conocemos hoy en día. La actual vida compleja terrestre depende en su inmensa mayoría de que los organismos fotosintéticos sigan existiendo. Imagen: Wikimedia Commons.

La vida compleja dispone de otro cartucho en la recámara para ambientes extremos con muy poco dióxido de carbono: la fotosíntesis de los cuatro carbonos. Conforme el CO2 siga cayendo y cayendo, probablemente una parte significativa de los seres fotosintéticos evolucionará hacia esta vía de los cuatro carbonos, como de hecho ya lo hizo. Pero incluso esta “vía extrema” sólo proporcionará otros 200 millones de años de margen. Con un sol cada vez más brillante, incluso estas cantidades residuales de CO2 acabarán fijadas al suelo. Y sin CO2 no hay fotosíntesis, y sin fotosíntesis es difícil imaginar la supervivencia de la vida compleja terrestre, a menos que la evolución se saque de la manga alguna otra de sus cartas asombrosas. (Ve y cuéntale a una arquea primitiva que algún día uno de sus recontratatarasobrinos, o sobrinas, estaría aquí leyendo frente a la pantalla de un dispositivo digital…)

Pero frente a un sol que a cada era brilla más, incluso los inconcebibles cartuchos de la evolución irán agotándose. En unos mil y pico millones de años, la temperatura media del planeta alcanzará los 47ºC y entonces empezará a ocurrir algo muy chungo: mares, océanos y demás aguas comenzarán a esfumarse. Primero, mediante un efecto invernadero húmedo (moist greenhouse) debido a la acumulación de vapor de agua en la atmósfera; el vapor de agua es un poderoso gas de efecto invernadero. Así, el planeta azul se convertirá rápidamente en el planeta blanco, continuamente cubierto por una capa de niebla y nubes cada vez más densas. Pronto, toda el agua disponible en la Tierra se evaporará mediante un efecto invernadero desbocado, para no volver al estado líquido nunca jamás. A todos los efectos, estaremos comenzando a abandonar nuestra zona de habitabilidad estelar (o más bien, la zona de habitabilidad estelar nos estará abandonando…)

Zonas habitables de los sistemas solares

Las zonas habitables de los sistemas solares varían con las características de cada estrella y su estadio evolutivo. Conforme nuestro Sol “engorde”, la zona habitable se irá desplazando hacia regiones más exteriores del sistema solar. Imagen: Wikimedia Commons.

A la totalidad del agua le costará mucho desaparecer, entre dos y tres mil millones de años, debido a que irá saliendo poco a poco la que se encuentra atrapada bajo la superficie. Durante una larga temporada, habrá lagos y humedales en las regiones polares. Pero la vida que conocemos, basada en grandes cantidades de agua líquida fácilmente disponible, irá dejando de existir. Por fotólisis, el agua evaporada se separará en forma de oxígeno e hidrógeno; el oxígeno perdurará, sobre todo fijándose a los suelos, pero el hidrógeno escapará al espacio exterior. No más agua en la Tierra. No más planeta azul, ni blanco, sino más bien marrón. Los últimos eucariontes dejaremos paso otra vez a un mundo de procariotas, como siempre fue, que irán extinguiéndose muy poco a poco hasta que finalmente este planeta pierda por completo la capacidad de soportar vida. En unos 1.500 millones de años, la zona de habitabilidad fetén andará ya por Marte. Puede que algo parecido a los extremófilos más extremos resistan aquí hacia la frontera de los 2.800 millones de años futuros, cuando la temperatura media terrestre supere los 147ºC, antes de perecer. Esta vida, aunque inconcebiblemente feraz, morirá así por fin.

En suma: que a la vida compleja terrestre le queda al menos tanto tiempo como lleva –llevamos– existiendo, eón arriba o abajo. Todavía pueden ocurrir muchísimas cosas, tantas como las sucedidas desde la explosión del Cámbrico hasta nuestros días. Y a la vida terrestre en general, mucho más. Salvo que ocurriese alguna clase de catástrofe cósmica como no ha ocurrido en los últimos 4.000 millones de años –casi una tercera parte de la edad del universo– la vida va a seguir por estos lares durante otra larguísima temporada, evolucionando y adaptándose sin parar hacia formas ahora inimaginables, como siempre hizo.

Parasol estelar

Arriba: concepto básico de una lente para dispersar la irradiación solar que alcanza al planeta Tierra (dibujo no a escala; en realidad se encontraría mucho más cerca, en el punto L1 Tierra-Sol, a aproximadamente 1,5 millones de kilómetros de nuestro planeta.) Este concepto básico es un tanto burdo y difícil de ejecutar; en su lugar, más recientemente se han propuesto nubes de lentes minúsculas orbitando en torno al mismo punto (centro y abajo.) Concebido al principio para combatir el calentamiento global, una civilización tecnológica futura podría utilizar este o cualquier otro concepto ahora inimaginable para retrasar significativamente el momento en que la evolución solar haga que nuestro planeta sea inhabitable. Imagen superior: Wikimedia Commons. Imágenes central e inferior: © BBC News.

Si en ese proceso la inteligencia se preserva, o incluso se desarrolla y extiende, pueden crearse las tecnologías necesarias para retrasar todavía más este fin del mundo. Nosotros mismos ya tenemos parte de la ciencia y la tecnología necesarias para hacerlo a pequeña escala, y de hecho se ha planteado como una medida de emergencia frente al calentamiento global presente: si no somos capaces de ponernos de acuerdo para contener las emisiones de gases de efecto invernadero, siempre podemos reducir un poquito la irradiación solar. Se llama la sombrilla espacial o parasol estelar, forma parte de un concepto más amplio denominado gestión de la irradiación solar y aunque suene a ciencia-ficción –y de hecho lo sea en estos momentos–, disponemos ya de gran parte del conocimiento necesario para reducirla en un 2% y mantenerla así durante unos cincuenta años a un coste de unos cinco billones (trillions anglosajones) de dólares. Eso es menos que el PIB mundial de un solo año, y existen otras aproximaciones más económicas. Civilizaciones futuras mucho más avanzadas podrían disponer de un montón de técnicas para paliar y ralentizar la destrucción de la vida compleja terrestre antes de que sea imprescindible dar el siguiente paso obvio: largarse de aquí.

¿Adónde? Puesss… a lo mejor, ni siquiera es preciso pirarse muy lejos, al menos durante una larga temporada. La evolución solar desplazará la zona de habitabilidad estelar hacia los planetas exteriores y sus lunas actualmente heladas, que dejarán de estarlo. Teniendo en cuenta los enormes plazos de tiempo implicados en este proceso de engorde solar –cientos y miles de millones de años–, no resulta inimaginable en absoluto una civilización tecnológica avanzada que vaya migrando y terraformando astros de aquí a Júpiter, Saturno, Urano y Neptuno con arcas de Noé cósmicas antes de que el sol se desinfle velozmente hacia su etapa de enana blanca y sea totalmente necesario encontrar otro sistema solar más amable. Todo esto suponiendo que esa futura civilización no sea ya capaz de encontrar ese otro sistema solar amable y tirar para allá directamente. Suponiendo que no existan maneras de crear astros habitables a la medida. Y suponiendo también, claro, que esa civilización exista o pueda existir para entonces. Pero si la inteligencia no se extingue en la Tierra y continúa evolucionando, no veo ningún motivo obvio por el que la destrucción de este planeta implique necesariamente la desaparición de la vida que alienta en él. Simplemente seguiríamos haciendo lo que siempre hicimos: migrar en busca de un lugar mejor, sólo que esta vez a escala cósmica. Te contaba en la entrada anterior que me resulta inimaginable lo que sabremos y seremos capaces de hacer dentro de 300, 3.300 o 33.000 años; imagínate en medio millar de millones de años. O más.

…en un universo bebé.

Pero al final de la carrera, es una huida hacia ninguna parte. Este universo tiene fecha de caducidad. O más bien fechas, porque ahora mismo todavía andamos debatiendo cómo morirá exactamente. Lo que sí se sabe es que tardará mucho, pero que muchísimo más tiempo en hacerlo. Pues, como quien dice, acaba de nacer y salvo por alguna remotísima posibilidad cuántica, no hay nada que lo vaya a matar antes de hora.

Los Pilares de la Creación, Nebulosa del Águila

Los famosos “Pilares de la Creación”, en la Nebulosa del Águila, un gigantesco criadero de estrellas (y mundos…) a unos 7.000 años-luz de aquí. Nos encontramos todavía al principio de la Era Estelífera, en la que la formación de estrellas es y seguirá siendo posible durante otros 100 billones de años más o menos. Nos encontramos casi, casi al principio de todo. Foto: Telescopio Espacial Hubble / NASA.

Por todo lo que sabemos, ahora mismo el universo tiene unos 13.700 millones de años. Puede que te resulte curioso denominar bebé a algo con 13.700 millones de años de edad, pero es una cuestión de escala. Vamos a quedarnos sólo con la Era Estelífera, en la que nos hallamos actualmente. La Era Estelífera es el periodo de la historia del universo en el que pueden seguir formándose estrellas y galaxias, como sucede en estos momentos. Arrancó unos 150 millones de años después del Big Bang, con la reionización, a la que podríamos llamar el final del parto. Las primeras estrellas, de la llamada Población III, comenzaron a encenderse entre 420 y 560 millones de años tras el Big Bang.

Dejarán de formarse estrellas unos 100 billones de años después del Big Bang, conforme se agote todo el hidrógeno disponible en el cosmos. O sea, unas 7.300 veces más. Si este periodo fuese una vida humana de 100 años, nuestro universo tendría ahora mismo cinco días de edad. Eso, en mi pueblo, es un bebé. Y chiquitín. O chiquitina.

Sin embargo, el universo no morirá con el final de la Era Estelífera. Tan solo cesará la aparición de estrellas nuevas y las más viejas irán pereciendo muy, muy, muy lentamente. Se volverá un sitio bastante aburrido y oscuro, como solemos serlo todos a partir de cierta edad, pero continuará estando ahí. Realmente no sabemos todavía cuánto durará y ni siquiera cómo morirá –como sabrás, hay varias hipótesis–, pero como mínimo iríamos a la muerte térmica dentro de al menos un uno seguido de mil ceros de años. Como muy mínimo. Equiparando esta cifra a nuestra vida humana de un siglo, eso es apenas un chispacito. Nuestro universo ni siquiera ha llegado a tomar aire para berrear por primera vez.

Los tres posibles finales del universo

Los tres posibles finales del universo tal y como lo entendemos ahora mismo, dependiendo del valor de la ecuación de estado de la energía oscura. Imagen original: Big Bang Central.

Nuestro universo acaba de nacer. Estamos al principio de todo, como quien dice. Si la inteligencia prevalece y sigue evolucionando –la nuestra o cualquier otra que venga detrás, o la que pueda haber surgido o surgir en cualquier otro lugar, con billones de años de plazo– seguirá habiendo muchos sitios adonde ir, durante muchísimos eones. Realmente, sólo tendremos que plantearnos el fin de los tiempos en una época casi inconcebiblemente futura. Si para entonces todavía existe algo evolucionado a partir de tú y yo, será tan distinto que ni siquiera lo podemos imaginar. Si sigue siendo un bicho curioso que se resiste a desaparecer, tiene cajas de munición enteras disponibles en su arsenal. Se ha sugerido muchas veces, con buenas razones, que la inteligencia puede ser una fuerza autodestructiva. Pero a mí me gustaría sugerirte hoy la idea opuesta: que la inteligencia, una vez lo bastante avanzada, puede marcar una diferencia cósmica radical, dando lugar a algo que se parece no poco a la inmortalidad. Al menos, hasta que empiecen a acumularse tantos miles de ceros a la derecha en la edad del universo que nos adentremos profundamente en la eternidad.

Bibliografía:

74 Comentarios Trackback / Pingback (1)
¡Qué malo!Pschá.No está mal.Es bueno.¡¡¡Magnífico!!! (23 votos, media: 4,96 de 5)
Loading...Loading...
Be Sociable, Share!

100.001 galaxias y ni una inteligencia avanzada evidente.

…en el infrarrojo medio, al menos. :-P

El observatorio WISE de la NASA

El observatorio WISE de la NASA, que realizó un barrido completo de la esfera celeste en distintas bandas infrarrojas, incluyendo el infrarrojo medio. Dado que el uso a escala galáctica de las tecnologías que nosotros utilizamos actualmente dejaría una “firma” clara en el infrarrojo medio y el WISE no ha detectado estas firmas, un reciente estudio (Griffith, R. L. et al.: “The Ĝ Infrared Search for Extraterrestrial Civilizations with Large Energy Supplies. III. The Reddest Extended Sources in WISE.” The Astrophysical Journal, Supplement Series, Vol. 217 Nº 2, 2015. doi:10.1088/0067-0049/217/2/25) ha dado lugar a numerosos titulares sugiriendo la inexistencia de civilizaciones avanzadas en 100.000 galaxias próximas. Imagen: NASA/JPL-Caltech.

Hace poco, abundantes medios nos obsequiaban con un bonito titular del tipo de “Buscan extraterrestres avanzados en 100.000 galaxias y no encuentran nada.” Está bien, a todos nos gusta un titular quedón. A mí el primero, sobre todo cuando los propios autores del estudio sugieren conclusiones similares. O estaría bien, si no fuese porque en realidad lo único que se concluye es que no han hallado evidencias de que haya una “Humanidad-B” colonizando sus galaxias del modo en que algunos de nosotros nos planteábamos hacerlo a mediados del siglo XX, lo cual era bastante de esperar. Eso es todo. El resto se lo han “conjeturado” de arriba abajo.

En el sentido estrictamente científico, el estudio es honesto: han analizado los datos del observatorio espacial WISE para 100.000 galaxias cercanas (de los cientos de miles de millones que hay en el universo observable) y no han encontrado evidencias obvias en el infrarrojo medio de que haya por ahí civilizaciones Kardashov-III metiendo sus galaxias en esferas de Dyson; o, más en general, procediendo a una industrialización total de las mismas con una ciencia y tecnología análogas a las nuestras de hoy en día, cuyas emisiones residuales dejarían una traza característica en tal banda infrarroja. Estas emisiones serían la consecuencia inmediata de cualquier uso de cualquier tecnología del tipo de las que conocemos, en virtud del 2º Principio de la Termodinámica, y detectables al emplearlas a semejante escala. Interesante, sí, pero al mismo tiempo tan predecible que casi cae en la categoría de perogrullada.

O de contradicción en los términos. Porque una civilización en nuestro atrasadísimo estadio científico-tecnológico (por no hablar del económico y social) no va ni a la otra punta de la galaxia, ni a la estrella más próxima en ningún plazo de tiempo razonable. En el mejor de los casos, con un inmenso esfuerzo, a unas cuantas basecillas por nuestro sistema solar y muchísimas gracias. Todavía somos poco menos que gentes primitivas. Vernos concibiendo maneras de colonizar la galaxia sería como ver a un nómada paleolítico ideando maneras de construir ese mismo observatorio espacial WISE: un ejercicio mental que avanza la curiosidad, la inquietud y sienta las bases de la adquisición del conocimiento, pero que al final no se parecerá en nada a la realidad porque apenas tenemos las más tenues bases intelectuales para concebirlo. Conjeturas como las que se han extraído de ese estudio de las 100.000 galaxias constituyen un ejemplo palmario de lo que yo llamo el chovinismo del conocimiento.

El chovinismo del conocimiento.

Nikolai Kardashev

El profesor Nikolai Kardashyov (también transliterado como Kardashev o Kardashov, 1932), actual director del Instituto de Investigaciones Cósmicas de Rusia, propuso en 1964 una intrigante idea: una civilización tecnológica en constante avance necesitará cada vez más energía para sus propósitos, sean cuales sean éstos, y desarrolló una escala de niveles de desarrollo sobre este concepto. Una civilización que utilizase toda la energía que un sol como el nuestro entrega a la Tierra estaría al nivel Kardashov-I. Si utiliza toda la energía generada por su sol, sería Kardashov-II. Si emplea la de toda su galaxia, Kardashov-III. Y a partir de ahí se han planteado otras posibilidades más. El concepto es muy interesante, pero no necesariamente correcto, o al menos no de la manera como nosotros obtenemos y consumimos la energía, o esperaríamos hacerlo en nuestro estado actual del conocimiento científico-técnico. El modo exacto como una civilización avanzada podría lograr esto es totalmente especulativo, y muy posiblemente inimaginable para nosotros en la actualidad. Imagen: Cortesía de la Academia Rusa de Ciencias.

Decía el añorado Carl Sagan que en esto de la búsqueda de vida e inteligencia extraterrestre hay varios chauvinismos (o chovinismos, que parece que a la RAE le gusta más.) Lo que pasa es que estos no son chovinismos patrioteros sino, digámoslo así, científicos. Está, por ejemplo, el chovinismo planetario, según el cual la vida sólo sería posible en astros como los planetas o las grandes lunas. Tenemos también el chovinismo del agua, que dice que ésta sólo puede surgir en lugares con abundantes cantidades de agua líquida. O el del carbono, que sólo admitiría la posibilidad de formas de vida basadas principalmente en este elemento. Etcétera. Algunos de estos chovinismos son más razonables que otros; el propio Sagan se definió una vez como un chovinista del carbono, aunque no tanto del agua. Manteniéndonos dentro del chovinismo planetario se han planteado hipótesis con diversas alternativas al agua y algunas al carbono. Es un debate abierto, porque realmente nadie sabe lo que podría llegar a haber por ahí afuera. Los extremos a los que puede llegar la vida terrestre –planetaria, basada en el agua líquida y el carbono– sugieren posibilidades inmensas incluso sin salirnos de ahí.

Pero la búsqueda de civilizaciones extraterrestres –lo que se viene llamando SETI– ha estado plagada a menudo de este otro chovinismo del conocimiento muchísimo más irracional. Salvo por algunas excepciones, la idea parece ser busquemos a extraterrestres que hagan exactamente lo mismo que haríamos nosotros en este periodo histórico, sólo que a lo bestia. Esto es por ejemplo como si un romano –un romano de los tiempos de los romanos, quiero decir– intentase detectar nuestras telecomunicaciones por el procedimiento de sentarse en la mediana de una de nuestras autopistas esperando muy atentamente a que pasen los caballos con los mensajeros. Este amigo romano podría estar perfectamente sentado encima de un cable troncal de fibra óptica, atravesado por las ondas de todo tipo de radiocomunicaciones, y ni entendería lo que es el primero, ni llegaría a percatarse de lo segundo jamás. Su conclusión más lógica sería que las civilizaciones modernas no nos enviamos mensajes de ningún tipo. O que quizá lo hacemos en unos carros sin caballos que van muy rápido y se llaman coches, pero no hemos querido reconocérselo y en vez de eso le contamos una milonga sobre una cosa que se llama Internet o no se qué. Por no mencionar esa leyenda delirante de unos navíos celestiales llamados satélites que dan vueltas al orbe mucho más allá del aire que se puede respirar.

Gran parte de las aproximaciones a la SETI se parecen mucho a la actitud de nuestro estimado amigo romano. Por ejemplo, la más conocida de todas: los intentos de interceptar comunicaciones de radio extraterrestres de alta potencia, en la que admito haber creído mucho tiempo –incluso llegué a proponer algo al respecto, hace muchos años– pero ahora soy bastante escéptico, y no sólo porque no hayan dado ningún resultado. Es que, tras pensarlo bien, me parece un caso paradigmático de chovinismo del conocimiento. Hace 300 años no teníamos ni puñetera idea de que existe tal cosa como los campos electromagnéticos, por mucho que los naturales nos estuviesen pasando a través todo el tiempo, y hubo que esperar hasta el siglo XIX para que este conocimiento científico se convirtiese en la tecnología llamada radio. Sólo a partir de ese momento nuestras radiocomunicaciones se hicieron cada vez más frecuentes y potentes, y cuando se plantearon las primeras aproximaciones SETI, había una especie de carrera por ver quién transmitía más y con más vatios. Así que supusimos que una civilización muchísimo más avanzada transmitiría por radio muchísimo más y con muchísimos más vatios. Tanto como para poderlo captar con nuestros radiotelescopios desde inmensas distancias.

James Clerk Maxwell

El científico escocés James Clerk Maxwell (1831-1879) desarrolló en 1865 la Teoría del Campo Electromagnético, lo que entre otras muchas cosas permitió predecir la existencia de las ondas de radio, desarrollar las telecomunicaciones modernas y abrir el paso a la futura Teoría de la Relatividad y la Mecánica Cuántica. Hace sólo 150 años de eso. Imagen: Del dominio público.

Sin embargo hoy, apenas medio siglo y pico después, gran parte de nuestras telecomunicaciones van por cables de fibra óptica. ¡Buena suerte intentado detectar un cable de fibra óptica con un radiotelescopio! :-D En cuanto a la radio, lo que hay ahora mismo es una carrera hacia la eficiencia, transmitiendo con potencias comparativamente muy bajas en redes celulares y cosas por el estilo. Hasta los grandes radares militares, que antes tiraban megavatios a troche y moche, operan en estos momentos siguiendo principios de baja probabilidad de intercepción; lo que entre otras cosas implica emitir con la potencia justita, justita para detectar al blanco en haces extremadamente direccionales y difíciles de captar para que se delaten poco ante el enemigo y sus misiles antirradar. Nuestras naves espaciales más avanzadas también se comunican con la Tierra mediante señales de extrema direccionalidad y potencia controlada, para ahorrar energía. Por regla general, ahora los humanos cada vez radiamos al espacio con menos potencia, no más. O incluso no radiamos en absoluto, utilizando modernas tecnologías como la mencionada fibra óptica. Para alguien que nos estuviese buscando con radiotelescopios, cada día somos más invisibles pese a que nuestras telecomunicaciones se multiplican sin parar tanto en cantidad como en calidad.

Pues me da el barrunto de que con esto de las 100.000 galaxias “sin signos obvios” de vida inteligente pasa lo mismo. Como te decía al principio, la aproximación de los autores del estudio casi constituye una contradicción en los términos. O sea: ¿estamos buscando una civilización muchísimo más avanzada que la nuestra, una Kardashov-III de colonizadores galácticos ni más ni menos, pero al mismo tiempo esperamos que usen tecnologías basadas en nuestro estado actual del conocimiento científico, sobre bases análogas de expansión industrial, dejando los mismos rastros que dejaríamos nosotros, así a lo bruto?

Ya me sabrán disculpar vuecencias, pero ahí hay algo que no me cuadra. ¿Una civilización capaz de explotar la energía de una galaxia entera no puede tener, por ejemplo, la capacidad de reciclar y aprovechar gran parte de esas fuertes emisiones residuales en el infrarrojo medio? (De hecho, uno de los coautores del estudio admite varias posibilidades de este tipo en esta entrevista, 3ª pregunta, sin necesidad de violar el 2º Principio de la Termodinámica.) ¿Esos superextraterrestres van a trabajar igual que lo haríamos nosotros con nuestros conocimientos actuales, si hace esos mismos 300 años que mencionaba antes nosotros andábamos en carros de bueyes, no existía ninguna aplicación tecnológica de la electricidad y no teníamos ni perra idea del electromagnetismo, ni de la relatividad, ni de la mecánica cuántica, ni de ninguna otra de las grandes revoluciones científicas de estos últimos siglos y sus tecnologías derivadas?

Dicho de otra manera: con estas aproximaciones no estamos buscando civilizaciones extraterrestres avanzadas, sino civilizaciones extraterrestres avanzadas que además se comporten como esperamos comportarnos nosotros, y encima deriven sus tecnologías de un estado del conocimiento científico análogo al nuestro, y adicionalmente lo hagan en un momento en el que nosotros podamos detectarlas, coincidiendo en el tiempo con nuestra propia evolución científico-técnica. Sí, ciertamente esto es muy, muy improbable. Tan solo sirve para descartar posibilidades. Ojo, repito: no estoy atacando el estudio ni su calidad o rigor científico. Estoy atacando las conclusiones extrapoladas a partir del mismo en todos esos titulares, que se me antoja un caso de falacia por falta de imaginación. Y es que cae por su propio peso que ignoramos totalmente qué cosas no hemos descubierto todavía. Capitán Obvio al rescate, y todo eso.

Láseres de discoteca

Algo ahora tan común como el láser (inventado en 1960) se deriva directamente de la Física Cuántica, un ámbito entero de la realidad que ignorábamos por completo hasta principios del siglo XX. Imagen: Extreme Lasers, Houston.

De las cosas que no sabemos. Y de alguna que vamos sabiendo.

Hueso de Lebombo y Tianhe-2

Arriba: el hueso de Lebombo (Swazilandia) con sus 29 marcas, de 35.000 años de antigüedad, un palo de cómputo como los que se siguen usando en la zona hasta la actualidad. Eso lo convierte en el primer instrumento matemático y por tanto científico conocido de toda la historia de la humanidad. Si además se usó para contar el ciclo sinódico lunar, también sería el primer calendario. Abajo: el superordenador Tianhe-2 (Vía Láctea-2) del Centro Nacional de Supercomputación en Cantón, China. En el momento en que escribo esto, aparece en el Top500 como el más potente del mundo con 3.120.000 núcleos, 33,86 Pflops/s de Rmax (Linpack) y 54,9 Pflops/s de Rpeak teórica. En su esencia, ambos instrumentos sirven para lo mismo: para computar. Pero muy difícilmente quien quiera que talló el hueso de Lebombo habría podido ni siquiera soñar con algo como el Tianhe-2… y tan sólo nos separan 35.000 años de progreso de unas inteligencias idénticas (homo sapiens.)

Mira, me gustaría que tú y yo viviéramos otros 300 años sólo para cruzar una apuesta contigo. ;-) Me apostaría todo lo que tengo contra tu bolígrafo a que dentro de 300 años habrá habido al menos otras tres grandes revoluciones científicas y las tecnologías de ese tiempo futuro nos resultarán tan alienígenas como le resultaría una conexión de fibra óptica, un smartphone, un láser o una sonda de espacio profundo a una persona de 1715. O el motor de combustión interna que mueve tu coche, o la bombilla que ilumina tu casa, o mil cosas más. Hace 300 años no existía nada de todo eso ni se podía imaginar más que como ideas locas, porque ni siquiera teníamos el sustrato científico para vislumbrarlo.

Como ya he dicho alguna vez, pretender que no sabemos nada como opinan algunos es de una ignorancia bastante cañera. Pero pretender que ya lo sabemos todo y que sólo queda espacio para perfeccionamientos sobre nuestro conocimiento actual es de un orgullo infinito, y posiblemente de una estupidez igualmente infinita. Detrás de cada rincón de la realidad puede estar esperándonos un electromagnetismo, una relatividad o una cuántica que ahora no podemos ni soñar, igual que todo eso no se podía ni soñar 300 años atrás. Cosas que cambiarán por completo nuestro conocimiento del universo y de la realidad y conducirán a tecnologías ahora mismo impensables. Mágicas, en el sentido que les dio Arthur C. Clarke. O si prefieres citar a Wernher von Braun, el tipo que mandó gente a la Luna, he aprendido a usar la palabra “imposible” con la mayor de las cautelas.

Yo no puedo ni imaginar, ni vislumbrar, ni soñar la ciencia, la tecnología, la sociedad y la economía con la que nos estaremos manejando dentro de 300 años. O de 3.300, o de 33.000, que me parecen plazos más razonables para liarnos a colonizar galaxias. Hace 3.300 años, acabábamos de comenzar la maldita Edad del Hierro y hace 33.000 andábamos pintarrajeando cuevas. Pero sí estoy convencido de que serán tan distintas de las actuales como lo fueron aquellas. Considero más que posible que nuestro diferencial con una hipotética civilización galáctica Kardashov-III sea aún mayor, por la sencilla razón de que sin ese diferencial no hay ni civilización galáctica, ni Kardashov-III, ni gaitas en vinagre. Con nuestro conocimiento actual no se puede ni colonizar ni explotar una galaxia entera, punto pelota. Hace falta un nivel de ciencia, tecnología, sociedad y economía que ahora mismo sólo podemos imaginar para la ciencia-ficción. Una ciencia-ficción que muy probablemente no se parecerá en nada a la realidad futura.

Hablando de investigaciones disputadas y de cosas que no sabemos, déjame que te cuente una que vamos sabiendo y que apunta en sentido contrario. Se encontró por primera vez en algunos meteoritos como el Murchison. Estos son meteoritos muy, muy antiguos, que se formaron con el sistema solar. El meteorito Murchison tiene la friolera de 4.600 millones de años y ha estado dando vueltas por el cosmos desde entonces hasta que cayó en Australia en 1969. Cuatro mil seiscientos millones de años son una tercera parte de la edad del universo. Data de cuando la Tierra y el Sol estaban naciendo. El meteorito Murchison constituye una “fotografía” de cómo era el sistema solar temprano.

Meteorito Murchison

Muestra del meteorito Murchison en el Museo Nacional de Historia Natural (Washington DC), formado junto con el resto del sistema solar y caído en Australia en 1969. Aunque no todo el mundo está de acuerdo, diversos estudios afirman que contiene biomoléculas complejas de origen no terrestre, capaces de dar lugar a los aminoácidos del ADN y el ARN (ver bibliografía.) Si esto se confirma, los procesos químicos de las nebulosas planetarias podrían constituir los “ladrillos de la vida” incluso antes de que lleguen a aparecer los planetas y por tanto éstos podrían ser comunes a todo el universo conocido. Imagen: Art Bromage bajo licencia CC Attribution-Share Alike 2.0 Generic.

Al cascarlo, los investigadores encontraron en su interior algo totalmente inesperado: biomoléculas complejas. No estamos hablando de compuestos orgánicos del montón. Estamos hablando de purina, pirimidina, xantinas, uraciloLadrillos de la vida. De las dos primeras se derivan ácidos nucleicos de los que construyen el ARN y el ADN. La última, el uracilo, es directamente una de las bases nitrogenadas que forman el ARN. Las primeras expresiones de vida terrestre pudieron darse en el llamado mundo de ARN, toda ella sigue usando ARN, y tú y yo continuamos llevándolo encima desde el día en que alguien inseminó a nuestra mamá hasta la tumba. Sin ARN no hay vida en la Tierra, quizá a excepción de los nanobios, si es que realmente están vivos.

Por supuesto, inmediatamente surgieron voces diciendo que eso no podía ser. Que las muestras tenían que estar contaminadas o algo. Y sin embargo, estudio tras estudio indican que estas biomoléculas halladas en el meteorito Murchison tienen un origen extraterrestre, formadas en el cosmos durante el surgimiento del sistema solar. Para acabar de arreglarlo,la sonda Cassini encontró indicios de uracilo en la atmósfera de Titán de Saturno. Por su parte, Sun Kwok y otros investigadores de la Universidad de Hong Kong han estado estudiando las llamadas emisiones infrarrojas no identificadas de los sistemas solares en formación y dicen que su espectro presenta un componente importante de moléculas orgánicas más complejas que los hidrocarburos aromáticos policíclicos básicos.

Así que yo también voy a conjeturar un poco hoy. Si los ladrillos de la vida surgen naturalmente con los sistemas solares en formación, si son una forma corriente de auto-organización de ciertos tipos de materia, al estilo de los cristales… entonces la vida, lejos de ser una rarísima carambola cósmica, sería un fenómeno común que simplemente estaría esperando a aparecer en cuanto en un planeta o luna se den las condiciones mínimas necesarias. Y además, nos hallaríamos ante una respuesta elegante a la pregunta de cómo la vida en la Tierra surgió tan pronto: habría venido de serie con el sistema solar, lista para cocinar. A partir de ahí, el camino a la vida compleja y la inteligencia fue sin duda accidentado y brutal, pero tampoco una cosa casi imposible, aquí o en cualquier otro lugar. Y ya puestos a especular, a lo mejor la explicación al Gran Silencio es simplemente que somos tan primitivos, estamos tan ridículamente atrasados que todavía no sabemos escuchar bien.

Bibliografía:

 

85 Comentarios Trackback / Pingback (1)
¡Qué malo!Pschá.No está mal.Es bueno.¡¡¡Magnífico!!! (27 votos, media: 4,85 de 5)
Loading...Loading...
Be Sociable, Share!

La máquina a bobinas magnéticas del joven sargento Lavréntiev

Los reactores de fusión nuclear Tokamak.

Oleg Alexandróvitch Lavréntiev

El joven sargento del Ejército Rojo Oleg Alexandróvitch Lavréntiev (1926-2011), que acabaría siendo doctor en física nuclear y teórica y el “abuelo” de la bomba termonuclear soviética y los reactores de fusión TOKAMAK, sobre los que se basa actualmente el ITER. Foto: © Agencia Federal de Archivos, Ministerio de Cultura de la Federación Rusa.

Imagínate: es 1948, formas parte del poderoso Comité Central del Partido Comunista de la URSS y de algún modo cae en tus manos la carta de un cierto sargento Oleg Lavréntiev, de 22 años, destinado en un remoto agujero del Océano Pacífico. El joven sargento Lavréntiev dice que sólo acabó la secundaria porque se fue a la guerra, pero le gusta mucho la física atómica; incluso se gasta parte de su escasa paga en una suscripción a la revista Avances en Ciencias Físicas. Ah, y que sabe cómo hacer una bomba de hidrógeno y un reactor de fusión nuclear.

No sé tú, pero yo habría pensado que estaba ante el típico charlatán. O, más probablemente, me lo habría tomado a broma. Claro que eran malos tiempos para esa clase de humor, con el padrecito Stalin todavía en plena forma y el camarada Beria encargado de tratar con los bromistas (y también, en el más absoluto secreto, de supervisar el programa soviético para hacer la bomba atómica, que ni eso tenían aún por esas fechas.) Hay que tener en cuenta que Oleg había tenido el cuajo de escribir primero al mismísimo Stalin y, al no recibir respuesta, decidió ponerse en contacto con los segundones del Comité Central, el muchacho. Asombrosamente, ni la carta terminó en una papelera ni el joven sargento Lavréntiev, natural de Pskov, hijo de administrativo y enfermera, obtuvo un nuevo destino un pelín más al interior. Por la parte de Kolymá o así.

En vez de eso, poco después el oficial al mando del sargento Lavréntiev recibió instrucciones estrictas de que le proporcionaran un despacho con escolta y tiempo para plasmar sus ideas de manera más exhaustiva con la máxima discreción. Cosa que debió dejar a todos sus compañeros, empezando por el oficial al mando en cuestión, bastante atónitos. Dos años después, el 29 de julio de 1950, Oleg manda a Moscú un paquete por correo militar secreto donde describe los principios de un arma termonuclear por fusión de deuteruro de litio (“liddy”) y una máquina para producir grandes cantidades de electricidad mediante una “trampa electromagnética” toroidal para confinar reacciones del deuterio y el tritio. Que es, exactamente, el principio de funcionamiento de todas las armas termonucleares del mundo y los reactores de fusión tipo Tokamak, como el ITER que se está construyendo ahora mismo.

El paquete acabó ni más ni menos que en manos de Andréi Sájarov, quien ya trabajaba con Ígor Tamm en esas mismas cuestiones, al amparo del entonces secretísimo Laboratorio nº 2 o Laboratorio de Aparatos de Medida de la Academia de Ciencias de la URSS, hoy en día conocido como el Centro Nacional de Investigación – Instituto Kurchátov. En su evaluación, Sájarov escribió:

“Creo que es necesario discutir detalladamente el proyecto del camarada. Con independencia de los resultados de esta discusión, debe reconocerse la creatividad del autor.”

Mucho tiempo después, en sus memorias, Sájarov se explayaría más a gusto sobre el paquete remitido por el sargento Lavréntiev desde su lejana base del Pacífico:

 “Quedé enormemente impresionado por la originalidad y la audacia de esas ideas producidas independientemente, mucho antes de que comenzaran a aparecer las primeras publicaciones sobre el tema. (…) [Mis] primeras tenues ideas sobre el aislamiento térmico magnético comenzaron a formarse al leer su carta y escribir el informe al respecto. (…) El trabajo de Lavréntiev fue un ímpetu para mejorar la investigación del aislamiento térmico magnético del plasma de alta temperatura que realizábamos Tamm y yo.”

Entrada principal al Instituto Kurchatov en la actualidad.

Entrada principal al Instituto Kurchátov en la actualidad. Imagen: © Google Street View.

 Diseño original de Oleg Lavréntiev para un arma termonuclear.

Diseño original de Oleg Lavréntiev para un arma termonuclear. 1) Detonador temporizado. 2) Carga explosiva [convencional]. 3) Semiesferas de plutonio. 4) Cámara de vacío. 5) Capa de litio-6. 6) Deuteruro de litio-6. Aunque es muy primitivo y requeriría varias modificaciones importantes para hacerlo funcionar, todos los conceptos esenciales de un arma con componente de fusión están ahí: se trata básicamente de un diseño “sloika” con un primario de detonación por disparo (similar a la idea inicial “Thin Man” estadounidense para una bomba de fisión de plutonio, o a la bomba “Little Boy” de Hiroshima si sustituimos el plutonio por uranio) envuelto en un secundario compuesto por una capa de litio y, muy acertadísimamente, deuteruro de litio-6. El deuteruro de litio-6 (“liddy”) fue y sigue siendo el explosivo de fusión idóneo para las armas termonucleares. Hay que tener en cuenta que cuando Lavréntiev ideó esto, todas estas cosas eran altísimo secreto o simplemente ni siquiera estaban inventadas y puede decirse que “se lo sacó todo de su cabeza”. Imagen: © Agencia Federal de Archivos, Ministerio de Cultura de la Federación Rusa.

Apenas un mes después, Lavréntiev es desmovilizado y matriculado en la Facultad de Física de la Universidad Estatal de Moscú, con derecho a habitación y beca. Ahí le piden que desarrolle más su propuesta. Oleg se pone a ello. En octubre del mismo año, Sájarov y Tamm completan el primer análisis de un reactor de fusión nuclear por confinamiento magnético, bajo el auspicio de Ígor Kurchátov, basándose no poco en el documento original del joven sargento. Así, pasaron a la historia como los inventores de este tipo de reactor, el más prometedor y el más utilizado del mundo hoy en día, mientras que Lavréntiev quedaría relegado a una oscuridad que no comenzó a esclarecerse hasta que se desclasificaron los documentos secretos de la época en el año 2000.

Hay que decir que a Oleg no le fue mal. Cuando terminó de desarrollar sus planteamientos en enero de 1951, le invitaron al Kremlin, se entrevistó con Beria en persona, le aumentaron la beca, le proporcionaron una habitación mejor, le dieron acceso a todas las publicaciones científicas que necesitara y le pusieron un tutor personal: el matemático Alexander Samarskiy, prácticamente desconocido en Occidente pero un peso semipesado de la ciencia soviética, experto en análisis numérico y física computacional. Así Oleg se graduó con honores e incluso pasó una temporada por el exclusivísimo Laboratorio de Aparatos de Medida, donde trabajaban Sájarov y Tamm. Pero luego, por razones no demasiado claras fue transferido al Instituto de Física y Tecnología de Járkov (Ucrania, entonces parte de la URSS), otro centro de investigación muy prestigioso. Ahí el antiguo sargento Oleg Lavréntiev, que postuló una bomba termonuclear y un reactor de fusión con sólo su educación secundaria, su suscripción a Avances en Ciencias Físicas, su curiosidad y su pasión, pasó el resto de su carrera profesional haciendo lo que le gustaba. No tuvo una mala vida y en esa ciudad murió el 10 de febrero de 2011, a los 84 años.

Sin embargo, como te digo, su papel en el desarrollo de las armas termonucleares de la URSS y sus reactores de fusión por confinamiento magnético permaneció oculto hasta el año 2000, e incluso hoy en día casi nadie lo conoce fuera del espacio post-soviético. Sájarov y Tamm (e, indirectamente, Kurchátov) se llevaron todos los méritos. Que no digo que no se lo curraran y no los merecieran, que se lo curraron y los merecieron, pero tras ellos estuvo la sombra de Lavréntiev. El caso es que los reactores Tokamak comenzaban a nacer en el sector 44 del Laboratorio de Aparatos de Medida de la Academia de Ciencias de la URSS, situado al Noroeste de Moscú. Vamos, el Instituto Kurchátov.

La toroidalnaya kamera s magnitnymi katushkami.

El primer TOKAMAK, llamado T-1, en el Instituto Kurchatov de Moscú donde fue inventado en 1968. Foto: ITER.

El primer prototipo de reactor de fusión Tokamak, llamado T-1, en el Instituto Kurchatov de Moscú (1958). Foto: © ITER Organization.

Al principio, no se llamaron Tokamak, y no todos creían en ellos. El primer “aparato toroidal” para el control del plasma a alta temperatura construido en el sector 44 se llamaba TMP y era una cámara de porcelana, a la que luego le añadieron unas espirales metálicas por el interior. Después vinieron otros dos dispositivos con paredes de cobre y espacios de aislamiento. No fue hasta finales de 1957 que estos primeros aparatos de medida termonucleares dieron lugar al dispositivo T-1, “montaje experimental nº5” o “disposición de 1958” (por el año en que se puso en marcha.)

Hubo algo de bronca para ponerle nombre. Estuvo a punto de llamarse “Tokomag”, por тороидальная камера магнитная, o sea toroidalnaya kamera magnitnaya, es decir cámara magnética toroidal. E incluso “Tokomak”, porque a algunos oídos les sonaba mejor. Pero al final se impuso la opinión del subdirector del laboratorio, Ígor Golovkin, que era un apasionado del proyecto: sus estrellas contenidas por confinamiento magnético se llamarían Tokamak, de тороидальная камера с магнитными катушками, pronunciado toroidalnaya kamera s magnitnymi katushkami, lo que viene siendo cámara toroidal con bobinas magnéticas. Algún otro dice que podría significar también тороидальная камера с аксиальным магнитным полем (toroidalnaya kamera s aksialnym magnitnym polem, cámara toroidal con campo magnético axial), lo que define al ingenio igualmente bien. Yo me quedaré con lo de cámara toroidal a bobinas magnéticas, que era la idea original de Lavréntiev y suena más sovietpunk y molón. :-P

Como puede suponerse, esto del bautismo no fue la única bronca que rodeó al proyecto, ni mucho menos la más importante. El afamado académico Lev Artsimovich (jefe del Departamento de Investigación del Plasma), quien luego se haría un auténtico converso hasta el punto de que le llaman “el padre del Tokamak”, decía por entonces que “conseguir la fusión con un Tokamak es como intentar crear un cigarrillo a partir del humo.” Muchos opinaban que este extraño aparato de medida jamás podría satisfacer la condición KruskalShafranov y estabilizar el plasma en su interior.

Pero lo logró. En 1958, el llamado montaje experimental nº 5 del Insituto Kurchátov, una sencilla cámara de cobre de 1,34 metros de diámetro con una corriente eléctrica en el plasma de 100.000 amperios y una intensidad del campo magnético toroidal de 1,5 teslas, demostró que podía contener el plasma estabilizado y sería posible fusionar deuterio con él en una boscosa periferia de Moscú. Exactamente, aquí. Así, el montaje experimental nº 5 paso definitivamente a la historia como el Tokamak T-1. Una de las grandes puertas a la energía nuclear de fusión, la energía de las estrellas traída a la Tierra, se acababa de abrir sobre la idea original de un joven sargento que sólo contaba con su educación secundaria pero tenía mucha, muchísima audacia y curiosidad.

Diseñando estrellas.

Isótopos naturales del hidrógeno

Los tres isótopos naturales del hidrógeno: protio, deuterio y tritio. El deuterio y el tritio pueden fusionar con “relativa” facilidad. Pero obsérvese que la carga total del núcleo es siempre positiva. Esto tiende a separarlos por repulsión electrostática. Para que puedan entrar en contacto y fusionar, hay que “acelerarlos a temperaturas termonucleares.” Esta es también la razón fundamental de que la fusión fría, al menos en su forma convencional, no tenga demasiado sentido.

El problema básico para producir una reacción nuclear de fusión es que los núcleos de los átomos que constituyen toda la “materia normal“, como tú o yo por ejemplo, tienen carga eléctrica positiva. Si recuerdas, en el núcleo atómico están los neutrones, que no tienen carga, y los protones, que la tienen positiva. Pero no hay ninguna carga negativa. Las cargas negativas están en los electrones, situados en los orbitales de alrededor. Como estamos hablando de fenómenos nucleares, nos tenemos que olvidar de los electrones y nos quedamos con los núcleos. Que, al estar compuestos exclusivamente por neutrones (sin carga) y protones (con carga positiva), son positivos, tanto más cuanto más grandes sean y más protones contengan. Pero desde el más básico de todos, el hidrógeno, con un único protón, tienen carga positiva.

¿Y qué? Pues que, como es bien sabido, cargas opuestas se atraen y cargas iguales se repelen. Igual que en los imanes. Dos polos positivos o dos polos negativos se repelen entre sí. Esto es la repulsión electrostática. La única forma de unirlos es aplicando tanta fuerza que logre superar esta repulsión, siquiera sea temporalmente. Pero en condiciones normales, dos objetos con la misma carga (por ejemplo, dos núcleos atómicos) tienden a separarse, no a unirse y fusionar. (Y por eso lo de la fusión fría nos hizo alzar tanto la ceja a tantos desde el principio. Bajo condiciones estándar, no hay ninguna manera obvia mediante la que los núcleos atómicos puedan vencer la repulsión electrostática hasta fusionar.)

Las estrellas, que son gigantescos reactores de fusión nuclear natural, hacen trampa. Resuelven el problema a base de pura fuerza bruta, con la fuerza de la gravedad. Como son tan grandes y tienen tanta masa, la gravedad las hace colapsar sobre sí mismas hasta que la presión y con ella la temperatura aumentan tanto como para alcanzar las a veces denominadas temperaturas termonucleares. Pero nosotros no tenemos semejantes masas a nuestra disposición.

La manera sencilla de resolver el problema, y la única que nos ha ido bien hasta el momento, es explosiva. Esto es: provocar un brutal pico de presión, temperatura y radiación que haga fusionar núcleos atómicos fácilmente fusionables, como el deuterio, el tritio o el litio. Pero el resultado es todavía más explosivo: así es, talmente, como funciona un arma termonuclear. Claro, eso va muy bien para desintegrar a unos cuantos millones de prójimos con un golpe casi instantáneo de energía monumental, pero no tanto para mover suavemente nuestras sociedades. Si queremos energía de fusión civil, tenemos que producirla de una manera más lenta, progresiva, en un “reactor lento” o algo que se comporte como tal. Cosa que parecía sencilla y al alcance de la mano hace unas décadas, pero ha resultado ser uno de los problemas más difíciles a los que se ha enfrentado jamás la humanidad.

Explicado muy a lo sencillo, estas temperaturas termonucleares son muy, pero que muy superiores a lo que puede resistir ningún material. No se puede construir una “vasija” como las que usamos en los reactores de fisión de las centrales nucleares actuales. A las temperaturas propias de la fusión, cualquier vasija de cualquier material existente, imaginable o teorizable en este universo se convierte instantáneamente en plasma y se desintegra. (Y esa es una de las razones por las que las armas termonucleares son tan devastadoras: en las inmediaciones de la detonación, ninguna clase de materia puede pervivir de manera organizada.)

Repulsión y fusión nuclear

Polos opuestos se atraen, polos iguales se repelen. Los núcleos atómicos están compuestos por neutrones (sin carga) y protones (con carga positiva); como resultado, los núcleos en su conjunto son fuertemente positivos y por tanto se repelen con fuerza entre sí. En condiciones normales, esta repulsión los mantiene separados e impide que puedan llegar a fusionar. Sin embargo, a temperaturas termonucleares (millones de grados), los núcleos vibran violentamente y la inercia de estos movimientos es capaz de vencer a la repulsión electrostática, haciéndolos colisionar y fusionar entre sí con alta liberación de energía. En la imagen, dos núcleos de deuterio (hidrógeno-2) y tritio (hidrógeno-3) colisionan, fusionan y liberan un núcleo de helio-4 y un neutrón altamente energéticos.

En resumen: que sabemos cómo hacer fusionar cosas, pero no cómo ralentizar y contener la reacción para convertirla en esa energía domadita que mueve nuestros hogares, nuestros trabajos y nuestro mundo en general (y luego quienes tú ya sabes nos cobran a precio de oro…). A decir verdad, a estas alturas también sabemos cómo ralentizarla y contenerla… pero sólo en parte, de manera muy limitada, y consumiendo en el proceso total más energía de la que obtenemos. Es decir, que tenemos armas de fusión capaces de aniquilar civilizaciones enteras pero no tenemos más reactor nuclear de fusión eficaz que el sol brillando sobre nuestras cabezas.

Concepto básico para una central eléctrica de fusión nuclear basada en un Tokamak, como el que está desarrollando la cooperación internacional ITER.

Concepto básico para una central eléctrica de fusión nuclear basada en un Tokamak, como el que está desarrollando la cooperación internacional ITER.

Y no es porque no se le haya echado pasta y ganas encima, ¿eh? La energía nuclear de fusión prometía y promete ser tan estupenda que en algunos periodos se le han echado encima ingentes cantidades de dinero y no pocas de las mentes más brillantes del periodo. Pero aún así se resiste, la jodía.

Como te digo, el problema no es fusionar núcleos atómicos. Eso sabemos hacerlo. El problema es todo lo demás, y muy particularmente la producción y confinamiento de esa reacción con un saldo energético favorable. Como ya hemos visto, las estrellas como nuestro sol usan de manera natural el confinamiento gravitacional aprovechando su enorme masa. Vamos, que la gravedad de esa masa mantiene la reacción contenida durante largos periodos de tiempo en esas luminarias que cubren el cielo, como si dijéramos “empujando hacia adentro”. Puesto que como también hemos dicho nosotros no tenemos tales masas para trabajar, nos toca recurrir a trucos distintos. Hoy por hoy, estos son básicamente dos: el confinamiento inercial y el confinamiento magnético. La cámara a bobinas magnéticas que imaginó el joven sargento Lavréntiev, o sea el Tokamak soviético, o sea el ITER internacional, utilizan esta segunda técnica.

En el mismo 1958 los científicos soviéticos presentaron los primeros resultados obtenidos con el dispositivo T-1 en la II Conferencia de Átomos para la Paz, celebrada en Ginebra. Este fue uno de los mayores encuentros científicos de la historia, con más de 5.000 participantes. La URSS presentó un paper titulado “Estabilidad y calentamiento de plasmas en cámaras toroidales.” Se había tomado la decisión de desclasificar la investigación y en este artículo aparecía prácticamente todo, incluso un esquema de la máquina, salvo el nombrecito Tokamak de marras. Pese a ello, la era Tokamak acababa de nacer.

La era Tokamak.

Interior del Tokamak JET detenido y (en la inserción) funcionando, con plasma en su interior.

Interior del Tokamak JET detenido y (en la inserción) funcionando, con plasma en su interior. Foto: Cortesía EFDA-JET. (Clic para ampliar)

Al dispositivo T-1, fundamentalmente experimental, le siguieron el T-2 del año 1960 y el T-3 de 1962. El T-3 era ya un dispositivo funcional por completo. En 1968, el Tokamak T-4 de Novosibirsk demostró la primera fusión nuclear casi-estacionaria. Los resultados del T-3 y el T-4 fueron tan prometedores que pronto comenzaron a construirse también fuera de la URSS. Los primeros fueron los japoneses, que arrancaron en 1969 con los JFT y los NOVA, antecesores del actual JT-60. Les siguieron los estadounidenses con el Alcator A del Instituto de Tecnología de Massachusetts (1972), origen del Alcator C-Mod, y después con el DIII-D. En Francia tampoco quisieron perdérselo y en 1973 ponían en marcha el Tokamak de Fontenay-aux-Roses del que luego saldría el Tore Supra en Cadarache, donde ahora se está construyendo el ITER. Luego vendrían muchos más, en muchos países, desde China, Brasil o Italia a Irán, Portugal o México. Y en España, el Tokamak TJ-I de 1984.

Los soviéticos, por su parte, no se durmieron en los laureles. Siguieron adelante con diseños cada vez más grandes y sofisticados. Vino el T-7, el primer Tokamak con imanes superconductores. Le siguió el T-8, con la característica cámara con sección en forma de “D” que se mantiene en los diseños actuales. Culminarían en el Tokamak T-15 de 1988, sobre el que después se realizarían los estudios preliminares para diseñar el ITER; ahora lo están actualizando. Pero tras el colapso de la URSS se han quedado un poco fuera de juego, aunque anden liados con el Globus-M; más que nada, participan en la cooperación ITER.

Pese al éxito del Tokamak, no todas sus alternativas han quedado aplastadas. El diseño Stellarator, aunque quedó un poco pachucho durante una larga temporada, vuelve a presentar interés (en el Laboratorio Nacional de Fusión del CIEMAT tenemos uno: el TJ-II.) Y por supuesto, la otra gran alternativa, el confinamiento inercial, prosiguió con dispositivos como la National Ignition Facility estadounidense o el Laser Mégajoule francés, de doble uso en investigación civil / militar. En la National Ignition Facility parecieron obtener un resultado muy importante en septiembre de 2013 (producir la misma energía que se consumía para obtener la fusión), pero luego resultó que eso era muy matizable (y aquí.) Tanto, que sólo obtuvieron un 0,78% de la energía consumida. :-/ En el Joint European Torus, el Tokamak más grande del mundo, se llega al 70% y según algunos modelos teóricos del JT-60 japonés, se ha podido llegar al 125% (esto está disputado.) Pero para empezar a generar energía con el conjunto del reactor hay que llegar al 500% y para hacer una central de fusión práctica, superar el 1.000 o el 1.500% y preferiblemente rondar el 2.500%.

Océano Pacífico desde Poronaysk, isla de Sajalín, Rusia.

Una estrella y un mar llenos de hidrógeno con los que soñar: el Océano Pacífico y (algo de) sol matutino vistos desde Poronaysk (Sajalín, Rusia), donde estaba destinado el sargento Oleg A. Lavréntiev cuando tuvo su idea genial. Foto: Alex Nov., 2009.

El caso es que ahora mismo el gran proyecto internacional para obtener energía de fusión es un Tokamak: el conocido y ya muchas veces mencionado ITER, que debería empezar a dar resultados en el periodo 2020-2027. Si consigue sus objetivos, después tendrá que venir DEMO para convertirlo en una central eléctrica práctica allá por 2033-2040. Ya te conté hace algún tiempo que esto de la energía nuclear civil de fusión avanzaba a su ritmo, y por qué. Lo cierto es que sigue avanzando, pero comprendo que haya decepcionado a muchas personas. Hace décadas se crearon expectativas que en su momento se creían realistas… pero no lo eran. El problema resultó mucho más diabólico de lo que parecía. Eso sí, cuando lo consigamos, seguramente habrá que volver a acordarse de aquel sargentillo que con sus estudios de secundaria y su esforzada suscripción a Avances en Ciencias Físicas, mientras miraba al sol naciente sobre las aguas del Pacífico, tuvo una ocurrencia genial.

Bibliografía / Para aprender más:

 

44 Comentarios Trackbacks / Pingbacks (2)
¡Qué malo!Pschá.No está mal.Es bueno.¡¡¡Magnífico!!! (30 votos, media: 5,00 de 5)
Loading...Loading...
Be Sociable, Share!

Jovencitas con collar (electrónico)

Seguridades peligrosas.

Una de las muchas apps disponibles para mantener controlados a los niños.

Una de las muchas apps disponibles para mantener controlados a los niños (o a quien sea, o lo que sea) mediante seguimiento por GPS. Ante un atacante mínimamente sofisticado, la inmensa mayoría de estas apps y dispositivos pueden ser muchísimo más inseguros que no llevar nada en absoluto.

Parece ser que en algunos ámbitos se ha puesto de moda mantener controlados a los hijos no sólo a través del teléfono móvil, sino también mediante algunas apps o dispositivos análogos a los que se usan para saber la posición de los vehículos y cosas por el estilo (a veces disimulados en relojes, pulseras y demás.) Por ejemplo, este verano pasado, me invitaron a comer en una casa de campo. Entre los asistentes se contaba una pareja con una hija de esas a las que sus padres insisten militantemente en llamar niña pero algún degenerado podría pensar que a cualquier cosa le llaman niña en estos tiempos y que lástima de ser tan viejo porque… ehhh, nada, no he dicho nada. El caso es que sus padres resultaron ser del tipo pelín controlador y paranoico. Durante la sobremesa, ya con los cubatas, comentaron que como hoy en día pasan tantas cosas (aquí el arriba firmante, que se crió en un barrio medio chungo durante los años malos del caballo, suele reírse bastante cuando oye eso), le habían puesto a su hija una app en el teléfono móvil para tenerla localizada en todo momento.

Sin duda, el funcionamiento de la tal app es sencillo y eficaz. Desde cualquier ordenador o móvil o lo que sea accedes por Internet a un servidor seguro y, previa contraseña, mandas una señal al teléfono de la muchacha –vamos a dejarlo así–. Entonces, el teléfono activa su GPS y devuelve la posición, que sus papis (o, en caso de emergencia, la poli) pueden ver proyectada en Google Maps o donde mejor les parezca. Si además la muchacha sale de un área predefinida, se dispara una alarma automáticamente. Y todo por cuatro perras al mes. Simple, seguro y barato (las hay incluso gratuitas, pero a esta familia en particular les pareció mejor “contratar algo más serio”.)

Algún otro comensal observó que todo muy bonito, pero eso duraba hasta que el móvil se quedase sin batería, o se lo quitaran, o lo echaran a un cubo de agua, o cualquier otra de esas cosas que hacen los señores malos. O las chicas buenas cuando no quieren ser tan buenas, o estar tan controladas. Con expresión lastimera, los papis contestaron que ya, que habían estado mirando de ponerle un chip a la niña, pero que por lo visto esa tecnología no estaba disponible aún y esto era lo mejor que pudieron encontrar. Una pena. Esos científicos insensibles, que van a su rollo y no se preocupan de resolver los problemas verdaderamente importantes.

A mí, a esas alturas de la sobremesa, entre lo del chip, los dos gin-tonics que cargaba ya entre pecho y espalda, y que la muchacha llevaba el móvil en una de esas bolsitas tan cucas que se cuelgan del cuello y van rebotando sobre el bikini –vamos a expresarlo así también–, me dio por pensar en perros y collares, no sé por qué, señor juez, se lo juro. El alcohol y la caló, que me sientan mu malamente. Dejaré al mejor juicio de psicólogos, pedagogos y demás expertos la opinión sobre si es muy bueno que una jovencita, en esos años críticos de su desarrollo mental, viva permanentemente al extremo de una correa electrónica que la une a sus padres como si fuera un cordón umbilical en vez de aprender a sacarse las castañas del fuego por sí misma. Tampoco me pareció de buena educación preguntarle a la muchacha si le habría molado ir chipeada como la Venus, que ladraba por allí cerca, o ya le bastaba con su collarcito digital.

Inhibidores de señal a la venta por Internet.

Inhibidores de señal a la venta por Internet. Arriba, un modelo sencillo capaz de perturbar las señales de telefonía móvil y GPS a una distancia eficaz de unos 10 metros; precio, 74,40 euros. Abajo, un modelo multibanda más sofisticado capaz de inhibir selectivamente un amplio rango de frecuencias hasta a unos 50 metros de distancia; precio, 557 euros. Gastos de envío incluidos. Pero no es preciso comprárselos hechos, como estos. Cualquier persona con conocimientos medios de electrónica y telecomunicaciones podría construirse uno más eficaz, más específico, menos detectable y notablemente más barato utilizando componentes comunes de fácil adquisición sin levantar sospecha alguna. Y, por supuesto, hacer cuantas pruebas quisiera hasta asegurarse de que funciona bien.

El caso es que en ese momento, con todo el calor que hacía, me dio un escalofrío. Sí, ya sé que debería haberme dado antes, pero es que los gin-tonics me ponen lento. O a lo mejor te piensas que soy un exagerado. O no sabes de qué demonios hablo.

Pero verás, es que si los papis en cuestión son un poco paranoias, yo para estas cosas soy un paranoico con diploma y carné. Y claro, de pronto me imaginé a esa nena tan jovencita y tan mona caminando por este mundo viejo mientras retransmite su posición a los cuatro vientos. Así de entrada, como concepto, no me pareció la mejor idea del mundo. A lo mejor, me dije, esa app va bien contra un tarado vulgar, aunque no sé yo si a estas alturas quedan tarados tan cutres como para no saber que lo primero que has de hacer al atacar a alguien es anular sus telecomunicaciones; en este caso, su teléfono móvil. Pero si hablamos de atacantes un poco más sofisticados, digamos una mafia dedicada a la trata o un tipo de los que encuentran placer en estos desafíos, yo consideraría muy seriamente la posibilidad de enviar una cesta por Navidad a las familias que tienen a bien retransmitir la posición de sus hijas a petición. ¿A ti no te gusta que te faciliten el trabajo o qué?

Lo primero que hice fue un par de preguntas, sólo para confirmar lo obvio: que ni papi, ni mami ni el resto de la parentela tenían la más puñetera idea de seguridad lógica, criptografía, fundamentos de guerra electrónica –sí, guerra electrónica, ¿o te crees que no tiene nada que ver con todo esto, y que no hay gente por ahí suelta que entiende un montón de eso?–, telecomunicaciones y demás. Habían contratado el producto como quien contrató preferentes, planes de pensiones o Soficos, por decir algo. Así que les pedí que me dejaran ver el ingenio de marras. Tuvieron que verme la cara de preocupación, porque accedieron al momento.

Para empezar, el teléfono. O sea, el terminal. Por supuesto, no estaba securizado en absoluto. Era un smartphone de serie, caro pero estándar. Nada impedía que la muchacha se descargase un troyano con el último salvapantallas de la Miley Cyrus. Nada impedía que alguien le instalase cualquier otra cosa al más mínimo descuido. Nada impedía darle el cambiazo a la app por otra retocada, por ejemplo para transmitir una copia de la posición a un servidor en el Uzbekistán o por ahí. Nada de nada. A pelo. Ya de por sí, esto sería un peligro incluso sin app localizadora, por mucho que todo el mundo vayamos igual. La primera, en la frente.

Así que saqué el ordenador portátil para echar un vistazo a la empresa proveedora y su servidor. Debo reconocer que tienen una web muy chula, muy pro, con testimonios de familias satisfechas y alguna famosilla del país. Pero la documentación técnica brillaba por su ausencia, en lo que podía ser un ejemplo de seguridad mediante la oscuridad, de saber que tus clientes no van a entender ni palabra o de simple desidia. Lo único que pude ver, así a bote pronto, es que utilizaban un protocolo de seguridad TLS para conectarse con el servidor. Pero por lo demás, no había ninguna forma de saber si ese invento era más o menos seguro o no. Sin embargo, más tarde, rebuscando por esos sitios de Internet en los que no hay que mirar, descubrí que los servidores de esta empresa en particular (en realidad, de sus proveedores) habían sido crackeados varias veces. La segunda, en los morros.

Y luego estaba la seguridad de la contraseña. Por lo que pude deducir, la tenían los papis; el tío J. y padrino de la muchacha, que entiende más de esas cosas; un amigo de la familia que es policía, por si acaso; el de la tienda de informática que les arregló el ordenador, porque se la dieron para asegurarse de que podían conectar bien; y además estaba apuntada en casa en una libretita para caso de necesidad (¿cuál?). Eso, que recordasen así en ese momento. Este que te escribe, al que le da un tic cada vez que tiene que compartir una contraseña y la cambia inmediatamente a continuación aunque me la hubiese pedido mi difunto señor padre en persona, empezó a sudar frío. La tercera, en los h*evos.

Intenté explicarles, suavemente, que según mi opinión se habían equivocado. Que ya de por sí, a mí me desagradaría la idea de que una hija mía fuese por ahí con un dispositivo localizador al que cualquiera puede instalar cualquier cosa. Y ojo: esto lo dice uno que piensa que esas mamarrachadas que salen por la tele de que los críos de la era digital no deben tener móvil o no hay que dejarles el ordenador en su cuarto son solemnes estupideces. Si no has sido capaz de educar a tus criaturas para que sepan hasta dónde pueden llegar y dónde no, entonces dejarles sin móvil o plantar el ordenador en medio de la salita de estar no lo arreglará y de hecho sólo les incitará a actuar a escondidas. Que parece que en esta Europa viejuna ya nos hayamos olvidado todos de cómo era ser joven, demonios. Además, a mi personal modo de ver, sustituir educación por control, aislamiento y censura es una idea francamente idiota que hace que luego, cuando se dan de bruces con el mundo real, se peguen unos mamporros de envergadura. A veces, mamporros de los que cuestan la vida.

Sin embargo, una cosa es eso y otra proveerles con localizadores GPS que rara vez van a utilizar y cualquiera puede hackear (si van a ir al monte, con riesgo de perderse, yo sería el primero en darles uno y de los buenos; pero para moverse por el barrio o ir a la discoteca light los findes no creo que les haga mucha falta.)  Y mucho más grave se me antoja confiar su seguridad a un sistema tan frágil. Las señales de telefonía celular y GPS son muy débiles, muy sencillas de perturbar. Internet y lo que no es Internet están llenos de toda clase de inhibidores de señal a la venta, y aunque no lo estuvieran, cualquiera puede conseguir un esquema y montárselo en casa. Sí, el famoso señor simpático de la furgoneta donde regalan chuches puede llevar un inhibidor portátil conectado a la batería por unos quinientos euros. Si sabe algo de electrónica y se da buena maña con el soldador, menos de cien.

Funcionamiento básico de un "spoofer" de GPS.

Funcionamiento básico de un “spoofer” de GPS. Tanto el receptor legítimo (por ejemplo, tu móvil, o el de tus hijos) como el “spoofer” reciben las mismas señales procedentes de los satélites GPS. Pero entonces el “spoofer” recalcula los datos de radionavegación y emite una señal adicional de corto alcance dirigida a tu terminal legítimo, que no tiene ninguna manera de distinguirla de las auténticas. Como resultado, tu terminal combina todas ellas y cree estar (o permanecer) en un lugar distinto al que se encuentra realmente. Esta es la “fórmula básica”; por supuesto, se puede complicar tanto como quieras y sepas, incluyendo el uso de señales maliciosas altamente direccionales dirigidas a un receptor en particular que no son captadas en ningún otro punto de los alrededores. Utilizado con habilidad, el “spoofing” de GPS puede dar lugar a engaños realmente sofisticados mientras “todo parece estar en orden.” Imagen original: Laboratorio de Radionavegación de la Universidad de Texas.

Y si sabe algo más de guerra electrónica y está dispuesto a gastarse un poquito más de dinero, puede diseñar muy fácilmente ataques muchísimo más sofisticados que la mera y burda inhibición de señal, y que yo me quedo más tranquilo no detallando aquí. Me limitaré a enumerar tres que por sobradamente conocidos en el mundillo, nadie con un interés en estas cuestiones puede ignorar: spoofing de GPS (engaña al receptor haciéndole creer sutilmente que está en un sitio distinto al que está realmente), captura de la IMSI mediante una falsa estación base (un tipo de ataque del hombre intermedio) y la simple manipulación del terminal para cargarle código malicioso que te comenté antes. Ya si eso tú profundizas más y tal.


Video explicando (en inglés, me temo) cómo un grupo de estudiantes de la Universidad de Austin en Texas lograron engañar al sofisticado piloto automático de un yate de ochenta millones de dólares, mediante spoofing de sus receptores GPS, obligándole a seguir la ruta que quisieron. Los sistemas de protección de a bordo no fueron capaces de detectarlo. Esta técnica, evidentemente, también se puede utilizar a la inversa para hacer creer al receptor GPS que está en un sitio distinto al que se halla realmente, y transmitirlo tal cual, sin disparar así ninguna alarma. Video: Escuela Cockrell de Ingeniería, Universidad de Texas en Austin. Aquí tienes otro estudio de la Universidad Cornell planteando ataques mucho más sofisticados hace ya más de 6 años. Por cierto: este es uno de los motivos por los que el GPS está prohibido como medio de navegación primario en los aviones comerciales.
 

Cualquiera que piense que estos sistemas son seguros debe tener un concepto de la seguridad bastante distinto al mío. No, por supuesto que esto no es seguro, excepto frente a los atacantes más burdos, gente a la que habría que considerarles la atenuante de deficiencia mental o burricie en general. Todos los sistemas de seguridad personal individual basados en algo tan frágil como una señal de telefonía celular, una señal GPS, un terminal de fácil acceso y manipulación o un cifrado incierto son intrínsecamente inseguros y susceptibles de supresión o engaño justo cuando más necesarios serían. En algunas de sus implementaciones, son aún peores que ir en cueros, porque generan una sensación de falsa seguridad: lo que se viene a llamar el problema del antídoto contra el veneno de serpientes. ¿Y esto qué es?

Una mamba negra (Dendroaspis polylepis.)

Una mamba negra (Dendroaspis polylepis.) En los lugares donde esta clase de animalitos son endémicos, suele ser común encontrar charlatanes vendiendo a los incautos supuestos antídotos populares contra su veneno. Por supuesto estos falsos antídotos, a menudo fuertes licores herbales, no tienen absolutamente nada que hacer frente a los potentísimos cócteles de neurotoxinas que se encuentran en el veneno de tales especies. Pero por otra parte, el falso antídoto en sí es básicamente inocuo e incapaz de provocar nada mucho más grave que una borrachera o una diarrea. Entonces, ¿por qué resultan peligrosos? Sencillo: porque quien cree ir protegido con un antídoto, con el tiempo, tiende a asumir más riesgos o tomar menos precauciones. Hasta el día en que se encuentra con la mamba de verdad, claro.

Verás. En ciertas regiones donde las serpientes venenosas son endémicas, no era raro encontrar vendedores de toda clase de remedios y antídotos populares contra su picadura, a menudo más baratos y accesibles que los antisueros de las pérfidas compañías farmacéuticas. Estos antídotos caseros, normalmente alguna bebida de alta graduación alcohólica a la que le echan algunas hierbas y cosas así, tienen una cosa buena: lo peor que te pueden provocar es una curda, o como mucho una gastroenteritis, según hayan sido elaborados. Pero por lo demás, básicamente no hacen nada. Un copazo de licor de hierbas no tiene ninguna utilidad real contra el veneno de esos animalitos, algunos de ellos potentísimos cócteles de toxinas que parecen recién salidas de un laboratorio militar de alta tecnología. Mamá Naturaleza, que tiene sus manías, y su hija Evolución ni te cuento.

En esos mismos lugares se decía de viejo que los incautos que confiaban en tales remedios solían acabar muertos más a menudo que quienes pasaban de ellos y se adentraban en la selva a pulso. ¿Pero no hemos quedado en que no hacen nada, ni bueno ni malo? Bueno, es que el falso antídoto no tendrá ningún efecto, pero hace que te envalentones y te confíes. Las personas que creen ir protegidas suelen aceptar más riesgos y bajar la guardia tarde o temprano, porque ir en alerta todo el tiempo resulta agotador. Y bajar la guardia en un sitio donde puede haber mambas negras, taipanes del interior o kraits con bandas es una muy, muy, muy mala idea. Tan mala como creer que un chaleco antibalas te protegerá de las ametralladoras de un helicóptero de asalto, o cosa parecida.

Pues con la seguridad electrónica pasa lo mismo. Un mal sistema de seguridad que crees bueno pero no lo es, es peor que ninguno en absoluto. Porque si no tienes ninguno, sabes que vas en bolas y a poco que seas una persona mínimamente sensata ya te cuidas tú de no meterte en fregados que no puedas resolver. Pero si crees que vas a cubierto, que si pasa algo vendrá la caballería a rescatarte, es muy posible que acabes asumiendo más riesgos de los que deberías. Uno se acostumbra a la seguridad real o percibida, como a todo. Y si entonces va y resulta que los malos traen un inhibidor de quinientos pavos, o un spoofer de GPS, o tu terminal ya había sido discretamente manipulado, y sólo con cualquiera de esas cosas todo tu sistema de seguridad queda totalmente patas arriba… ya puedes ir encomendándote a tu dios favorito, porque en un ratito vas a tener la oportunidad de charlar con Él, o Ella, o Ello, o Nada, o lo que sea.

A los papis no les gustó mucho mi opinión. Me preguntaron si, entonces, sería mejor comprarle uno de esos que van camuflados en un reloj, una pulsera o en la ropa en vez del teléfono móvil. Les contesté que hombre, que igual no cantaba tanto a simple vista, pero que todos ellos funcionan igual: mediante telefonía celular y GPS, y que derrotado uno, derrotados todos. Incluso el chip ese que les habría gustado ponerle a la niña si hubiese estado disponible. Y que las alternativas, los sistemas dedicados de alta seguridad, son muy caras, relativamente aparatosas, requieren atención especializada constante y rara vez están disponibles para el público generalista. Esto último no les gustó nada.

No sé si me hicieron caso o la muchacha sigue por ahí con su collar electrónico. Supongo que no es asunto mío, pero me quedé mosca. A decir verdad, me dio pena, qué le vamos a hacer. Por suerte, aquí casi nunca pasa nada. Casi.

86 Comentarios Trackbacks / Pingbacks (3)
¡Qué malo!Pschá.No está mal.Es bueno.¡¡¡Magnífico!!! (39 votos, media: 4,85 de 5)
Loading...Loading...
Be Sociable, Share!

Verneshot: Entrevista al Dr. Jason P. Morgan

¿Y si a los dinos no los mató un meteorito? ¿Y si existiera otro fenómeno igualmente aniquilador acechando bajo nuestros pies?

Deposición de un Verneshot.

Ya lo damos por sentado: a los dinos y un montón de especies más se los cargó el meteorito. Para ser un pelín más técnicos, la extinción masiva del Cretácico-Paleogeno (hasta hace poco llamada del Cretácico-Terciario) fue iniciada o profundizada severamente por el impacto del mismo cuerpo celeste que pudo ocasionar el cráter de Chicxulub. Esta hipótesis planteada por Luis Álvarez y otros en 1980 comenzó siendo objeto de cierta sorna y bastante escepticismo para pasar a convertirse en la hipótesis por excelencia y, para mucha gente, el símbolo de lo que puede pasar si el cielo cae sobre nuestras cabezas.

Desde entonces, la idea de que los grandes impactos extraterrestres pueden jugar un papel fundamental en las extinciones se ha extendido a otras que van desde el Drias reciente hasta el Gran Morir. Investigadores como el paleontólogo David Raup han intentado vincular las cinco grandes extinciones del último medio millar de millones de años con impactos cósmicos. Al menos en lo que hace a la extinción del Cretácico-Paleogeno –la de los dinos–, la hipótesis de Álvarez es muy sólida y por eso constituye hoy el consenso científico generalizado. Sin embargo, no toda la Galia se ha rendido a los romanos. Aquí y allá, existen científicos que plantean alternativas y que ahora mismo son objeto del mismo escepticismo, cuando no sorna, que se encontraron Álvarez y compañía a principios de los ’80. Hablamos de científicos pata negra, no de los chalados habituales, ya me entiendes.

Dr Jason Phipps Morgan, profesor de Ciencias de la Tierra, U. Londres

El Dr. Jason P. Morgan de la Universidad de Londres, que ha tenido la santa paciencia de contestarme a todo lo que le quise preguntar sobre su hipótesis de los Verneshots. :-) Con mi agradecimiento.

Por ejemplo, hablamos del Dr. Jason Phipps Morgan (New London, Connecticut –EEUU–, 1959), profesor de Ciencias de la Tierra en la Royal Holloway de la Universidad de Londres. Anteriormente, enseñó Geofísica y Física Planetaria en el Instituto Scripps de Oceanografía en La Jolla, California; y fue también profesor en el Instituto de Tecnología de Massachusetts (MIT) y en la Universidad Cornell, la de Carl Sagan o Richard Feynman. Además, entre 1999 y 2004 dirigió el Departamento de Geodinámica Marina del GEOMAR de la Universidad de Kiel, Alemania. Vaya, que cualquiera diría que el doctor Jason Morgan sabe un par de cositas sobre esta vieja Tierra y cómo funciona.

Al Dr. Jason Morgan no le gustan estas hipótesis del meteorito. Ve en ellas muchos cabos sueltos y demasiadas casualidades. En particular, la extraña coincidencia entre tales impactos y unas erupciones volcánicas aún mayores a las que llamamos inundaciones basálticas o traps. Porque parece haber una sincronía clara entre varias súper-extinciones y estas inundaciones basálticas. La de los dinos –Cretáceo-Paleogeno– coincide con las traps del Decán, en la actual India, hace 68-65 millones de años. La del Triásico-Jurásico, con la erupción de la Provincia Magmática del Atlántico Central (CAMP) hace 200 millones de años.  Y el Gran Morir, o sea la extinción súper-masiva del Pérmico-Triásico, ocurre exactamente al mismo tiempo –hace 250 millones de años– que las monumentales Escaleras Siberianas, una de las mayores inundaciones basálticas de todos los tiempos.

Que una de estas erupciones terrestres monumentales coincida con un impacto extraterrestre gigantesco ya es casualidad, ya. Que lo haga más de una comienza a parecer sospechoso. El Dr. Morgan, basándose en los trabajos del propio Luis Álvarez, estima que la probabilidad de que pase una vez es de aproximadamente 1/8: una mala tirada de dados. Pero la probabilidad de que ocurra dos veces es del 1/59, lo que ya va llamando la atención. La de que suceda tres veces se reduce a 1/454. Y la de que se dé cuatro veces cae a una entre más de 3.500, que ni el mejor tahúr podría vencer. O de algún modo el universo conspira para hacer coincidir semejantes catástrofes sin relación aparente entre sí, o aquí hay algo que no cuadra.

Pese a ello, las hipótesis cósmicas siguen siendo fuertes porque hay indicios fuertes de lo que parecen ser impactos brutales de origen extraterrestre en esos mismos periodos. No sólo es la famosa anomalía del iridio, considerado un metal extraterrestre a esas concentraciones, en el estrato de transición entre Cretácico y Paleogeno. Es también la presencia de microesferulitos y cuarzo chocado, nanodiamantes, fullerenos C60 y C70 conteniendo concentraciones anómalas de gases nobles, campos de tectitas y demás fenómenos convencionalmente vinculados a violentos impactos procedentes del espacio exterior. Y luego están los cráteres: nítidamente, Chicxulub para la del Cretácico-Paleogeno y, menos nítidamente (porque en algunos casos se van de varios millones de años), Manicouagan para la del Triásico-Jurásico, Alamo o Woodleigh para la del Devónico Tardío y en el caso del Gran Morir del Pérmico-Triásico… pues no está claro, pero se sugiere el Cráter de la Tierra de Wilkes (Antártida) como un posible candidato. Para explicar esta extraña sincronía entre impactos extraterrestres y erupciones terrestres hay quien postula que un gran impacto puede inducir graves alteraciones geológicas tanto en sus alrededores como en las antípodas; lo bastante como para iniciar procesos volcánicos a gran escala.

Correlación de las principales extinciones con diversos fenómenos geológicos.

Correlación de las principales extinciones con diversos fenómenos geológicos. Puede observarse que la gran mayoría coinciden con grandes inundaciones basálticas (provincias ígneas, “escaleras”, “traps”.) Por el contrario, la sincronía con aparentes impactos extraterrestres no es tan evidente. Imagen: de Morgan, J Phipps; Reston, T.J.; Ranero, C.R. (15 de enero 2004): “Contemporaneous mass extinctions, continental flood basalts, and ‘impact signals’: are mantle plume-induced lithospheric gas explosions the causal link?”. Earth and Planetary Science Letters 217 (3–4): 263–284. DOI: 10.1016/S0012-821X(03)00602-2. (Clic para ampliar)

A todo esto le daba vueltas el Dr. Jason Morgan sin verlo nada claro hasta que se le ocurrió una idea: ¿y si los meteoritos en cuestión no procediesen del espacio exterior? Espera, espera: los meteoritos vienen del cosmos como todos sabemos, ¿no? ¿Qué tontería es esta?

Verneshot.

Una tontería con sentido: si hay una nítida sincronía entre varias extinciones importantes y estas erupciones basálticas; si además hay indicios fuertes de violentos impactos en los mismos periodos; pero la probabilidad de que ambas cosas coincidan en el tiempo es baja o muy baja… ¿qué tal si las erupciones provocasen los impactos? ¿Pero cómo sería eso posible?

Representación artística convencional de un Verneshot.

Representación artística convencional de un Verneshot, en el que un gigantesco fragmento de corteza terrestre sale propulsado en vuelo balístico para caer en algún otro punto de la Tierra de manera análoga a un gran meteorito. No obstante, el Dr. Morgan tiene algunas precisiones importantes que hacer al respecto, como veremos a continuación.

Pues mediante un mecanismo que el Dr. Jason Morgan ha bautizado como el Verneshot, o disparo de Verne, inspirándose en el cañón espacial que se inventó Julio Verne para su novela De la Tierra a la Luna. Básicamente sería un diatrema similar a las erupciones kimberlíticas que generan las minas de diamantes, pero a lo bestia. Muy a lo bestia.

¿Y esto de las erupciones kimberlíticas qué es? Básicamente, explosiones volcánicas súbitas originadas a entre dos y ocho kilómetros de profundidad que se expanden hacia arriba a velocidades supersónicas arrastrando todo el material que pillan por medio conforme el terreno circundante colapsa sobre sí mismo, produciendo como un cono o cucurucho de helado (o cañón de trabuco…) característico en el subsuelo. Las presiones que alcanzan son tan enormes que generan grandes cantidades de diamantes a partir del carbono implicado en el proceso. No otra cosa son las mayores minas diamantíferas del mundo: Yubileiny, Udáchnaya y Mir (Rusia); Argyle (Australia); Orapa (Botswana) y todas las demás.

Un Verneshot no es más que una erupción explosiva supersónica de estas, sólo que más profunda, grande y rápida. Y por tanto capaz de lanzar más material, más lejos. En un planeta como la Tierra, a miles de kilómetros de distancia. En uno más pequeño y con menos gravedad, como Marte, incluso podría entrar en órbita. El caso es que si parte de ese material sale despedido en forma de grandes bloques, o de fragmentos más pequeños pero concentrados en forma de chorros o algo parecido, allá donde atice va a provocar unos efectos muy similares a los de un meteorito de los gordos. Esta es una hipótesis elegante que explicaría la sincronía de los impactos aparentemente extraterrestres con las grandes erupciones basálticas, quizá capaces de ocasionar estos Verneshots.

Hay que decir que esta es, en estos momentos, una hipótesis absolutamente minoritaria. Después de su publicación en 2004, suscitó reacciones que van desde el tradicional “es una aproximación creativa a un problema real” del geólogo Paul Hoffman de Harvard hasta los más contundentes “no hay ni una sola prueba de ningún Verneshot” de Jan Smit (Universidad Libre de Amsterdam), pasando por la opinión del Dr. Philippe Claeys (Bruselas), sugiriendo que los indicios de impacto sólo son válidos para la extinción de los dinos y que en los demás casos “no necesitamos ninguna hipótesis mega-volcánica mística e indemostrable para resolver el problema.” Vamos, que la idea del Dr. Morgan cayó regular, por decirlo finamente.

Pero como aquí no nos asustamos de estas cosas, y además así es como avanza la ciencia, le he pedido directamente al Dr. Morgan que defienda su hipótesis para nosotros. Vamos, que ha sido tan amable de concederme una entrevista en exclusiva para la Pizarra de Yuri, y cuando digo amable, lo digo en serio, además de paciente. Más que nada porque le pillé en medio de la preparación de otro paper que se va a publicar próximamente donde sugiere que lo de Tunguska pudo ser un mini-Verneshot con presencia previa de luces de terremoto y, después, los efectos que le serían propios. Vamos allá:

Entrevista al Dr. Jason Phipps Morgan, proponente de los Verneshots.

Dr. Morgan, muchas gracias por su valioso tiempo. Cuéntenos: ¿qué es exactamente un Verneshot? ¿Dónde podemos encontrar uno?

No hay registro histórico de ningún Verneshot, pero tampoco de ninguna erupción de kimberlita. Un Verneshot es una erupción producida fundamentalmente por gases del carbono (CO2 + CO + menor cantidad de agua + gases del manto profundo asociados a las erupciones de kimberlita), básicamente sin magma líquido: sólo gas (y fragmentos rocosos, al igual que ocurre en las kimberlitas y otras erupciones explosivas generadas por vapor a menor profundidad.) La presión inicial de estos gases sería la propia de la exsolución del manto a 80 km de profundidad: unos 2,7 gigapascales. Es decir, una presión gaseosa 20 o 30 veces superior a la de los volcanes explosivos ocasionados por vapor, como Pinatubo, pero creo que similar a las presiones asociadas con las erupciones kimberlíticas.

Una erupción de kimberlita como las que formaron los grandes yacimientos diamantíferos que explotamos en la actualidad.

Una erupción de kimberlita como las que formaron los grandes yacimientos diamantíferos que explotamos en la actualidad. En estas erupciones, las presiones son lo bastante altas como para formar el diamante y los gases y el material salen propulsados a velocidades supersónicas hacia arriba. Después, las paredes colapsan y rellenan la chimenea, dejando sólo un cráter superficial visible. Un Verneshot no sería más que una erupción de kimberlita particularmente profunda y potente, con múltiples impactos secundarios a grandes distancias conforme el material retorna a la superficie y efectos severos sobre el clima global ocasionados por los gases expulsados. Imagen: © De Beers Diamond Trading Co.

Entonces, los Verneshots están estrechamente relacionados con las erupciones kimberlíticas, ¿correcto?

Sí, un Verneshot es básicamente una mega-kimberlita con tanto gas que no se conserva nada de magma kimberlítico. De hecho, en las kimberlitas, este “magma kimberlítico” característico ya es sólo una pequeña fracción del volumen de la chimenea.

Por cierto, ¿por qué tanto carbono?

Porque el CO2 forma una exsolución a la profundidad necesaria para crear una fase gaseosa estable en torno a los 2,7 gigapascales de presión (la presión “estática” a unos 80 km de profundidad.) El agua no produce una exsolución capaz de formar una fase de vapor análoga hasta alcanzar presiones mucho más bajas. Los materiales ricos en carbono se funden fácilmente bajo las condiciones del manto, así que en una pluma caliente que se eleva serán los primeros en fundirse (los que lo harán a más profundidad), creando magmas con una composición química del tipo de las kimberlitas o las carbonatitas. Conforme ese material fundido asciende por encima de los 80 km de profundidad, comienza a formar gases ricos en carbono.

¿Entiendo que la idea del Verneshot procede de la sorprendente coincidencia entre inundaciones basálticas continentales e impactos de meteoritos en el contexto de las grandes extinciones?

Eso es.

Y por ejemplo, podrían explicar también la capa de iridio en el estrato de la extinción del Cretácico-Paleogeno, ¿no?

Creo que sí. Los gases del manto profundo son ricos en azufre y crean fácilmente compuestos químicos con metales del grupo del platino como el iridio. En Isla Reunión hay depósitos de “gases de plumas del manto profundas” con las concentraciones de iridio más altas que se conocen en toda la Tierra. Esto podría representar una fracción volumétrica suficiente para formar una capa global de iridio como la de un impacto, dado que se emitiría más masa de gases del manto que la masa de un gran objeto extraterrestre, con una cantidad similar de iridio añadida a la superficie terrestre.

¿Qué más cosas explicarían?

La presencia de otras señales de “impacto” como una capa global de esferulitos y cuarzo chocado. El material propulsado al estallar el Verneshot inicial podría también generar impactos múltiples y cráteres de impacto. De hecho, una de las predicciones de mi hipótesis es que los grandes Verneshots deberían estar asociados con múltiples cráteres de impacto comparativamente pequeños.

¿Y qué no explicarían?

Cráteres del tamaño de Chicxulub al otro lado de la Tierra. La distancia máxima posible que puede recorrer el material proyectado por un Verneshot es de aproximadamente media Tierra.

La hipótesis de los Verneshots no disfruta de un consenso generalizado entre los expertos en Ciencias de la Tierra. Algunos opinan que es una aproximación interesante, otros la consideran un poco “en el límite”, o incluso innecesaria para explicar las observaciones. Hay un par de papers afirmando que esta coincidencia entre inundaciones basálticas continentales e impactos extraterrestres no es tan rara. También hay quien defiende que los impactos de grandes meteoritos podrían ocasionar las grandes inundaciones basálticas. ¿Cómo ve el debate en este momento?

Me parece que es muy difícil proponer un mecanismo físico viable mediante el que un impacto [extraterrestre] pueda generar una pluma del manto persistente. Creo que tampoco ha propuesto nadie un mecanismo viable por el que pueda ocasionar una inundación basáltica en manto cratónico frío. Por ejemplo, algunas personas como Adrian Jones apuntan que un gran impacto podría crear un cráter de 30 km de profundidad, y que este cráter haría que el material que hay debajo se fundiese para formar una inundación basáltica. Sin embargo, en continentes estables, retirar 30 km de terreno (o sea, excavar un cráter de 30 km) no hará que el material que hay debajo se funda. Estará demasiado frío para fundirse, incluso aunque esté a ~1 gigapascal menos de presión de lo que estaba antes de que el cráter apartase los 30 km de corteza continental que tenía encima.

O sea que incluso un cráter de 30 km de profundidad [que alivie súbitamente toda esa presión sobre el material que hay debajo] no puede generar una inundación basáltica como la de las Escaleras Siberianas. El único mecanismo que parece plausible para lograr esto es una pluma del manto actuando sobre un rift. De hecho, las inundaciones basálticas son conocidas por generarse mediante un proceso lento de fusión parcial, donde aproximadamente el 10 – 25% del material se forma en equilibrio lento con el manto y va liberándose poco a poco, no como un proceso de fusión por impacto en la que toda la roca se fundiría instantáneamente con una composición totalmente distinta a la de las inundaciones basálticas.

Así que mi proposición es la siguiente: SI hay indicios de impacto coincidiendo en el tiempo con las mayores inundaciones basálticas y las grandes extinciones, entonces tengo la confianza de que algo parecido a los Verneshots debe existir. Si por el contrario no hay correlación entre indicios de impacto y extinciones masivas EXCEPTO Chicxulub, entonces no hay necesidad de algo como los Verneshots. Pero también estaríamos admitiendo que fueron las inundaciones basálticas continentales, y no los impactos [extraterrestres], las que ocasionaron casi todas las grandes extinciones del pasado.

¿Diría que está usted “batallando” contra los proponentes de la hipótesis del impacto extraterrestre? ;-)

El Dr. Jason P. Morgan sobrevuela Siberia en un helicóptero.

El Dr. Jason P. Morgan sobrevuela Siberia en un helicóptero, con rumbo a Tunguska. Foto: Rick Beyer.

Sí. Pero las batallas científicas suelen ser muy lentas. Ahora mismo, mantengo sin duda alguna un punto de vista minoritario en este tema, dado que la ciencia revisada por pares es MUY conservadora. Hemos hecho más trabajos al respecto desde entonces, pero ha sido muy difícil publicarlos e imposible conseguir financiación. [Pronto vamos a publicar] un paper sobre las pruebas que hemos recogido en dos minúsculas expediciones a Tunguska en 2008 y 2009, pagadas de nuestro bolsillo, con un equipo de filmación.

De hecho, intentamos minimizar deliberadamente los aspectos más “sensacionales” de nuestra hipótesis (…) porque hemos observado que los “revisores por pares” no se sienten muy cómodos con esta idea “imposible.” ¿Y por qué es imposible? Simplemente porque hay un consenso científico que dice que lo es. Ya te digo, la revisión por pares es un proceso muy conformista.

Y de hecho, por eso la ciencia funciona tan bien como lo hace. Normalmente el consenso científico se sustenta en cotejar las hipótesis con las observaciones. Una vez establecido, un consenso es muy difícil de cambiar. La “hipótesis del impacto extraterrestre” causando las grandes extinciones se consideraba una locura hasta que Álvarez mostró los indicios de iridio que, en su opinión, no podían originarse en procesos de la corteza terrestre. (…) Ahora, la “hipótesis del impacto extraterrestre” es el conocimiento convencional, “claramente evidente” en muchos impactos de la Tierra y la Luna, e ideas como los Verneshot caen en la categoría de locuras. Pero ahí están esas extrañas coincidencias entre inundaciones basálticas continentales, “indicios de impacto” y extinciones masivas que la hipótesis estándar del impacto extraterrestre no pueden explicar.

Pues vamos a mojarnos todavía más. ;-) ¿Cómo ocurriría un Verneshot? ¿Dónde, cuándo?

Se desarrollaría en un lugar como Tunguska: un grueso cratón, al principio de un proceso de rifting continental. Hoy en día, sólo Siberia, África o Norteamérica (¿rift de Río Grande?) podrían reunir estas condiciones.

¿Habría “alerta temprana” de alguna clase, o sería más bien un caso de “¡últimas noticias: un gran trozo de la corteza terrestre está balístico ahora mismo!”? ¿O simplemente formaría parte de una lentísima inundación basáltica medida en tiempos geológicos?

No habría mucho preaviso. Quizá muchos pequeños terremotos a 80 km de profundidad asociados con el inicio de la ruptura de la litosfera. En numerosas erupciones volcánicas explosivas suelen producirse muchos terremotos pequeños antes del fallo catastrófico final. Estos terremotos y enjambres de terremotos son relativamente fáciles de detectar si hay una red local de sismómetros en el área. El problema con las erupciones volcánicas explosivas “normales” es que muchas veces se producen enjambres de terremotos sin que luego ocurra una erupción. En todo caso, si en un cratón apareciera súbitamente una zona con muchos terremotos de poca intensidad a profundidades en el rango de los 80 km, eso sería, para mí, una señal de que una erupción de kimberlita o un Verneshot podrían estar a punto de ocurrir.

Las rocas eyectadas serían más bien un “chorro” de fragmentos, no una única pieza. Estaríamos hablando de una masa rocosa de unos 80 km de altitud por 500 metros de diámetro en el caso de un gran Verneshot, o sea más o menos 16 km3 de material, esencialmente procedente del manto.

¿Pero ocurriría siempre en el contexto de una inundación basáltica?

Quizá no. Y los “mini-Verneshot” más pequeños como el que creo que ocurrió en Tunguska no parecen estar asociados con ningún indicio de inundaciones basálticas.

Mecanismo de acción que podría generar aparentes "indicios de impacto" terrestres mediante un Verneshot.

Mecanismo de acción propuesto por Morgan et al. que podría generar aparentes “indicios de impacto” terrestres mediante un Verneshot. (a) El CO2 se acumula y calienta bajo la litosfera cratónica por la acción de una pluma del manto ascendente. (b) El material de la pluma fluye lateralmente y hacia arriba hasta acumularse bajo la zona más delgada de la litosfera, fundiéndose para formar la primera inundación basáltica. Mientras tanto, la pluma sigue añadiendo CO2, incubando el Verneshot en la litosfera cratónica profunda y desplazando magmas preexistentes ricos en carbono hasta aproximadamente 80 km de profundidad: el umbral de 2,5 GPa para la exsolución del CO2 a partir del magma rico en carbono. Así sigue aumentando la presión bajo la litosfera cratónica. (c) El fallo catastrófico de la litosfera dispara el Verneshot. Los gases emitidos, ricos en azufre y carbono, pueden iniciar una extinción. Tras el Verneshot, la región alrededor de la chimenea así formada tiene una presión muy baja con respecto a la litosfera circundante; el colapso de abajo arriba de este agujero casi vertical puede progagarse hacia la superficie a velocidades hipersónicas. Este “frente de colapso” hipersónico sería capaz de crear y propulsar minerales chocados en forma de grandes chorros de material. Tomado de: Morgan, J Phipps; Reston, T.J.; Ranero, C.R. (15 de enero 2004): “Contemporaneous mass extinctions, continental flood basalts, and ‘impact signals’: are mantle plume-induced lithospheric gas explosions the causal link?”. Earth and Planetary Science Letters 217 (3–4): 263–284. DOI: 10.1016/S0012-821X(03)00602-2. (Clic para ampliar)

Así que podemos tener “mini-Verneshots…”

Sí, en mi opinión el suceso de Tunguska de 1908 pudo ser un mini-Verneshot que ocurrió en el mismo lugar que el Verneshot original (y, de hecho, reutilizó la chimenea original, que sería ahora una especie de “válvula de seguridad” o “conducto débil” en la litosfera siberiana.)

¿Y “súper-Verneshots”?  ;-)

Esto es difícil de imaginar. Estimé que un Verneshot de escala análoga a Chicxulub liberaría una energía mecánica de 5 x 1020 julios, equivalente a un terremoto de magnitud 11, unas 20 veces más que el mayor terremoto histórico conocido. Pero, para ponerlo en perspectiva, si la energía sísmica decae a razón de 1/distancia2, “se sentiría” sólo como el terremoto de Chile de 2010 a 4,5 veces la distancia del epicentro. Seguiría siendo un suceso de alcance local. Lo mismo con la onda de choque. La explosión principal del Krakatoa, con una energía aproximada de 1018 julios, se oyó a distancias de 5.000 km y causó problemas auditivos graves a marinos que se encontraban a 60 km. Un gran Verneshot con una liberación de energía de 5 x 1020 julios sería 500 veces más fuerte que la explosión del Krakatoa, creando una onda de choque que literalmente se oiría en todo el mundo. (La intensidad de la onda de choque decae sólo a razón de 1/distancia porque viaja como una onda por la capa inferior de la atmósfera, así que a una distancia de 60 x 500 = 30.000 km tendría un efecto similar al que la onda de choque del Krakatoa produjo a 60 km.)

¿Qué aspecto tendría un Verneshot “grande” mientras está sucediendo?

Como una gran explosión volcánica, quizá con un chorro de fragmentos elevándose de tierra en una gran nube de gas caliente propulsada a lo alto de la atmósfera, donde inmediatamente empezaría a formar nubes de polvo y cristales de hielo.

Puede que el lugar de la explosión siguiera emitiendo gases durante un tiempo, pero la pluma principal seguramente desaparecería tras la erupción inicial. Podría producirse una serie de erupciones, la primera creando el canal a través de la litosfera y las siguientes reutilizándolo conforme las regiones más profundas se relajen tras la emisión inicial de CO2 con la primera detonación.

¿Sería un fenómeno súbito, digamos como una explosión nuclear con un “súper-hongo”, o algo más progresivo?

Creo que la primera detonación sería la mayor: la que formaría la chimenea del Verneshot desde los aproximadamente 80 km de profundidad hasta la superficie. Pero podría haber detonaciones posteriores con expulsiones de gas a más presión que ninguna erupción volcánica explosiva conocida, dado que la presión del gas es entre 10 y 40 veces superior (al originarse a profundidades de 80 km en vez de los 2 a 8 habituales.) El gas se habría expandido entre 10 y 40 veces más al alcanzar la superficie. Sí, definitivamente imagino que la primera erupción sería como una explosión nuclear, excepto que el gas saldría despedido verticalmente mientras se expande en todas direcciones. Una columna ardiente de 60 a 100 km de altitud sería un auténtico pilar de fuego…

Y si pudiésemos sobrevolarlo a continuación, ¿qué veríamos?

Un agujero muy hondo. La chimenea volcánica colapsaría de inmediato, en cuanto saliese el gas, pero quedaría un gran agujero que se llenaría rápidamente de agua y después se erosionaría y rellenaría a lo largo de cientos de miles de años (como parece haber pasado con las chimeneas kimberlíticas y otros diatremas explosivos.)

¿Resultaría aniquilada el área circundante? ¿O, dado que el material y la energía viajan sobre todo hacia arriba, sólo sufrirían un terremoto “convencional”? ¿Alguna estimación de daños?

Sería exactamente igual que si hubiese habido un gran impacto [extraterrestre], o un terremoto mayor que ninguno de los que constan en la historia humana (presenté una comparación en el paper de 2004.) La energía alrededor del Verneshot decaería aproximadamente a razón inversa de la distancia durante los primeros 80-100 km, y a razón inversa del cuadrado de la distancia a partir de ahí. Pero la zona del Verneshot en sí misma, descontando el área afectada por la onda de choque inicial, no resultaría destruida a escala regional.

¿Hasta dónde podrían llegar los fragmentos propulsados por el Verneshot antes de caer a tierra otra vez? ¿Tiene alguna estimación sobre velocidad, apogeo de la trayectoria balística y energía de impacto? ¿Estamos hablando de rocas de cientos de metros cayendo aquí y allá o más bien de una “granizada” de objetos más pequeños?

Un cálculo rápido sugiere que podría llegar a ser posible que el material eyectado acabase en cualquier punto de la Tierra, aunque esto sería mucho más probable en un planeta de menor gravedad como Marte. En la práctica, cabe esperar una eyección de menor energía, con distancias de vuelo en el rango de los miles de kilómetros (no 20.000 km.) Pero los fragmentos chocados de menor tamaño y los microesferulitos fundidos y mezclados con el gas que saldrían despedidos a la atmósfera superior podrían recorrer el mundo entero antes de posarse, así que estos “indicios de impacto” tendrían una distribución global.

Si las partículas son pequeñas, la atmósfera las frenará muy deprisa. Por el contrario, una nube o “perdigonazo” tendrá un efecto similar al de un único objeto de gran tamaño al impactar contra el suelo. Creo que tenderá a haber uno o varios “chorros” de material que recorrerán las mayores distancias. Si un “chorro” “perfora” un orificio temporal en la atmósfera, favorecerá que más material circule por ahí. Pero las partículas a menor velocidad no llegarán tan lejos y podrían producir algo como “sendas” de tectitas a lo largo de la dirección del chorro.

Así que sí, una “granizada” a lo largo de la ruta de cada chorro, con la posibilidad de bloques concentrados que viajen juntos desde la detonación hasta la reentrada en las regiones más densas de la atmósfera y el impacto final contra el suelo. No veo ningún motivo por el que se tuviera que formar un único cráter a consecuencia de un Verneshot, porque incluso un “chorro” bien enfocado tendería a ser más disperso que el típico meteorito. Sería más sencillo tener muchos cráteres de menor tamaño asociados con un único Verneshot, con un diámetro de unos pocos kilómetros y el potencial de conservarse en el registro geológico si se formara en regiones marinas donde se esté produciendo sedimentación. He leído algún informe anecdótico sobre pequeños cráteres en el Mar del Norte que podrían coincidir en el tiempo con la extinción del Cretácico-Paleogeno.

Me lo estoy imaginando como una especie de gigantesca “palmera” de fuegos artificiales…

Podría ser.

La colosal erupción explosiva del Monte Pinatubo (Filipinas, 1991, VEI-8.)

La colosal erupción explosiva del Monte Pinatubo (Filipinas, 1991, VEI-6) es minúscula en comparación con otras que han ocurrido a lo largo de la historia de la Tierra, y sería casi ridícula en comparación con un Verneshot. Imagen: Wikimedia Commons.

¿Qué clase de daños producirían estas “granizadas” al caer? ¿Hablamos de ciudades arrasadas por estos “perdigonazos” o más bien de una “lluvia de piedras”?

Dependería de lo concentradas que llegasen. Si se limita a “llover piedras” no sería tan grave en términos de daños en tierra. Pero masas de material más concentradas golpearían el suelo como un meteorito de tamaño similar… y a velocidades similares. Probablemente estas piedras estarían también “al rojo vivo” o parcialmente fundidas.

Bien, entiendo que un Verneshot podría ocasionar o ser parte de una extinción masiva. ¿Podría explicarnos sus efectos globales “inmediatos”?

Los gases añadidos repentinamente a la atmósfera superior –gases sulfúricos, dióxido de carbono y vapor de agua hasta la estratosfera– provocarían efectos climáticos severos hasta que la química atmosférica restableciese el equilibrio. En los primeros años, los gases ricos en azufre impedirían que parte de la luz solar llegara a la superficie y la atmósfera interior, dando lugar a un súbito pulso de enfriamiento global y lluvia ácida. Esto conduciría a algo mucho más drástico que las “noches blancas” asociadas con el suceso de Tunguska de 1908 o los meses de puestas de sol espectaculares asociadas a la erupción del Krakatoa. Probablemente le costaría años disiparse… varios años seguidos muy fríos hasta que estos gases sulfúricos lloviesen de vuelta a la superficie.

Pero después, el CO2 añadido a la atmósfera ocasionaría un periodo de intenso calentamiento global de uno o varios milenios de duración, con el riesgo adicional de que se produjera una fuerte estratificación y anoxia oceánica superficial global muy peligrosa para la vida, hasta que los niveles de CO2 atmosféricos vuelvan a la “normalidad” para ese periodo.

¿Un solo Verneshot o varios consecutivos?

No hay ningún motivo por el que una inundación basáltica continental no pueda vincularse con varios Verneshots, separados unos 100.000 años entre sí.

Arriésguese: ;-) Sugiérame un par de sitios en Europa o América donde podría ocurrir un Verneshot.

En Europa, me pregunto si los “famosos” cráteres de Ries y Steinheim al Sur de Alemania son en realidad un Verneshot que ocurrió hace unos 15 millones de años. Pero ahora mismo el vulcanismo de la pluma Eifel se encuentra en el rift de las fosas tectónicas del Rin, así que cabría esperar un vulcanismo menos explosivo, si bien con alguna posibilidad de impactos locales en Europa; Europa del Norte en particular.

En Norteamérica, apostaría por algún lugar próximo a la intersección entre el rift de Río Grande, el cratón de Wyoming y Yellowstone.

Hmmm… se me ha venido a la cabeza la zona entre el cratón del Atlántico Norte y el rift de la margen oriental de Groenlandia…

Podría ser, pero en la época de las inundaciones basálticas de Groenlandia, no ahora. :-)

¿Tengo entendido que han encontrado ustedes “indicios de Verneshot” bajo las traps del Decán, o incluso en el área de Tunguska?

Lo curioso de las traps del Decán es que hay “indicios de impacto” dentro de los estratos inferiores. [No debajo.] Esto implica que la inundación basáltica ya estaba sucediendo cuando se produjo el “impacto.” Tunguska presenta evidencias de un impacto mayor ocurrido allí hace unos 250 millones de años, contemporáneo con la formación de las Escaleras Siberianas.

 (Al finalizar esta entrevista, el Dr. Jason Morgan me suministró ese nuevo paper sobre sus observaciones en Tunguska aceptado para próxima publicación en Earth and Planetary Science Letters. Por si te interesa, la referencia es: Paola Vannucchi; Jason P Morgan; Damiano Della Lunga; Chris Andronicos; William J Morgan (2014): “Direct evidence of ancient shock metamorphism at the site of the 1908 Tunguska event.”)

Bibliografía:

61 Comentarios Trackback / Pingback (1)
¡Qué malo!Pschá.No está mal.Es bueno.¡¡¡Magnífico!!! (21 votos, media: 4,95 de 5)
Loading...Loading...
Be Sociable, Share!

« Entradas anteriores Página siguiente » Página siguiente »