Archivo de octubre, 2010

El error de un Nobel que condenó el proyecto atómico nazi

Una demostración palmaria de lo importante que resulta la verificación independiente en ciencia.

Los documentos secretos del proyecto atómico nazi.

Para este post contamos con los documentos secretos originales del programa nuclear de la Alemania nazi, que no fueron desclasificados por sus posteriores propietarios hasta muchos años después. En el Deutsches Museum, Munich.

Fueron muchas las razones científicas, políticas, materiales y humanas por las que la Alemania nazi no produjo nunca una bomba atómica. Entre ellas, que no creyeron poder alcanzarla antes del fin de la Segunda Guerra Mundial y por tanto dedicaron sus esfuerzos a otras cosas más perentorias. Vamos, que no llegaron a proponérselo en serio y la historia siguió adelante por los caminos que ya conocemos.

Sin embargo, el asunto tiene aguijón: parte de esta dejadez  en materia atómica obedeció a un error científico crucial, pero fácilmente subsanable con una mera verificación independiente. Tal verificación no se produjo y el error, cometido por un futuro premio Nobel, les hizo creer que la energía nuclear estaba mucho más lejos de lo que quizá podría haber estado. ¿Pudo ser diferente? ¿Existió alguna posibilidad de que el Tercer Reich consiguiese la bomba atómica y con ello cambiara el curso de la historia?

El submarino U-202 de la Kriegsmarine.

El submarino U-202 de la Marina de Guerra nazi. El 12 de junio de 1942, este navío desembarcó con éxito a un equipo de saboteadores en Long Island, Nueva York. Seis días después, el U-584 hizo lo propio cerca de Jacksonville, Florida. Aunque los saboteadores fueron traicionados antes de alcanzar sus objetivos, ambos buques habían cumplido su misión y regresaron sin novedad a su base en Brest. Durante 1942 y 1943 hubo más de veinte submarinos alemanes operando en el Golfo de México hasta la misma boca del Mississippi. Y en fecha tan tardía como el 5 de mayo de 1945, dos días antes de la rendición, el U-853 torpedeó aún a un último mercante norteamericano enfrente de Rhode Island antes de ser hundido a su vez. Cualquiera de ellos podría haber transportado a bordo una primitiva bomba atómica con destino a la Costa Este de los Estados Unidos.

El club del uranio.

Werner Heisenberg, permio Nobel de física 1932, en una fotografía de 1933.

Werner Heisenberg, premio Nobel de física 1932, en una fotografía de 1933. Heisenberg, como director del Instituto de Física Kaiser-Wilhelm de Berlín durante la Segunda Guerra Mundial, fue la cabeza más visible de las investigaciones nucleares en la Alemania nazi.

El 3 de julio de 1967, veintidós años después de que terminara la Segunda Guerra Mundial, el físico teórico alemán Werner Heisenberg concedía una entrevista a un profesor de universidad estadounidense en la que hizo varias declaraciones sorprendentes para muchas mentalidades:

Ya al principio, sospechamos que si era realmente posible hacer explosivos [atómicos], tomaría tanto tiempo y requeriría un esfuerzo tan enorme que había una muy buena probabilidad de que la guerra terminase antes de lograrlo.

Cuando tuvimos éxito en el experimento L-4, cuando supimos que podíamos hacer reactores y, gracias al trabajo de Weizsacker, que así se podía hacer plutonio o algo parecido, supimos que en principio éramos capaces de crear bombas atómicas.

Pero aún así no hicimos ningún esfuerzo serio en ese dirección. Hablemos en serio: si queríamos fabricar el agua pesada necesaria, nos costaría de uno a tres años conseguir suficiente cantidad. Producir plutonio bastante se tomaría otros tres años. Así que, con la mejor conciencia del mundo, le dijimos al gobierno: “no será posible hacer una bomba hasta al menos dentro de cinco años.”

Ya sabíamos que prohibirían cualquier nuevo desarrollo que no pudiera usarse durante el año siguiente o así. Estaba claro que iban a decir: “¡No, no! ¡No dediquemos esfuerzos a la bomba atómica!”. Y eso fue lo que pasó.

El líder más destacado del programa atómico alemán nos está diciendo que, básicamente… no hubo un proyecto atómico alemán digno de tal nombre. Que en la carrera por la bomba, Estados Unidos estuvo esencialmente solo a pesar de todos los temores geniales emigrados allí huyendo del nazifascismo. Y además, apostilla:

La decisión de no hacer bombas [atómicas] tomada por nuestro gobierno fue muy sensata. Habría sido muy sensata incluso para el gobierno de ustedes, porque podrían haber ganado antes la guerra contra Alemania si no se hubieran puesto a hacer bombas. No hay ninguna duda sobre esto: si ustedes hubieran dedicado todo ese esfuerzo a hacer aviones y tanques y demás, la guerra habría terminado antes. Esto puede no ser cierto en el caso de Japón, porque la guerra contra Japón era distinta; pero si hablamos sólo de la guerra contra Alemania, esto es un hecho.

Uno podría pensar que Heisenberg trata de limpiar su biografía con estas palabras. Nosotros no hacíamos nada malo, nosotros no sabíamos nada de lo que pasaba y todo ese rollo. Lo que pasa es que las pruebas hablan fehacientemente en su favor. O, mejor dicho, la ausencia de pruebas. Por toda la Alemania derrotada, tanto la misión Alsos norteamericana como su versión soviética sólo encontraron indicios de unas investigaciones dispersas, poco decididas, apenas dotadas de recursos y orientadas fundamentalmente a la construcción de reactores experimentales… ninguno de los cuales logró alcanzar masa crítica. Los documentos, los testimonios, las pruebas materiales: todo indica que Alemania en ningún momento se planteó seriamente el desarrollo de armamento nuclear. La carrera por la bomba no existió.

¿Cómo puede ser tal cosa? Vamos, en serio, los nazis no eran precisamente unos pacifistas ni gente tiquismiquis ante el derramamiento de sangre ajena. Resulta francamente dudoso que los fundadores de Auschwitz, Treblinka o Sobibor, los autores del Generalplan Ost que quiso exterminar a los infrahombres del este tanto como a los judíos, los gitanos o los comunistas, hubieran dudado mucho a la hora de volar por los aires a algún millón de personas con bombas atómicas. Heisenberg ya nos apuntaba un motivo de los dirigentes nazis para descartar esta opción: la muy dudosa posibilidad de construir un arma nuclear antes del fin de la guerra. Este premio Nobel alemán, en la entrevista mencionada, aún sugiere alguna más:

Había, por supuesto, una intención muy clara por nuestra parte: teníamos que impedir que nos implicaran en un gran esfuerzo para hacer bombas atómicas. Lo que queríamos era conseguir el dinero justo para seguir adelante con nuestro proyecto de reactor, pero nada más. Teníamos mucho miedo de que, en otro caso, alguien dijera: “Ahora, vamos a por la bomba atómica.” […] Esto salió como esperábamos. Definitivamente, no queríamos que nos metieran en este asunto de la bomba.

No quiero idealizar esta cuestión: lo hicimos también por nuestra seguridad personal. Pensábamos que la probabilidad de que esto condujera al desarrollo de bombas atómicas durante la guerra era casi cero. Si no hubiéramos actuado así, y si se hubiese puesto a trabajar a miles de personas en ello sin resultados… podría haber tenido consecuencias extremadamente desagradables para nosotros.

Equipo con el que se descubrió la fisión en Alemania, 1938.

Experimento con el que Lise Meitner, Otto Hahn y Fritz Strassmann descubrieron la fisión del núcleo atómico en Alemania, 1938. Deutsches Museum, Munich. (Clic para ampliar)

¿Y la dirigencia nazi no se olió nada? Es decir, numerosos científicos y algunos políticos y militares venían hablando ya del advenimiento de la energía nuclear desde antes de la guerra. ¡Pero si Otto Hahn y Lise Meitner habían descubierto la fisión nuclear en la misma Alemania nazi, siendo 1938! El 22 de abril de 1939 Georg Joos y Wilhelm Hanle comunicaron a Abraham Esau –director de la división de física del Consejo de Investigaciones del Reich– las posibles aplicaciones militares de la fisión del átomo. Apenas dos días después Paul Harteck, asesor científico de la Oficina de Municionamiento del Reich, hacía lo propio dirigiéndose al estamento militar. El 29 del mismo mes, un montón de físicos se reunieron en el Ministerio de Educación para considerar todas estas cuestiones, fundando así el primer Uranverein: el club del uranio. Tenían a Hans Geiger, el del contador Geiger. Manfred von Ardenne iba por su cuenta, investigando la separación de isótopos con el apoyo entusiasta del ministro de Correos nazi Wilhelm Ohnesorge. Todo en el más riguroso secreto… pero, en los ámbitos del poder nazi, un secreto a voces. Evidentemente, el Führer y sus lugartenientes tanto políticos como militares tenían que estar al tanto de lo que se cocía en materia atómica; aunque fuera por encima.

Es más. En junio el químico nuclear Nikolaus Reihl, director científico de la empresa Auergesellschaft, se puso también en contacto con la Oficina de Municionamiento del Reich para comunicarles que la compañía estaba en posesión de una respetable cantidad de basura de uranio como resultado de su producción de radio. Y que si estaban interesados, podían ponerse a procesar este uranio, obtenido en las minas de la Checoslovaquia ocupada. Estuvieron interesados y pronto abrían la planta de Oranienburg, al norte de Berlín, que produciría óxido de uranio y otros metales de interés hasta casi el final de la guerra.

El 1 de septiembre de 1939 estalló la Segunda Guerra Mundial, sin pillar por sorpresa a casi nadie: desde años atrás, estaba cantado que se avecinaba algo gordo. Ese mismo día se fundaba el segundo Uranverein bajo los auspicios del Consejo de Investigaciones del Reich, ahora en manos militares. El 19 de este mes, mientras las últimas tropas polacas caían ante la Wehrmacht en la Batalla de Buzra, los científicos atómicos alemanes del segundo club se reunían en secreto por primera vez. Poco después el Instituto de Física Kaiser-Wilhelm y el Instituto Max Planck, las dos instituciones más relevantes de Alemania en asuntos relacionados con la física avanzada, pasaban también a la jurisdicción militar. Sabían que el isótopo uranio-235 era la clave de todo aquel asunto y que había otro aún más prometedor, no presente en la naturaleza pero descubierto igualmente en Alemania: un cierto eka-osmio, al que hoy en día llamamos plutonio.

Werner Heisenberg en 1940.

Werner Heisenberg en 1940, poco antes de descubrir que podía construir un reactor nuclear. Deutsches Bundesarchiv.

En el mes de diciembre, el profesor Heisenberg –por entonces, aún en la Universidad de Leipzig– descubrió con gran emoción que era posible construir un reactor nuclear de uranio-235, que se estabilizaría a sí mismo en torno a 800ºC de temperatura operacional. En los últimos días de 1939, Heisenberg escribía una carta a la Oficina de Guerra del Reich que terminaba así:

Conclusiones: Según las evidencias actuales, el proceso de fisión del uranio descubierto por Hahn y Strassmann puede utilizarse para la producción de energía a gran escala. El método más seguro para construir un reactor capaz de hacer esto sería enriquecer el isótopo uranio-235. Cuanto más alto sea el grado de enriquecimiento, más pequeño se puede hacer el reactor. El enriquecimiento de uranio-235 es la única manera de conseguir que el volumen del reactor sea pequeño, comparado con un metro cúbico.

Es, además, el único método de producir explosivos varios órdenes de magnitud más potentes que los explosivos más poderosos conocidos ahora.

De todos modos, para la generación de energía se puede usar incluso uranio ordinario, sin enriquecer ei isótopo 235, si se utiliza en conjunción con otra sustancia que ralentice los neutrones del uranio sin absorberlos. El agua no es apropiada para esto. Por el contrario, el agua pesada y el grafito muy puro podrían bastar según las evidencias actuales. Las impurezas más minúsculas siempre pueden impedir la generación de energía.

Vaya. Cualquiera diría que en esos momentos de finales de 1939, el buen doctor Heisenberg no tenía tan claro eso de omitir las posibilidades explosivas del invento. Por otra parte, también especifica claramente la necesidad de un moderador neutrónico y las mejores opciones para obtenerlo: el carbono ultrapuro en forma de grafito y el agua pesada. A mediados de 1940 se realizaron varios intentos de construir pequeños reactores en Berlín-Dahlem, demasiado primitivos para funcionar (llegaron a intentar el uso del papel como moderador). En la siguiente carta de Georg Joos a la Oficina de Municionamiento del Reich, fechada en marzo de 1940, ya se plasman las necesidades de pureza del carbono para su uso en reactores nucleares. Pero, ¿qué es esto de un moderador neutrónico?

Carta de Georg Joos sobre el carbono

Carta de Georg Joos a la Oficina de Municionamiento del Reich explicando los detalles de pureza del carbono para constituir grafito de uso nuclear. Se especifican con detalle las proporciones máximas de boro, un poderoso absorbente neutrónico que altera las propiedades de la reacción en cadena. Deutsches Museum, Munich. (Clic para ampliar)

Moderadores neutrónicos.

Reacción en cadena

Reacción en cadena por fisión del núcleo atómico. Para sostenerla con uranio poco enriquecido, hay que reducir la energía de los neutrones rápidos y convertirlos en neutrones térmicos. Esto lo hace el moderador. (Clic para ampliar)

En la reacción en cadena, los neutrones producidos durante la fisión del núcleo atómico provocan nuevas fisiones en los átomos de alrededor. Si hay suficiente masa de material fisible para que estos neutrones se encuentren con algo útil –la masa crítica–, entonces la reacción es capaz de sostenerse a sí misma, generando más energía y más fisiones. En los explosivos nucleares esta reacción es muy rápida, utilizando uranio-235 o plutonio-239 muy enriquecidos sin moderación de ninguna clase, buscando un pico de energía instantánea. Sin embargo, en un reactor nuclear ocurre lo contrario: se desea una reacción en cadena eficiente, económica y progresiva, que funcione con una proporción baja de material fisible y a ser posible usando uranio natural (uranio refinado y concentrado, pero con la misma proporción isotópica que se da en la naturaleza). En aquellos tiempos resultaba aún más importante: la cantidad de uranio disponible era baja y las posibilidades de enriquecerlo, endiabladamente difíciles y costosas usando la tecnología de la época.

Resulta que durante la fisión la mayor parte de los neutrones se emiten en forma de neutrones rápidos, muy energéticos. Se podría pensar que esto es estupendo para provocar nuevas fisiones que aseguren la reacción en cadena, pero… resulta que no va así. La fisión del núcleo atómico se produce mejor cuando es alcanzado por neutrones térmicos, menos energéticos. Dicho en términos sencillos, los neutrones rápidos “pasan demasiado deprisa” para producir una reacción eficaz, mientras que los térmicos lo hacen a la velocidad adecuada. Por tanto, la construcción de un reactor nuclear eficiente exige decelerar estos neutrones rápidos; la sustancia encargada de tal cosa es el moderador. Entre los mejores moderadores neutrónicos se encuentran, como predijeron Heisenberg y otros, el grafito y el agua pesada.

Sin embargo, esta sustancia no debe ser tan efectiva que tienda a frenarlos por completo, porque en ese caso ya no tenemos un moderador sino un absorbente neutrónico que captura los neutrones e interrumpe la reacción. Entre estos tenemos, por ejemplo, al cadmio o el boro. Esta “resistencia al paso de los neutrones” se puede medir de varias maneras. Una de ellas es la longitud de absorción, difusión o atenuación, que indica la probabilidad de que una partícula no sea absorbida durante su paso por estas sustancias. Para construir un reactor con uranio natural, sin enriquecimiento alguno, la longitud de difusión en el moderador debe estar aproximadamente entre cuarenta centimetros y un metro y pico. Si es mayor, no provocará la atenuación necesaria y la reacción en cadena no llegará a producirse. Si es menor, la sustancia actuará como absorbente neutrónico y la detendrá por completo. La longitud de difusión mínima para un moderador básico de uranio natural está en 37 cm.

Agua pesada de Norsk Hydro

Agua pesada de Norsk Hydro al 99,6%. En toda Europa no había ninguna otra instalación donde se produjera en las cantidades industriales precisas. (Clic para ampliar)

El agua pesada es H2O con los átomos de hidrógeno corriente sustituidos por átomos de deuterio; es decir, 2H2O (o D2O, óxido de deuterio). Con una longitud de difusión de 116 cm, constituye un excelente moderador neutrónico. Pero presenta varios problemas de orden práctico. Fundamentalmente es difícil, costosa y complicada de producir; y no te digo ya con el grado de pureza necesario (más del 99%), por lo que en último término sale cara de narices y llega con cuentagotas. Tanto, que en tiempos de los nazis sólo había una fábrica en Europa que la produjese, y eso gracias a un acúmulo de casualidades y rarezas: la planta de Norsk Hydro en Vemork, Noruega. Desde 1927 Norsk Hydro mantenía una sociedad con el inmenso consorcio químico alemán IG Farben y además Noruega fue invadida por los nazis en abril de 1940, con lo que gozaban de libre acceso a este recurso. Pero eso no hacía que el agua pesada resultase más económica, fácil o rápida de producir. Además, había que transportarla en un complicado viaje hasta los laboratorios atómicos alemanes.

El grafito, en cambio, es básicamente carbono y hay por todas partes. Al principio cuesta un poco de producir con el grado de pureza exigido, que es puñetero, pero después sale por toneladas en forma de bloques económicos fáciles de manejar, transportar y utilizar. Por ello, todos los primeros reactores construidos por todas las potencias nucleares fueron de uranio natural moderado por grafito. Cuando partes de cero, ese es el camino más rápido, barato y directo para obtener energía nuclear y armas atómicas.

¿Y el reactor, para qué?

A todo esto, ¿para qué necesitamos un reactor si queremos hacer bombas? Pues por dos motivos fundamentales. El primero es que sin un reactor operativo hay una serie de detalles sobre el funcionamiento íntimo del núcleo atómico que no se pueden aprender; y sin esos detalles, tendrás que construir tu arma nuclear a ciegas en una montaña de consideraciones técnicas importantes. Y el segundo, para producir plutonio en cantidad fácil y rápidamente.

Hay, esencialmente, dos aproximaciones para fabricar tu primera bomba atómica. Una es pillar mineral de uranio y enriquecerlo una y otra vez hasta que obtienes decenas de kilos del preciado isótopo uranio-235 para hacer una bomba del tipo de la de Hiroshima. Esto es un lío, cuesta una fortuna y encima ese tipo de bomba es un rollo, un arma muy limitada. Hubo un momento en que, para realizar este proceso, la planta norteamericana de Oak Ridge consumía la sexta parte de toda la energía eléctrica producida en los Estados Unidos. La Alemania nazi no podía permitirse semejante cosa ni por casualidad, ni en Oranienburg ni en ninguna otra parte.

El reactor B de Hanford.

El reactor B de Hanford, donde se produjo el plutonio estadounidense para Trinity, Nagasaki y numerosas armas de posguerra, era de uranio natural moderado por grafito.

Ni falta que hace. Los americanos es que fueron por las dos vías a la vez, pero la gente que sabe lo que quiere y cómo conseguirlo a un precio justo opta siempre por el plutonio. El plutonio resulta enormemente más práctico como arma que el uranio; cuesta mucho menos de producir y separar; permite más fácilmente el diseño de armas más avanzadas; y no necesitas instalaciones tan grandes, caras y conspicuas. Por eso la primera bomba atómica fue de plutonio, la de Nagasaki fue de plutonio, la primera de los soviéticos fue de plutonio  y hoy en día todas son de plutonio total o parcialmente. Hágame caso, joven: para jugar a los soldaditos atómicos, uranio kk, plutonio mola. Y de buen grado o a la fuerza, a Alemania no le quedaba otra que ir por la vía del plutonio.

El plutonio sólo tiene un par de pejiguerías, y una de ellas es que no se da en la naturaleza. Estamos ante un elemento sintético que hay que producir por completo. Sólo hay una manera de hacerlo a escala industrial: con un reactor nuclear. Es muy sencillo. Bueno, bastante sencillo. Metes uranio natural, que está compuesto fundamentalmente por uranio-238 con una pequeña proporción de uranio-235. El uranio-235 es fisible, el -238 no (en condiciones normales). Entonces le das mecha al reactor. El -235 empieza a fisionar en cadena y una parte de sus neutrones alcanzan al -238. Pero ya hemos dicho que el -238 no puede fisionar, así que los va absorbiendo y al hacerlo se convierte en uranio-239. El uranio-239 es virulentamente inestable y en cuestión de minutos decae a neptunio-239, que tampoco está muy p’acá y transmuta en… ¡tachán! ¡Nuestro deseado plutonio-239! Todo esto ocurre en cadena, sin ningún esfuerzo adicional. De lo único que tienes que llevar cuidado es de que no se te desmande el reactor (por la acumulación de un nuevo material fisible, el propio plutonio-239) y de no acumular mucho plutonio-240, que a este nivel sólo sirve para tocar las narices. Yendo por el camino del plutonio consigues una bomba mejor, antes y con más posibilidades. Todo son ventajas.

Pero necesitas un reactor. Aunque sea un reactor experimental del año de la picor. Sin reactor no hay plutonio (ni electricidad, en las aplicaciones civiles de la energía nuclear). A todos los efectos prácticos de la Alemania nazi, sin reactor no hay bomba, ni programa nuclear ni nada.

Así pues, no quedaba otra que construir un reactor. Tenían los conocimientos, tenían los especialistas, tenían las materias primas (no muchas, pero tenían) y dos opciones para el moderador: el agua pesada, difícil, remota y cara; y el grafito, fácil, cercano y barato (¡será por carbón en Alemania!). ¿Con cuál te quedarías tú? Exacto: a diferencia de todos los demás, eligieron el agua pesada. Pero, ¿por qué?

Opciones tecnológicas para el desarrollo de las primeras armas nucleares

Opciones tecnológicas para el desarrollo de las primeras armas nucleares 1940-1960. (Clic para ampliar)

Walther Bothe en Stuttgart, 1935.

Walther Bothe durante una reunión de físicos en Stuttgart, 1935.

Un pequeño error para un hombre, un gran golpe para el proyecto atómico nazi.

Aunque Heisenberg estaba convencido por motivos teóricos de que tanto el grafito como el agua pesada valían de moderador neutrónico, resultaba preciso verificarlo experimentalmente y determinar cuánto con absoluta precisión. Con exactitud germánica, como si dijéramos. Del agua pesada se encargó él mismo, en colaboración con el matrimonio Robert y Klara Döpel. Debido a la importancia de este estudio, el grafito lo estudiaría otro físico prestigiosísimo distinto, con quien Heisenberg sustentaba alguna rivalidad: el doctor Walther Bothe de Heidelberg, director de la unidad de física del Centro de Investigaciones Médicas Kaiser-Wilhelm, padre del primer acelerador de partículas alemán digno de tal nombre y futuro premio Nobel. Si te crees más capaz que él, siempre puedes levantar la mano y ofrecerte voluntario, kamerad.

Esfera de Bothe para medir la longitud de difusión neutrónica en el electrografito.

La esfera de Bothe para medir la longitud de difusión neutrónica en el electrografito, a finales de 1940. En Walther Bothe, "La Longitud de difusión de los neutrones térmicos en el electrografito", fechado el 20 de enero de 1941, Kernphysikalische Forschungsberichte (G-71). Deutsches Museum, Munich.

Además, el doctor Bothe tenía experiencia en la materia. Entre otros trabajos relativos al uranio como combustible para obtener energía nuclear, el 5 de junio de 1940 ya había realizado el correspondiente estudio sobre una muestra de carbono común, concluyendo que su longitud de difusión ascendía a 61 cm. Esto es: bien por encima del límite mínimo de 37 cm y más de la mitad que el agua pesada, situada convencionalmente entre 100 y 116 cm. Pensaba que esa cifra de 61 cm aún podía mejorarse, porque su muestra de carbono estaba bastante contaminada con calcio, magnesio y otras cosas que alteran el resultado; según sus estimaciones, al usar grafito ultrapuro podría llegarse a 70 cm. Así lo plasmó en sus conclusiones:

…siguiendo [el dato] G1.(3) la absorción es del 6% con una longitud de difusión de 61 cm. Esto se acerca bien al valor de 70 cm, donde Heisenberg ha demostrado que es posible la Máquina [el reactor] […]. Con el límite de error estimado, queda determinada en el límite mínimo de la longitud de difusión (37 cm). […] Usando carbono puro, la longitud de difusión podría ser mayor que 70 cm, con una sección eficaz de captura inferior a 0,003 x 10-24.

En todo caso, se precisan más experimentos con el carbono. Parece que la idea es ensamblar inmediatamente una Máquina juntando Preparado 38 [uranio] y carbono. El carbono puro podría obtenerse, por ejemplo, mediante las vías propuestas por Joos, para después llevarlo al método del electrografito hasta una densidad de 1,5.

–Walther Bothe, “La Longitud de difusión de los neutrones térmicos en el carbono”. Fechado el 5 de junio de 1940, Kernphysikalische Forschungsberichte (G-12).

Así pues, durante las últimas semanas de 1940 el doctor Bothe de Heidelberg se puso a la labor junto con Peter Jensen y algunos estudiantes universitarios de confianza reclutados como ayudantes. Con el máximo secreto, montaron en un sótano del Centro de Investigaciones Médicas un apparat para realizar la medición usando electrografito de la máxima calidad suministrado por Siemens-Plania: el mejor grafito que se podía conseguir en la Alemania del periodo.

Este dispositivo era básicamente una esfera de 110 cm de diámetro formada por bloques de este electrografito con una funda exterior de caucho, que se sumergía en un tanque de agua. La esfera estaba provista con una estructura de aluminio en la parte inferior, montada sobre una base de hierro y madera encerada, pero por lo demás era autoportante; en la parte exterior había cintas de cadmio. Por arriba dejaron un canal libre para introducir las sondas y la fuente neutrónica, un preparado de radón-berilio con una actividad de setenta milicurios; este canal se cerraba a continuación introduciendo más grafito en bloques cilíndricos. En un determinado momento del informe que escribiría con posterioridad, Bothe se queja de no tener medios para hacer un montaje más elaborado.

El 20 de enero de 1941, el futuro premio Nobel da a conocer sus resultados entre los miembros del segundo club del uranio con un informe ultrasecreto titulado La longitud de difusión de los neutrones térmicos en el electrografito (W. Bothe y P. Jensen, Die Absorption thermischer Neutronen in Elektrographit, en Kernphysikalische Forschungsberichte G-71). Las mediciones obtenidas hacen empalidecer a más de uno:

[…] se calcula la longitud de difusión:

L = 36 ±2 cm.

El error de Bothe que condenó al programa atómico alemán

El error de Bothe que condenó al programa atómico alemán en su documento secreto original "La Longitud de difusión de los neutrones térmicos en el electrografito", fechado el 20 de enero de 1941. Kernphysikalische Forschungsberichte (G-71), Deutsches Museum, Munich. La verdadera longitud de difusión neutrónica para el grafito son 54,4 cm, no 36 cm.

Así, destacadito, porque el resultado es de lo más sorprendente, contrario a la teoría y un verdadero jarro de agua helada para el programa atómico alemán. Treinta y seis centímetros resultaban radicalmente insuficientes, uno por debajo del mínimo absoluto de 37. Y un gravísimo error: la verdadera longitud de difusión neutrónica en el grafito es de 54,4 cm, muy correcta para un moderador, cosa que en los Estados Unidos midió Szilárd con éxito. Inmediatamente a continuación, Bothe afirma:

Con los [valores] sobre los que se basan los cálculos de Heisenberg se esperaría una longitud de difusión L0 = 61 cm. La longitud de difusión medida es mucho menor y la absorción mucho más fuerte, por lo que el carbono estudiado aquí difícilmente debería tomarse en consideración como un material moderador para la Máquina [el reactor].

La conclusión derivada del error de Bothe

La conclusión derivada del error de Bothe: el grafito no sirve como moderador para un reactor nuclear. Esta creencia errónea no desaparecería hasta los últimos meses de la guerra.

Con todas las letras. Por cierto, que el buen doctor Bothe se nos antoja un poco listillo a la hora de quitarse marrones de encima: cabría recordar que esos “valores sobre los que se basan los cálculos de Heisenberg” son los mismos que él dedujo siete meses antes. Pero da igual: es una catástrofe de todos modos. Tras un cuidadoso análisis de impurezas obtenido quemando una cantidad del carbono para estudiar sus cenizas, determina en las conclusiones:

En todo caso, se puede juzgar a partir del estado presente de la teoría que el carbono [grafito], aunque haya sido manufacturado con los mejores métodos técnicos conocidos y esté libre de impurezas, probablemente no sirve como material moderador para la Máquina en cuestión a menos que se acumule [enriquezca] el isótopo 235.

Conclusión de Bothe

La conclusión final de Bothe, en el mismo documento: el grafito sólo serviría como moderador neutrónico si se usara uranio enriquecido, que Alemania no podía producir en cantidades suficientes y de hecho ningún país utilizó en sus primeros intentos.

Cénit y ocaso del proyecto atómico alemán.

Estas conclusiones fueron devastadoras. Si para Alemania el grafito no servía como moderador y enriquecer uranio resultaba inviable económicamente, entonces la vía del plutonio debía discurrir necesariamente por el camino del agua pesada, largo, caro y complicado. A partir de este momento, el pesimismo comienza a instalarse poco a poco en la comunidad de los científicos atómicos nazis, lo que se va traduciendo en un progresivo desinterés por parte de los dirigentes políticos. Siguiendo a Werner Heisenberg:

[No hubo más interés en el grafito, a pesar de saber que el agua pesada era muy escasa] debido a que el experimento de Bothe no era correcto. Bothe había hecho esta medida del coeficiente de absorción del carbono puro y se le deslizó un error en el experimento. Sus valores eran demasiado altos [en absorción; bajos en difusión] pero asumimos que eran correctos y no creíamos que el grafito se pudiera usar.

Atención de nuevo a las fechas. Las fechas son muy importantes:

Fecha y firma del documento erróneo de Bothe.

Fecha y firma del documento erróneo de Bothe "La Longitud de difusión de los neutrones térmicos en el electrografito". Kernphysikalische Forschungsberichte (G-71), Deutsches Museum, Munich.

Adolf Hitler en París con Albert Speer y Arno Breker.

Adolf Hitler en París con Albert Speer (izda.) y Arno Breker (dcha.), 23 de junio de 1940; Francia se había rendido el día anterior. A principios de 1941, casi toda Europa estaba controlada directa o indirectamente por los nazis. Las grandes batallas contra los Estados Unidos y la Unión Soviética no habían comenzado aún. Todas las opciones políticas y militares permanecían abiertas en esas fechas.

Estamos todavía en enero de 1941. La Europa continental entera, desde el Vístula y el Danubio hasta el Atlántico, está en manos nazis o de amigos de los nazis a excepción de un par de países neutrales: una buena posición para atrincherarse. Aún no han invadido la Unión Soviética, con la que mantienen una paz precaria. Pearl Harbor no ha ocurrido tampoco todavía: los Estados Unidos siguen fuera del conflicto. En estos momentos, sólo el tropezón de la Batalla de Inglaterra empaña los éxitos alemanes. La guerra se lucha ahora mismo en África, lejos de la Fortaleza Europa. Los grandes bombardeos que más adelante aniquilarían las ciudades e industrias alemanas caen de momento principalmente sobre el Reino Unido, a manos de la Luftwaffe. Faltaba más de un año para que el Proyecto Manhattan se pusiera en marcha en serio. Von Braun y los suyos seguían en Alemania. Todas las posibilidades estaban abiertas aún.

¿Qué habría sucedido si Bothe no se hubiera equivocado y alguien hubiese dicho a la dirigencia nazi durante la primavera de 1941: “podemos construir un reactor de grafito y fabricar plutonio, podemos hacer bombas atómicas, consígannos algo de tiempo y uranio; es cosa de cuatro o cinco años, puede que menos si nos dotan con la mitad de los medios que harían falta para invadir la URSS el próximo verano”?

Por supuesto, resulta imposible saberlo. Sí conocemos, en cambio, lo que sucedió en realidad. En estas mismas fechas de 1941, la empresa Auergesellschaft que mencioné más arriba ya había fabricado varias decenas de toneladas de óxido de uranio y Degussa de Fráncfort, los primeros 280 kg de uranio metálico para el reactor de Heisenberg (en parte con mineral capturado durante la conquista de Bélgica). Los norteamericanos no empezarían a disponer de este material hasta 1942, cuando los científicos alemanes ya contaban con siete toneladas y media. En diciembre de 1942, la Pila Chicago-1 de Fermi y Szilárd necesitó 6 toneladas de uranio puro y 34 de óxido de uranio para convertirse en el primer reactor operativo de la historia. Pero no estamos en 1942: estamos aún en 1941, y el Tercer Reich tiene ya casi todo el uranio necesario.

En Alemania había (y hay) grandes minas de carbón; con él, compañías como Siemens-Plania, IG Farben, Degussa y otras podrían haber producido grafito de calidad nuclear a poco que sus científicos atómicos les hubieran dicho cómo hacerlo. Esto, evidentemente, no sucedió. En vez de eso, el agua pesada se convirtió en un recurso estratégico de primer orden, la única posibilidad. A partir de estas fechas, se realizaron numerosas actuaciones para asegurar el agua pesada noruega de Norsk Hydro, y también para empezar a producirla en Alemania, esto último con reducido éxito. Hacia finales del verano de 1941, encargaban a Norsk Hydro 1.500 kilos de agua pesada. Para fin de año, ya habían recibido los primeros 361.

Durante el mismo 1941 hubo diversos intentos para enriquecer uranio de manera más eficiente, lo que habría despertado un interés renovado en el grafito (posiblemente sacándoles de su error). Pero a pesar de que alguno tuvo éxito, no se vieron capaces de continuar por ese camino debido a las limitaciones económicas. Así, les quedó definitivamente vedada la vía del uranio. Sólo era posible la vía del plutonio, como concluyera el singular Fritz Houtermans en agosto de este año, lo que exigía construir un reactor sí o sí. A partir de finales de 1941, todos los intentos de los científicos atómicos alemanes estuvieron orientados a crear este reactor de uranio natural-agua pesada. En palabras de Heisenberg, fue en septiembre de 1941 cuando vimos ante nosotros un camino abierto que conducía a la bomba atómica.

En octubre, un atribulado Heisenberg se reunía en Dinamarca con Niels Bohr para conversar sobre la moralidad de que los científicos contribuyeran a esta clase de invenciones terribles; Bohr malinterpretó la conversación por completo y transmitió que Alemania estaba cerca de conseguir la bomba atómica a los norteamericanos (adonde Bohr huiría también poco después). Puede imaginarse la alarma que despertaron estas palabras, reforzando la reciente decisión de Roosevelt de iniciar el desarrollo de esta nueva clase de arma (en esos momentos y durante unos meses más, el proyecto Manhattan aún se compondría de investigaciones aisladas).

Operación Barbarroja

El 22 de junio de 1941, Alemania invadió la Unión Soviética. Comenzaba así la mayor batalla de la historia de la Humanidad, que se cobraría decenas de millones de víctimas civiles y militares y culminó con el colapso total del régimen nazi. Esto provocó enormes tensiones en la economía alemana desde el invierno de 1941, obligándoles a concentrarse en aquellos proyectos que pudieran ofrecer resultados militares de manera más inmediata. Deutsches Bundesarchiv.

En diciembre de 1941, con las fuerzas alemanas detenidas a las puertas de Moscú, el ministro de Armamento y Municiones Fritz Todt comunicaba a Hitler que la economía de guerra alemana estaba próxima a su punto de ruptura. Desde ese momento, cualquier incremento de gasto en un ámbito debía conducir necesariamente a una reducción en otros o el país colapsaría. Así pues, se cursaron órdenes para evaluar todos los programas armamentísticos y concentrar los recursos en aquellos que pudieran obtener resultados antes de que acabase la guerra. El profesor Schumann, director de investigaciones militares, escribió a los distintos institutos del uranio transmitiéndoles estas instrucciones.

Hubo una primera reunión evaluadora a principios de 1942. Durante esa reunión se vio que sus expectativas militares eran demasiado remotas: pasaría un largo tiempo antes de que se pudiera construir un reactor de uranio natural – agua pesada capaz de producir plutonio en cantidad. No habría bomba atómica en breve. Así pues, se decidió sacar este proyecto del ámbito militar y devolverlo al civil, bajo control del Ministerio de Educación. En ese momento, el cénit del programa atómico nazi, apenas había un total de setenta personas implicadas directamente en el mismo.

El 26 y 27 de febrero de 1942 se convocaron dos reuniones simultáneas para tratar el asunto en mayor profundidad, con la participación de todos los científicos nucleares principales. Se invitó a  Himmler y Keitel pero, debido a una equivocación administrativa, ambos declinaron su asistencia (les mandaron el programa de conferencias científicas por error, en vez de los encuentros de interés político-militar, lo que les hizo pensar “¿qué demonios pintamos nosotros en unas jornadas de físicos?”). A pesar de esto las reuniones resultaron satisfactorias y se aceleró la construcción de una planta de agua pesada en Leuna por cuenta de IG Farben. Pero seguían dependiendo de Norsk Hydro, que ahora producía unos 140 kg de calidad superior al 99% cada mes; la planta de Leuna no estaría lista hasta finales de la guerra… fabricando agua pesada a apenas el 1%. De todos modos, el programa atómico no regresó al ámbito militar.

Pila atómica alemana L-IV de Leipzig.

La pila atómica L-IV de Leipzig, el primer intento serio de construir un reactor nuclear en la Alemania nazi. Fue activada en mayo de 1942 y produjo más neutrones de los que gastaba, un 13%, aún lejos de lo necesario para sostener una reacción en cadena.

En mayo, Degussa había manufacturado ya tres toneladas y media de uranio para la pila atómica de Heisenberg. Hacia finales de mayo realizaron el primer intento en Leipzig: el reactor L-IV, con 750 kilos de uranio puro y 140 de agua pesada. Produjo neutrones, un 13% más de los que consumía, pero aún estaba muy lejos de sostener una reacción en cadena. Sin embargo, era un éxito: simplemente aumentando su tamaño, conseguirían un reactor nuclear efectivo. Heisenberg calculó que con diez toneladas de uranio metálico y cinco de agua pesada bastaría. El 28 de mayo, Degussa enviaba la primera tonelada a sus talleres de Fráncfort para cortarla en piezas del tamaño adecuado. Pero el agua pesada seguía llegando desde Noruega a un ritmo exasperantemente lento. ¡Si hubiera algo para sustituirla…! Alrededor, las fábricas germanas producían constantemente miles de toneladas de carbono purificado y grafitos elaborados con buen carbón alemán, para múltiples usos civiles y militares, ignorando que tenían en sus manos la clave de la bomba atómica.

El 4 de junio llegó el momento más decisivo del programa atómico alemán. Heisenberg viajó a Berlín para entrevistarse con el poderoso ministro del Reich Albert Speer, íntimo de Hitler. En la reunión, celebrada en el Instituto Kaiser-Wilhelm de Berlín-Dahlem, estaban también presentes otros pesos pesados de la ciencia, la política y el ejército. Heisenberg les explicó que era posible construir una bomba del tamaño de una piña capaz de aniquilar una ciudad. Pero, a continuación, anunció que Alemania no podría construirla en muchos meses; y, de hecho, representaba una imposibilidad económica con las tecnologías disponibles. Los asistentes, que se habían excitado mucho con la primera afirmación, quedaron decepcionados tras la segunda.

El día 23, Speer se reunía con Hitler. En el transcurso de una larga conversación sobre múltiples temas, apenas mencionó el asunto de la bomba atómica, y de manera poco entusiasta. Así, el programa nuclear nazi perdió definitivamente el interés de los políticos y los soldados. A pesar de ello siguieron financiándolo y prestándole asistencia hasta el final de la guerra, aunque como un proyecto civil de orden secundario para la futura producción de energía eléctrica.

En torno a esas fechas, los aliados identificaron el interés nazi en el deuterio noruego y pusieron en marcha una campaña de sabotajes y bombardeos contra la instalación de Norsk Hydro en Vemork, conocida por la historia como la batalla del agua pesada. Hubo grandes actos de heroísmo y famosas películas… pero en realidad, a esas alturas, Alemania ya estaba fuera de la carrera por la bomba atómica. Lo único que lograron estas acciones bélicas fue retrasar aún más la investigación civil. En torno a 1944, la instalación estaba tan dañada que ya sólo producía agua pesada al 1%.

Aún así, siguieron avanzando. Cada vez más despacio, conforme la guerra en el Este demandaba más y más de la sociedad alemana, los bombarderos del Oeste aniquilaban sus ciudades e industrias, el agua pesada llegaba cada vez más despacio y más impura. Varias instalaciones esenciales resultaron destruídas durante los bombardeos de alfombra. El suministro de corriente eléctrica era a cada día más azaroso, los recursos más raros y caros. Hacia el otoño de 1944 los cohetes balísticos V-2 de Von Braun comenzaron a atacar las ciudades enemigas… con componentes realizados en un grafito de alta calidad muy similar al que habría salvado el programa atómico tres años y medio antes.

También fue en esa época cuando, por el propio avance de la ciencia, los científicos alemanes adquirieron consciencia de que habían estado equivocados todo ese tiempo. De que las mediciones de Bothe estaban mal: el grafito era un extraordinario moderador neutrónico que habría permitido a la Alemania nazi crear rápidamente reactores generadores de plutonio. Pero a esas alturas ya no tenía arreglo. Aún llegaron a construir un último reactor en marzo de 1945, el B-VIII de Haigerloch, utilizando una solución mixta de agua pesada y grafito. Tenía las características tecnológicas para alcanzar la reacción en cadena autosostenida, pero aún resultaba demasiado pequeño debido a las carencias de agua pesada. A esas alturas, los Estados Unidos ya estaban produciendo plutonio industrialmente en Hanford. Con uranio natural y grafito, por supuesto.

Soldados norteamericanos y británicos desmontan el reactor B-VIII de Haigerloch.

Soldados norteamericanos y británicos desmontan el reactor nuclear nazi B-VIII de Haigerloch tras su captura. Archivo Gubernamental del Reino Unido.

A finales de abril de 1945, las tropas anglonorteamericanas conquistaban Haigerloch y otras instalaciones esenciales para el programa nuclear alemán, mientras el Ejército Rojo hacía lo propio por el este. El día 30, Hitler se suicidaba en su búnker. El 2 de mayo, el comandante de Berlín rendía la capital del Tercer Reich al general soviético Vasily Chuikov. Cinco días después, los restos de la Alemania nazi se rendían incondicionalmente a los aliados. Las misiones Alsos norteamericana y soviética hicieron su particular agosto. La historia aún tuvo un último coletazo: el 14 de mayo, un buque estadounidense capturaba al submarino U-234. Iba cargado con materiales nucleares y otros componentes tecnológicos avanzados, en dirección a Japón. Algunos de estos productos llegarían a su destino tres meses después… como parte de las bombas de Hiroshima y Nagasaki.

¿Qué fue lo que falló?

Aún hoy se discute por qué un físico tan extraordinario como Walther Bothe, que ganaría el premio Nobel en 1954, cometió ese error fatal en sus mediciones del grafito. Algunos creen que el electrografito purísimo suministrado por Siemens-Plania para el experimento estaba contaminado con boro, un poderoso absorbente neutrónico capaz de alterar los resultados: un solo gramo de boro captura tantos neutrones como cien kilos de carbono. En aquella época era común que el proceso de elaboración industrial del grafito incorporase carburo de boro, un hecho que Szilárd sabía y tuvo en cuenta durante sus experimentos análogos en los Estados Unidos. Pero Bothe, aparentemente, no estaba al tanto de este detalle. A pesar del cuidadoso análisis de la pureza del grafito realizado por este último, incluso cantidades minúsculas de boro bastarían para reducir la longitud de absorción de la muestra por debajo del mínimo exigible en un moderador neutrónico. Otros deducen que los bloques de grafito utilizados no encajaban perfectamente entre sí y, al sumergirlos en el agua, mantuvieron burbujas de aire en su interior. En este caso, el nitrógeno del aire podría haber producido un efecto parecido. Esta era la opinión del propio Werner Heisenberg.

Hay incluso quien piensa que Bothe saboteó los resultados. Walther Bothe despreciaba profundamente a los nazis por el asunto de la física aria, estaba casado con una rusa y –a diferencia de lo ocurrido con sus colegas– los vencedores no le molestaron tras el fin de la Segunda Guerra Mundial. En este caso Bothe, perfecto conocedor de las fortalezas y debilidades de Alemania, habría bloqueado deliberadamente el único camino practicable por los nazis para conseguir la bomba atómica. Al cortar el paso al grafito, sabiendo de las dificultades relacionadas con el enriquecimiento de uranio y con el agua pesada, cerraba también de hecho la vía del plutonio al Tercer Reich. O al menos se lo ponía muy difícil. Bothe jamás reconoció esta posibilidad, aunque sin duda le habría hecho quedar como un héroe tras la victoria aliada. Lo único que dijo respecto a sus resultados erróneos fue que Heisenberg no había tenido en cuenta los márgenes de error (aunque, como hemos visto en el texto original, eran unos márgenes muy ajustados).

Soldados soviéticos en Berlín, mayo de 1945

Soldados soviéticos en el hotel Adlon de Berlín, frente a la Puerta de Brandemburgo, en mayo de 1945. Algunas de las principales instituciones científicas, situadas en el área de Berlín, caían así en manos de la URSS. Deutsches Bundesarchiv.

En realidad el fallo esencial de la ciencia alemana en el programa nuclear fue no contar con un mecanismo de verificación independiente. Así lo reconocía Heisenberg, en la entrevista mencionada al principio:

Había tan pocos grupos [de investigación] que nunca repetíamos un experimento dos veces. Cada grupo tenía alguna tarea asignada. Nosotros, en Leipzig, hicimos las mediciones para el agua pesada y a partir de ese momento todo el mundo aceptó nuestro resultado; nadie lo comprobó. Y nadie comprobó tampoco las medidas de Bothe.

Si hubiera existido un mecanismo de verificación independiente que comprobara los datos de sus colegas, el error de Bothe se habría tornado evidente en el mismo 1941 y Alemania habría podido usar el grafito como moderador desde el principio. En ausencia de verificaciones independientes, toda afirmación tiene que darse por buena sin garantía alguna, incluso aunque vaya en contra de todo lo que se sabe hasta el momento (como en este caso: la teoría no predecía una longitud de difusión tan corta, ni tampoco las mediciones preliminares anteriores del propio Bothe). Por eso se insiste tantas veces: todo experimento debe ser reproducible y reproducido, todos los resultados deben verificarse independientemente. Esto es esencial para el método científico. Cuando no se respeta, ya vemos las consecuencias, en este o en cualquier otro ámbito.

Pero, ¿habría sido realmente posible?

El error de Bothe no fue, ni con mucho, el único problema que plagó al programa atómico de la Alemania nazi. Uno de los más fundamentales fue el volumen económico total del Tercer Reich, al menos en comparación con el de los Estados Unidos. Durante la mayor parte de la guerra, el producto nacional bruto alemán era superior al británico, el francés o el soviético; pero entre dos y tres veces más pequeño que el estadounidense. Este abismo económico explica por sí solo la relativa facilidad con que la potencia norteamericana pudo desarrollar el proyecto Manhattan. No obstante, los Estados Unidos recorrían simultáneamente la vía del plutonio y la del uranio, mucho más cara. Yendo sólo por la del plutonio, un programa nuclear resulta notablemente menos costoso; puede que incluso hasta el punto de igualar estas diferencias en poderío económico total.

Comparación del volumen económico de los principales contendientes en la Segunda Guerra Mundial

Comparación del volumen económico de los principales contendientes en la Segunda Guerra Mundial. Datos tomados de Mark Harrison (1998), "The economics of World War II: Six great powers in international comparison", Cambridge University Press. Clic para ampliar.

Otro problema notable fue la llamada generación perdida de científicos alemanes. Debido a las persecuciones políticas y raciales, un gran número de científicos europeos y específicamente alemanes huyeron a los Estados Unidos, donde terminarían constituyendo la columna vertebral del proyecto Manhattan. Estupideces racistas como el asunto de la Física aria, junto a las distintas ciencias patrióticas o la depuración política del profesorado, no hicieron nada por mejorar el estado de la ciencia que quedó en la Europa controlada por el nazifascismo y sus aliados. Y sin embargo, como hemos visto, Alemania mantenía un número significativo de científicos destacados pertenecientes a la generación anterior.

Un tercer problema significativo fue la dificultad de acceso a algunos productos esenciales. Europa no es un continente que se caracterice por la abundancia de recursos naturales; incluso conquistando la mayor parte, como había logrado el Tercer Reich a finales de 1940, sigues necesitando un montón de cosas. El mismo uranio –aunque suficiente– hubo que rebuscarlo por varias fuentes distintas, desde las minas de Checoslovaquia a las reservas belgas. No tenían helio. El petróleo y los combustibles fueron un quebradero de cabeza para los nazis durante toda la guerra. Y así, mil cosas. En general, a Alemania todo le salía mucho más caro y trabajoso de obtener, porque debía conseguirlo fuera de Europa. Esto produjo también importantes carencias entre la población. A pesar de ello, no hay ningún motivo claro por el que estas carencias hubieran podido detener o retrasar significativamente la vía del plutonio, si no hubiera sido por ese asunto del agua pesada.

Y, por supuesto, conforme avanzaba la guerra los bombardeos y las derrotas constreñían la economía alemana cada vez más y les iban privando de industrias y recursos fundamentales. Hacia el final del conflicto, algunas instalaciones clave para el programa atómico resultaron destruidas o severamente dislocadas. Pero para cuando eso ocurrió, la guerra ya estaba perdida y el camino al arma nuclear, abandonado tiempo atrás en favor de aquellos últimos reactores de juguete.

El error de Bothe fue el único factor determinante que cerró decisivamente el único camino practicable hacia la bomba atómica para el Tercer Reich. Precisamente por todas estas limitaciones, Alemania debía haber tomado desde el primer momento y sin dudarlo la vía del plutonio producido en reactores de uranio natural-grafito. Así lo consiguieron casi todas las potencias nucleares. Como hemos visto, gozaban de uranio y grafito suficiente para intentarlo, así como de un número de científicos muy destacados que ya habían alcanzado muchos de los conocimientos necesarios en fecha tan temprana como 1941. Quizá no tuvieran gente con la talla de Einstein o Szilárd o Fermi u Oppenheimer, pero los científicos atómicos alemanes eran muy brillantes sin duda alguna. No obstante, al obligarles a ir por el camino del agua pesada, el error de Bothe retrasó y encareció absurdamente el programa nuclear nazi hasta tornarlo impracticable por completo en el escaso tiempo de que disponían.

Walther Bothe en 1954

Walther Bothe en 1954, tras obtener el premio Nobel. Fundación Nobel, Suecia.

Fueron estos retrasos y encarecimientos los que desmotivaron a la dirigencia política y militar del Tercer Reich, así como a los propios científicos. Si en Alemania no hubo una acción política decidida para unificar el proyecto atómico y dotarlo de medios abundantes fue precisamente porque el largo camino del agua pesada lo hacía poco atractivo de cara al desenlace de la guerra. Si hubiera habido una vía rápida –el reactor de grafito–, seguramente se habrían tomado mucho más interés.

Opino que sin el error de Bothe, y con un programa atómico decidido y bien dotado, la Alemania nazi podría haber completado su primer reactor de uranio natural-grafito al mismo tiempo que los estadounidenses o poco después: finales de 1942, principios de 1943. Incluso algo antes, mediando cierta genialidad. Tampoco veo ningún motivo claro por el que no hubieran podido empezar a producir plutonio a escala industrial hacia finales de 1943 o principios de 1944 (los norteamericanos lo lograron a mediados de 1943). Y una bomba primitiva entre 1945 y 1946.

Para ser de utilidad, obviamente, la Segunda Guerra Mundial tendría que haber durado un poco más; pero no debemos olvidar que las decisiones científicas principales se tomaron a principios de 1941, cuando todas las opciones políticas y militares estaban abiertas aún. No era estrictamente preciso invadir la URSS en junio de 1941, sobre todo si piensas que pronto tendrás bombas atómicas para devastarla a tu gusto. Tampoco era totalmente necesario que Japón atacara Pearl Harbor en diciembre de 1941, propiciando así la entrada de Estados Unidos en la guerra y la activación final del Proyecto Manhattan durante 1942. Todo eso era en gran medida inevitable y habría terminado por suceder de una manera u otra, pero no tenía por qué ocurrir tan deprisa como sucedió. Si los nazis hubieran sustentado la convicción íntima de que sus científicos andaban detrás de algo importante, una wunderwaffe como jamás vio la Humanidad, habrían tenido una motivación clara para enfriar la evolución del conflicto en vez de acelerarla como hicieron. Un 1941-1942 de moderada intensidad (parecida a lo que fue el periodo agosto de 1940 – junio de 1941, con enfrentamientos eminentemente periféricos y un reforzamiento de la Defensa del Reich) habrían sido suficientes con alguna probabilidad.

Pues si Alemania hubiera podido seguir la vía del plutonio usando reactores de uranio natural-grafito, creo –creo– que habría bastado con retrasar las cosas catorce o dieciocho meses para asegurarse una bomba atómica como la de Nagasaki antes del final de la guerra. Dado que no había ningún motivo por el que retrasarlas, dado que el programa nuclear alemán se había convertido en poco más que una curiosidad científica irrelevante a partir del error de Bothe en enero de 1941 y sobre todo desde la reunión con Speer de junio de 1942, las cosas sucedieron como sucedieron. El Tercer Reich invadió a la URSS en junio de 1941, Japón atacó Pearl Harbor en diciembre, Estados Unidos y la Unión Soviética entraron en modo overkill, y el resto de la historia resulta sobradamente conocido. Para bien.

Pila atómica nazi B-VIII de Haigerloch

El último intento nazi por alcanzar la criticidad: la pila atómica B-VIII de Haigerloch, capturada por los aliados en abril de 1945. Nunca pudo alcanzar la reacción en cadena autosostenida: debería haber sido un 50% mayor para lograrlo. Réplica en el Museo Atómico de Haigerloch, Alemania.

123 Comentarios Trackbacks / Pingbacks (12)
¡Qué malo!Pschá.No está mal.Es bueno.¡¡¡Magnífico!!! (71 votos, media: 4,94 de 5)
Loading...Loading...
Be Sociable, Share!

Ibéricos extraterrestres.

Ciencia hispánica (III)

Niña mirando por un telescopio.

Una niña mira por un telescopio durante una actividad cultural. Este tipo de telescopio, hoy en día considerado "amateur", es un instrumento muchas veces más potente y preciso que los utilizados por los grandes astrónomos que vamos a mencionar más abajo.

En el post anterior, dije que en ese momento sólo recordaba a un nacido en la Península Ibérica que diera nombre a un lugar extraterrestre: el del sabio andalusí y precursor de la aeronáutica Abbás ibn Firnás. Pero me quedé con el runrún y cuando un amable lector llamó mi atención sobre otro posible nombre (aunque al final no resultara ser oficial), decidí dejarme de recuerdos y hacer la búsqueda que debería haber hecho desde el principio: por supuesto, en el Diccionario Geográfico de Nomenclatura Planetaria de la Unión Astronómica Internacional, disponible en Internet gracias a un acuerdo con el Estudio Geológico de los Estados Unidos y la NASA. Y… bueno, no son muchos, pero algunos más hay. Menos da una piedra. Aunque sólo sea por vergüenza torera, intentaremos aprender algo sobre ellos.

¿Cómo se bautiza a los objetos astronómicos?

Además de sus designaciones sistemáticas (Bayer, Messier, NGC, etc), a las cosas notables del cielo les ponemos nombre. Más allá de los grandes objetos, que suelen bautizarse con denominaciones universales originadas en la mitología, quien descubre algo nuevo en los cielos tiene una especie de derecho consuetudinario a proponerle un nombre. Como es de esperar, a menudo estos nombres son el del descubridor o el de alguna persona, lugar o hecho que desee honrar y perpetuar en la memoria colectiva de la Humanidad.

En ambos casos, se produce un sesgo cultural inevitable: los nombres que tienen en mente esas personas suelen ser representativos de la cultura donde se encuentran. A veces hay un elemento de chauvinismo, pero ni siquiera resulta necesario: cada uno se ha criado donde se ha criado y tiene los referentes intelectuales y emocionales que tiene. Cuando escribí el post sobre lo que ocurriría si un agujero negro se acercara al sistema solar, prácticamente sin pensar bauticé a este objeto imaginario como Abaddón. ¿Por qué? Pues porque Abaddón es el puñetero ángel exterminador de la cultura cristiana occidental, donde surgió la sociedad en la que vivo. También podría haberlo llamado Tánatos, de la cultura helénica donde ambas se originaron, pero estaba muy visto y no reflejaba el concepto igual de bien. Incluso podría haber buscado alguna keres chula. Sin embargo, debido a mi contexto cultural, ni se me pasó por la cabeza bautizarlo Yama; y eso que resultaría de lo más apropiado. Por la misma razón tampoco se me ocurrió llamarlo Azrael, el arcángel de la muerte en el Islam. O Hine-nui-te-pō, de la mitología maorí.

Rigel Kentaurus

La estrella más próxima al Sol es el sistema triple conocido como Alfa o Proxima Centauri, con el nombre propio Rigil Kentaurus ("el pie del centauro", en árabe). Observatorio Europeo del Sur. (Clic para ampliar)

Incluso los nombres aceptados internacionalmente para los grandes objetos mencionados proceden de las culturas abrahámicas occidentales, por la sencilla razón de que éstas eran dominantes en materia científica conforme tales denominaciones se iban normalizando. Los nombres de todos los planetas solares, por ejemplo, vienen de la mitología romana: Mercurio, Venus, Marte, Júpiter, etcétera. Los de las lunas, de la griega, como Ganímedes, Ío, Europa, Fobos, Titán, Mimas, Encélado y demás. Y una buena parte de las estrellas más conocidas se conocen por su denominación árabe: Rigil Kentaurus (Rijl al-Qantūris, “el pie del centauro”), Altair (de an-nasr aṭ-ṭā’ir, “el águila voladora”), Fomalhaut (fam al-ħūt al-janūbī, “la boca de la ballena del sur”) o Betelgeuse (cuya primera sílaba está disputada, pero “elgueuse” es al-Jauzā‘, “…del centro”). Y, por supuesto, Aldebarán: al-dabarān, “el seguidor” (porque parece seguir a las Pléyades).

Lógicamente, otras culturas otorgan nombres distintos a todos estos astros; no obstante, para su uso internacional y científico, estos son los nombres que han cuajado. Por otra parte, los descubrimientos más recientes se van dando en un mundo cada vez más globalizado e interconectado, con lo que la misma denominación se extiende a todos los países rápidamente. Tanto para los unos como para los otros, el organismo que se encarga de limpiar, fijar y dar esplendor a todos estos apelativos es la Unión Astronómica Internacional.

Con el surgimiento y desarrollo de la revolución científica, el número de objetos extraterrestres a bautizar se ha multiplicado enormemente y cada vez lo hace más. No resulta extraño que cualquier nuevo instrumento (un telescopio, una sonda, lo que sea) produzca una avalancha de cosas nuevas y fascinantes a las que prestar atención. Por ejemplo: las primeras naves que pasaron por detrás de la cara oculta de la Luna revelaron la existencia de un montón de accidentes geográficos selenitas a los que hubo que poner nombre. Con las primeras naves interplanetarias, lo mismo. Cada vez que a un Gran Observatorio le ajustan las gafas, aparecen millones de estrellas y galaxias nuevas. Y así constantemente. Son tantos que muchos se quedan con su designación sistemática, pendiente de que alguien se tome el trabajo de bautizarlos.

La Presidenta de la Unión Astronómica Internacional abre el Año Internacional de la Astronomía en la UNESCO.

La presidenta de la Unión Astronómica Internacional, Catherine Cesarsky, abre el Año Internacional de la Astronomía en la UNESCO (2009).

En la actualidad, cuando se obtienen las primeras imágenes de un nuevo objeto extraterrestre, es normalmente el correspondiente grupo de trabajo de la Unión Astronómica Internacional quien selecciona unas cuantas de las más significativas y sugiere posibles nombres. Conforme se consiguen datos más detallados, los investigadores que estudian el objeto pueden proponer denominaciones adicionales. En general, cualquier persona (incluso del público en general) puede proponer un nombre para un objeto recién descubierto. Ni en un caso ni en el otro, la Unión Astronómica Internacional garantiza que este nombre será reconocido. No se admite pago económico, a pesar de la existencia de listillos que cobran dinero a sus clientes por poner nombre a una estrella (sin reconocimiento oficial alguno, claro). Aquí se detalla el proceso, por ejemplo, para dar nombre oficial válido a los planetas menores (en ingles).

Los nombres aceptados en principio por este grupo de trabajo se remiten a otro dentro de la misma división, que se encarga exclusivamente de realizar estas catalogaciones. Por ejemplo, en el caso de los planetas y lunas, éste es el Grupo de Trabajo para la Nomenclatura de Sistemas Planetarios (WGPSN), de la División III. Si este grupo también valida la propuesta, entonces el nombre queda aceptado y entra en las bases de datos oficiales de la Unión. A partir de ese momento, este nombre puede ser utilizado válidamente para cualquier aplicación.

En la práctica, vuelve a producirse un inevitable sesgo cultural. Salvo de manera anecdótica, será raro que estos nombres procedan por ejemplo de la cultura aborígen australiana o de la yanomami, básicamente porque no hay muchos aborígenes ni yanomamis en los grandes observatorios terrestres o satelitarios, en los comités de investigación de las sondas espaciales o en los grupos de trabajo de la Unión Astronómica Internacional. A decir verdad, si no fuera porque existe una cierta tendencia en estos ámbitos para intentar que todas las culturas de la Humanidad aparezcan representadas, raro sería que apareciese alguno.

Bueno, pues por estas viejas tierras de Iberia no andamos mucho mejor. Realizada una búsqueda exhaustiva en la base de datos de la Unión Astronómica Internacional, sólo hay catorce que se correspondan con científicos o personajes que tuvieran que ver directamente con la astronomía. Todos excepto dos son anteriores a la Edad Contemporánea. Y la mayor parte, anteriores a la Edad Moderna. No, no es culpa de la Unión Astronómica Internacional. Es culpa nuestra.

La magra cosecha de la astronomía hispánica.

En total, salen 109 nombres relacionados con la cultura ibérica. Pero la mayor parte son designadores sin relación ninguna con la astronomía, la astronáutica o en general las ciencias que condujeron a estos descubrimientos. Al final del post veremos una lista, por ejemplo, de localidades hispánicas extraterrestres cuyo único mérito efectivo para estar ahí es simplemente… su existencia.

Observatorio del Roque de los Muchachos

Observatorio del Roque de los Muchachos, en las Islas Canarias. Tras siglos de tinieblas y atraso secular, durante las últimas décadas han ido surgiendo en España algunas instalaciones científicas dignas de tal nombre. En julio de 2009 entró aquí en servicio el Gran Telescopio Canarias, el más grande y potente del mundo con un espejo de 10,4 m. Casi nadie se enteró.

Más notablemente aparecen en la Luna los nombres de cuatro exploradores (Balboa, Colón, Magallanes y Vasco de Gama), un gran científico de la Edad Contemporánea sin relación con la astronomía (Cajal) y un médico del siglo XVI (Cristóbal Acosta). En Mercurio encontramos algunos pintores y escritores (Camões, Cervantes, Dalí, Echegaray, Goya, March, Mena, Mendes Pinto y Velázquez), porque se decidió nombrar a los cráteres de Mercurio usando una lista de artistas de fama mundial (aunque el premio Nobel de Literatura José Echegaray fue también ingeniero y matemático, su presencia se debe a esta última razón). Más una referencia a la carabela Santa María y al navío Victoria de Magallanes y Elcano.

En Venus, donde por convención se usan nombres femeninos, hallamos a la escritora Rosalía de Castro, la pintora Josefa de Ayala, la cantante Malibrán o la actriz Fernández, tan conocida que ni siquiera he logrado identificarla. Hay también –no faltaba más– un Don Quijote y una Dulcinea en Eros, asteroide cuyos accidentes suelen nombrarse recordando parejas o amantes famosos en la literatura de ficción. Más un cierto número de nombres genéricos como “José” o “Juanita” elegidos más o menos al azar.

Se comprende fácilmente que la mayor parte de estos topónimos extraterrestres con resonancias hispánicas son de cortesía, parte de esta voluntad de lograr que todas las culturas humanas queden representadas en los astros. En serio: por supuesto que se puede llamar Velázquez a un puente, un polideportivo o un avión de pasajeros, pero eso no implica ningún mérito en obra civil, deportes o aeronáutica. De gente que se ganara a pulso con sus aportaciones a la astronomía o la cosmonáutica un lugar en los cielos, únicamente tenemos catorce. A estas alturas, puede que te estés preguntando por qué hablo todo el rato de personajes ibéricos, en vez de hablar de españoles o portugueses. Sencillo: como apunté más arriba, casi todos ellos vivieron antes de que existieran los dos estados modernos con el nombre oficial de España o Portugal. En realidad, la inmensa mayoría se contaron –cómo no– entre los siempre mezquinamente olvidados sabios de Al-Ándalus.

Abenezra, el Doctor Admirable.

Vayamos por orden. El cráter Abenezra de la Luna recibe su denominación gracias al astrónomo, filósofo y escritor sefardita Abrahám ben Meir ibn Ezra; un nombre latinizado como Abenezra, cuyo propietario fue conocido por sus apodos el Sabio, el Grande o el Doctor Grande y Admirable.

Cráter Abenezra, Luna

El cráter Abenezra de la Luna (borde superior), situado en el centro de la cara visible y un poco al sur, llamado así por el astrónomo judeo-andalusí Abrahám ibn Ezra (1092-1167). Imagen tomada a 2.722 km de altitud sobre nuestro satélite.

Abrahám nació en Tudela, entonces perteneciente a la taifa de Zaragoza, en torno a 1092. Cuando los cristianos de Alfonso I el Batallador tomaron su ciudad, huyó hacia el sur junto a muchos otros de sus vecinos andalusíes. Así se convirtió por primera vez en un a modo de refugiado itinerante, viviendo en la Córdoba, Lucena, Granada y Sevilla musulmanas antes de cruzar el estrecho al norte de África. Entonces se encontró con con los almohades, que por aquella época perseguían a los judíos. Huyó de nuevo, ahora en dirección a Roma, y residió en diversos puntos del sur y centro de la Europa cristiana hasta su muerte en 1167. No se sabe exactamente dónde murió, pero al parecer había regresado a la judería de Calahorra, entonces ya bajo dominio cristiano. Por tanto, Abrahám ibn Ezra puede considerarse uno de los máximos exponentes de las tres culturas… y también de sus complejas convivencias y conflictos.

Abenezra escribió fundamentalmente en hebreo, destacándose en una diversidad de disciplinas que van desde la exégesis bíblica hasta la filosofía de la religión, la gramática hebrea e incluso la poesía. Pero lo que le aseguró su lugar en la Luna fueron sus trabajos en matemáticas, astronomía y astrología (en aquellos tiempos aún una ciencia): tablas de posiciones estelares como el Lukhot, estudios sobre el calendario (Sefer ha-‘Ibbur) y el astrolabio (Keli ha-Nejoshet), textos aritméticos como el Sefer ha-Ekhad o el Sefer ha-Mispar, las traducciones del astrólogo judeo-persa Mashallah y su obra traducida al latín Fundamentos de las Tablas Astronómicas (1154). Por todo esto y más cosas el judeo-andalusí Abrahám ibn Ezra, el Doctor Admirable, se ganó a pulso un rincón en los cielos; este lugar está ahora situado en las escabrosas serranías inmediatamente al sur del ecuador lunar, casi en el centro de la cara visible de nuestro satélite (21,0°S 11,9°E).

Cráter de Al Bakri, Luna

Cráter de Al-Bakri, en una imagen obtenida desde la nave lunar tripulada estadounidense Apolo 15 en 1971. (NASA)

Abu Abdullah Al-Bakri, el geógrafo.

Abu Abdullah al-Bakri fue un geógrafo hispano-árabe que nació en Huelva alrededor de 1014, estudió en Córdoba con Al-Udri e Ibn Hayyan, trabajó en Almería y Sevilla y murió en esta última ciudad siendo el año 1094. Aunque evidentemente no había salido en toda su vida de Al-Ándalus, creó numerosos trabajos de gran objetividad y precisión sobre la geografía, la botánica y la historia de Europa, el norte de África y la Península Arábiga basándose en lo que le contaba la gente que sí había estado allí.

Uno de estos trabajos, el Libro de los Caminos y los Reinos (Córdoba, 1068), constituye el único estudio completo y de confianza sobre África Occidental durante la Edad Media. Incluye datos únicos sobre el Imperio de Ghana, la Dinastía Almorávide y el comercio transahariano. Junto a su Descripción geográfica del mundo conocido, el Diccionario de los nombres indecisos (uno de los primeros diccionarios geográficos) y la Descripción del África Septentrional, le convierte en un geógrafo clásico de referencia y le dan derecho a su cráter en la cara visible lunar: uno pequeñito pero cuco, en la orilla noroccidental del Mar de la Tranquilidad (14,3°N 20,2°E).

El cráter de Alfonso X el Sabio.

Cráter lunar Alphonsus

Cráter Alphonsus (derecha), en la cara visible de la Luna (NASA). Recibe su nombre por Alfonso X el Sabio, no en tanto que rey sino en tanto que astrónomo.

Uno de los cuatro objetos extraterrestres de nombre hispánico ganado a pulso que no tira de apellido andalusí es el complejo de cráteres Alphonsus. Situado en la cara visible de la Luna, al este del mar Nubio, recibe su nombre por el rey de Castilla Alfonso X el Sabio. Pero no por rey, sino por astrónomo.

La vida de Alfonso X de Castilla (Toledo 1221-Sevilla 1284) resulta fascinante y está llena de éxitos, reveses y legados a las generaciones posteriores. Sobre todo, Alfonso fue un hombre sediento de conocimientos, respetuoso por la cultura y autor intelectual de numerosas obras. Su Escuela de Traductores de Toledo reunió a los mayores sabios cristianos, musulmanes y judíos de aquella Iberia a la que él empezaría a llamar con éxito España.

La parte de su legado que le asegura un lugar en la Luna es, fundamentalmente, las Tablas Alfonsíes (1252-1270). Sobre las observaciones originales del andalusí Al-Zarqali (a quien nos encontraremos a continuación) y bajo la supervisión de los judíos Ben Moshe y Ben Sid, estas Tablas Alfonsíes recogen la posición exacta de los astros vistos desde Toledo desde el año de la coronación de nuestro rey; y permiten calcular la posición del Sol, la Luna y los planetas conocidos en su tiempo según el complicado modelo geocéntrico de Ptolomeo.

La versión original de las Tablas Alfonsíes, escrita en castellano antiguo, se ha perdido. Pero la edición francesa en latín de 1320 sobrevivió, convirtiéndolas en la referencia astronómica más importante de Europa hasta bien entrado el Renacimiento. Sólo se dejaron de utilizar tras la publicación de las Tablas Rodolfinas de Kepler en 1627, casi cuatro siglos después que ya incorporaban el modelo heliocéntrico. Por esta y otras aportaciones como los Libros del saber de astronomía, el Rey Sabio de Castilla se ganó un antiquísimo cráter, muy llano, de respetable tamaño, provisto con doce subcráteres; sus coordenadas son 13,4°S 2,8°W, Luna.

Tablas Alfonsíes

Tablas Alfonsíes de Alfonso X el Sabio (arriba), en una traducción al latín del siglo XIII, basadas en las Tablas Toledanas de Azarquiel (debajo).

Estampilla con la efigie del astrónomo Azarquiel

Estampilla postal de España con la efigie del astrónomo toledano Abú Ishaq Al-Zarqali, Azarquiel.

Azarquiel, el más grande de los astrónomos ibéricos.

El toledano Abū Isḥāq Ibrāhīm ibn Yaḥyā al-Naqqāsh al-Zarqālī (o al-Zarqālluh), latinizado Azarquiel o Arzachel, está considerado por muchos como el más grande de los astrónomos ibéricos y uno de los más importantes de la historia mundial. Ya hable de él en este blog, y hasta comenté lo de su cráter… y se me había olvidado. :-( Nació en la Taifa de Toledo siendo el año 1029, descendiente de una familia visigótica convertida al Islam siglos atrás. Formado como herrero, se dedicaba a elaborar instrumentos de precisión para los astrónomos árabes y judíos que allí residían al servicio del cadí Said al-Andalusí, científico e historiador a su vez: una especie de Alfonso X musulmán.

De esta forma Abú Ishaq entró en contacto con las ciencias de la noche; por su parte, los científicos toledanos de la noche se percataron pronto de que Abú Ishaq poseía una brillantez intelectual fuera de lo común, captando al vuelo sus necesidades e incluso anticipándose a ellas, por lo que comenzaron a protegerle. Tras dos años de formación en las maqtab de la ciudad patrocinadas por Al-Mamún, el joven herrero se convirtió en matemático y astrónomo, pasando a formar rápidamente parte de este reducido círculo de estudiosos. Y, pronto, destacándose sobre todos ellos como astrónomo teórico, geómetra e inventor de sus propios instrumentos.

El cráter Azarquiel, Luna.

El cráter Azarquiel, Luna.

La aportación de Azarquiel al saber humano es difícil de percibir en toda su enormidad. Entre otras muchas cosas, junto a su equipo de extraordinarios colaboradores elaboró las Tablas Toledanas, de las que bebería Alfonso X para crear las Alfonsinas. Pero no sólo el rey de Castilla se inspiró en su trabajo: el mismo Laplace, siete siglos después, seguía utilizando los datos de Abú Ishaq para sus cálculos astronómicos. Y su modelo para explicar los movimientos del Sol y de Mercurio fue aprovechado por Copérnico para desarrollar la teoría heliocéntrica, tal como el propio astrónomo polaco declara en su Sobre el movimiento de las esferas celestiales. Sus obras, al llegar traducidas a la Europa cristiana, permitieron el surgimiento de la astronomía matemática moderna.

La azafea de Azarquiel

La azafea de Azarquiel o astrolabio universal. Sin un instrumento astronómico de estas características, verdadero computador analógico, la navegación oceánica resulta imposible por completo.

Además, creó varios instrumentos nuevos. Uno de ellos, la azafea o astrolabio universal, fue esencial para la navegación durante los siglos siguientes; sin él, difícilmente habría sido posible la Era de los Descubrimientos. Al mismo tiempo, se desplazaba a Córdoba con frecuencia para dar clases, lo que sentó una escuela propia que está en la raíz de la astronomía árabe occidental.

Por todo ello, los nombres de la Luna tendrían menos mérito si no incluyeran al complejo de cráteres Arzachel (18,2°S 1,9°O), situados al sur de Alphonsus, también en la cara visible. Está igualmente compuesto por un cráter principal y once secundarios, con una estructura muy bien definida y un pico en el centro de 1.500 metros de elevación.

Cuando Alfonso VI de León conquistó Toledo en 1085, un casi anciano Azarquiel tuvo que huir junto con otros colegas en dirección a Córdoba. No se sabe si llegó o si pereció en algún campo de refugiados por el camino. Convencionalmente se considera que murió en 1087.

El cráter Catalán, menos mal.

El único que nos salva la cara: aunque chiquitín y no muy relevante, el cráter Catalán del sudoeste lunar (45,7°S 87,3°O) y sus tres subcráteres son los únicos que llevan un nombre ibérico contemporáneo. Este es el del físico-químico maño especializado en espectroscopia Miguel Antonio Catalán Sañudo. Nacido en Zaragoza siendo 1894, se licenció en Ciencias Químicas por la universidad de esta ciudad aragonesa y a continuación desempeñó su profesión durante un tiempo en una fábrica de cementos. De ahí marchó a Madrid, en 1915, para realizar su tesis doctoral con Ángel del Campo. Don Ángel del Campo y Cerdán era el encargado de espectroscopia en el Laboratorio de Investigaciones Físicas de la Junta de Ampliación de Estudios e Investigaciones Científicas; años después, se convertiría en asesor científico de la II República.

Miguel Catalán y su esposa Jimena Menéndez-Pidal

Fotografía del pasaporte y firma de Miguel Catalán, junto a su esposa Jimena Menéndez-Pidal, hija del historiador y filólogo Ramón Menéndez-Pidal.

Bajo la tutela de Del Campo, Catalán se pasó definitivamente a la espectroscopia. Con una beca de la Junta, se mudó a Londres para proseguir sus estudios en el Royal College of Science; allí descubriría los multipletes espectrales, un fenómeno cuántico que le valió el reconocimiento internacional. De ahí viajó a Munich para trabajar con Sommerfeld, uno de los fundadores de la mecánica cuántica. A su regreso a España, ya catedrático, fundó el Instituto Nacional de Física y Química de la Junta de Ampliación de Estudios junto a Blas Cabrera y Enrique Moles.

Tras la Guerra Civil, los franquistas disolvieron la atea y antiespañola Junta para la Ampliación de Estudios e Investigaciones Científicas; muchos de sus miembros fueron fusilados, tuvieron que huir al exilio o resultaron depurados. Miguel Catalán, que había pertenecido a Izquierda Republicana sin señalarse mucho, se contó entre estos últimos. Estuvo siete años en el exilio interior, realizando trabajos menores para la industria química e incluso para Mataderos de Mérida, hasta que gracias a las gestiones del astrofísico estadounidense Henry Russell y otros colegas norteamericanos recuperó su cátedra en 1946 (cuentan que empezó su primera clase con un “decíamos ayer…”, a lo Fray Luis de León).

Como en España casi no quedaban científicos de alto nivel, en 1950 las autoridades franquistas le nombraron jefe del Departamento de Espectros del nuevo Consejo Superior de Investigaciones Científicas, por mediación del Marqués de Hermosilla. Habían pasado once años desde el final de la Guerra Civil. A partir de ese momento, los científicos norteamericanos que le habían protegido desde el otro lado del charco comenzaron a invitarle a toda clase de conferencias y reuniones en los Estados Unidos; en 1952, lo hicieron asesor de la Joint Commission for Spectroscopy. En 1955, la Real Academia de Ciencias de Madrid logró vencer las desconfianzas políticas que generaba aún y le eligieron académico de número. Pero todas estas desventuras le habían afectado a la salud: Miguel Catalán, el único ibérico contemporáneo que da nombre a un objeto extraterrestre por sus méritos científicos, falleció en 1957. Habría que esperar hasta 1970 para que, a propuesta de todos esos amigos estadounidenses, la Unión Astronómica Internacional pusiese su nombre a este cráter lunar.

Cráter Catalán, Luna

El grupo de cráteres Catalán, Luna, en el registro de la Unión Astronómica Internacional. Al hallarse en la zona de ocultamiento por libración, ayuda a observar este fenómeno aunque a veces resulte difícil de distinguir o invisible desde la Tierra por completo.

Cráteres Geber y Abenezra, Luna.

Cráteres Geber y Abenezra, Luna.

Geber, el que corrigió a Ptolomeo.

Como este post se está alargando mucho, lo voy a dividir en dos partes. Así pues terminaremos esta primera hablando del Geber, otro cráter complejo lunar, que recibe su nombre por un cuarto andalusí: el astrónomo y matemático Abū Muḥammad Jābir ibn Aflaḥ. Abú Mohamed Jabir nació, vivió y murió en Sevilla allá por los años 1.100-1.150; su obra maestra, la Corrección del Almagesto (Iṣlāḥ al-Majisṭi), influyó a varias generaciones de estudiosos musulmanes, cristianos y judíos. Tanto, que casi toda la parte de trigonometría esférica en la obra de Johann Regiomontano constituye un plagio del sevillano, tal como mostró Gerolamo Cardano. Este trabajo representa la primera corrección importante a Ptolomeo en Occidente.

Adicionalmente, Abú Mohamed inventó el torquetum, otro computador analógico de observación astronómica que sirve para registrar y convertir medidas tomadas en tres sistemas de coordenadas: el horizontal, el ecuatorial y el eclíptico. Maimónides trasladó sus trabajos al resto del mundo islámico y Gerardo de Cremona los tradujo al latín, dándole ese nombre Geber que designa también al cráter lunar.

El cráter Geber en memoria del sevillano Abú Mohamed se encuentra en las serranías escabrosas centrales de la cara visible de Luna, un poco hacia el sur (19,4°S 13,9°E), y presenta nueve subcráteres. Está justo al noreste del cráter en memoria del judío andalusí Abrahám ibn Ezra que mencionamos al principio.

Próximamente: Ibéricos extraterrestres (y 2).

46 Comentarios Trackbacks / Pingbacks (2)
¡Qué malo!Pschá.No está mal.Es bueno.¡¡¡Magnífico!!! (31 votos, media: 4,61 de 5)
Loading...Loading...
Be Sociable, Share!

Un viaje interplanetario relativista.

Si no te importara hacer un viaje sólo de ida en el tiempo, podrías circunnavegar todo el universo conocido en tu tiempo de vida.
Para ello, no necesitarías superar la velocidad de la luz: es suficiente con aproximarte a ella.

Albert Einstein

Si no meto la pata con nada, hasta podría ser que el doctor Einstein aprobara el post de hoy.

La semana pasada, hicimos un viaje a la velocidad de la luz desde el Sol hasta los ojos con dispensa del doctor Einstein. Tengo que confesarte una cosa: no contaba con la dispensa del doctor Einstein. :-( Así que hoy me propongo desagraviarle. Para ello, vamos a estudiar cómo podríamos hacer un verdadero viaje interplanetario respetando escrupulosamente su Teoría de la Relatividad y viendo lo que sucedería durante el mismo. Y la facilidad con que, una vez alcanzada esa tecnología, tal viaje interplanetario podría convertirse en un viaje intergaláctico e incluso de circunnavegación universal… que podrías completar en tu tiempo de vida. Eso sí: el billete es sólo de ida. Sólo de ida en el tiempo, quiero decir.

La Teoría de la Relatividad y la nave espacial Abbás ibn Firnás.

¿Qué clase de vehículo podríamos utilizar en este viaje? Es obvio que hoy no existen las tecnologías necesarias para diseñarlo, aunque el estado actual de la ciencia ya permite postular algunas posibilidades. Así pues, vamos a crear una nave especulativa –pero científicamente rigurosa– a la que me permitiré bautizar con el nombre del compatriota andalusí Abbás ibn Firnás; uno de los pocos nacidos en la Península Ibérica que da nombre por sus propios méritos a un objeto extraterrestre notable. Cosas de este país. Y a fin de cuentas, resulta bastante probable que su primer vuelo acabase igual que los del viejo químico rondeño. :-D

Próximamente te contaré los detalles tecnológicos de la Abbás ibn Firnás, pero por el momento confórmate con saber que se trata de una nave a propulsión constante, con enorme empuje total e impulso específico, correctamente blindada, equipada y capaz de alcanzar 0,999c. Oséase, el 99,9% de la velocidad de la luz. Con ella, nos encontramos establecidos en una órbita de estacionamiento alrededor de la Tierra. Y para situarnos en su cabina de mandos vamos a utilizar la aplicación Real Time Relativity, desarrollada por el equipo del profesor Craig Savage, del Departamento de Ciencia Cuántica, Facultad de Ciencias Físicas y Matemáticas, Universidad Nacional de Australia. Esto viene a ser un simulador especializado en expresar correctamente los efectos relativistas a bordo de un vehículo que viaje a velocidades próximas a las de la luz. Puede que tengas que ajustar un poco tu monitor o la iluminación ambiental para ver bien las siguientes imágenes, que he preferido conservar sin retocar para mantener el realismo.

La Abbás ibn Firnás en una órbita de estacionamiento próxima a la Tierra.

Vista desde la nave especulativa Abbás ibn Firnás, en una órbita de estacionamiento próxima a la Tierra. Nuestro punto de partida.

Instrumentos básicos de la Abbás ibn Firnás

Fíjate en los siguientes instrumentos básicos. En la primera fila, "speed" indica la velocidad como una fracción de la velocidad de la luz en el vacío (0.5c sería la mitad de la velocidad de la luz). En la última fila, "location" indica nuestra posición con respecto a un punto de referencia en el Sol, expresada en segundos-luz (al hallarnos cerca de la Tierra estamos a 499 segundos-luz del Sol, ¿recuerdas?). En la fila de en medio, "world time" indica el tiempo en segundos transcurrido para el resto del mundo y "proper time" el que ha pasado a bordo de nuestra propia nave. Como ahora estamos esencialmente detenidos, ambos son iguales.

¿Y qué es esto de los efectos relativistas? Bueno, vamos a ver. En primer lugar, rompamos una concepción equivocada que se tiene a veces: eso de que hay una física relativista o una mecánica cuántica contra una física clásica o algo parecido. Esto no va así y nunca lo ha hecho. En realidad, la Relatividad es una generalización de la clásica o, si lo prefieres, la física clásica (newtoniana y tal) constituye un subconjunto de la Teoría de la Relatividad (y también de la mecánica cuántica). No son opuestas ni contradictorias: una engloba a la otra, mejorándola y haciéndola más exacta.

Por ejemplo: la física clásica estudia bien los fenómenos que suceden a velocidades bajas y nos apañamos muy bien con ella durante algunos siglos. Pero es incapaz de explicar los que ocurren a velocidades altas. Con la Teoría de la Relatividad, se estudian más exactamente tanto los fenómenos que suceden a velocidades bajas como los que suceden a velocidades altas; lo que ocurre es que a velocidades bajas los resultados aportados por la Teoría de la Relatividad coinciden a grandes rasgos con los aportados por la física clásica. Entonces, por simplicidad, se usa la física clásica, que es más sencilla. Pero la Relatividad está ahí detrás, agazapada.

Dicho en términos sencillos: a bajas velocidades, los resultados obtenidos por la física newtoniana y la relativista coinciden esencialmente. A altas velocidades, sin embargo, difieren. La observación y la experimentación nos permiten concluir que es la Relatividad quien lleva razón en esa diferencia: por ejemplo, incluso a velocidades tan lejanas de la lumínica como las que caracterizan a los satélites artificiales del presente, resulta necesario sincronizar a menudo sus relojes debido a la dilatación temporal. Por eso decimos que la Relatividad incluye y mejora a la clásica. Cuando estas diferencias se tornan evidentes a los sentidos e instrumentos humanos, hasta el punto de constituir un orden de fenómenos totalmente distinto al clásico, hablamos de la aparición de fenómenos relativistas (como la mencionada dilatación temporal). Pero, estrictamente hablando, esos fenómenos relativistas estuvieron siempre ahí; sólo que no eran evidentes. Desde una perspectiva más amplia, sería mejor decir que aparecen fenómenos clásicos (los corrientes que estamos acostumbrados a ver) en un subconjunto de resultados de la Teoría de la Relatividad: por ejemplo, a baja velocidad.

Una nota sobre la palabra ‘teoría’.

A todo esto, quisiera recordarte algo sobre la palabra teoría. En español, teoría tiene varios significados distintos, y dos de ellos sí que son contrapuestos. Uno, en lenguaje vulgar o tradicional, equivale a “conjetura”, o “especulación” o “suposición”: como cuando alguien dice “¡eso sólo son teorías!”. El otro, en lenguaje riguroso y científico, significa exactamente lo contrario: una teoría científica constituye el nivel superior del conocimiento, superior incluso a la ley; de hecho, una teoría científica es un conjunto de leyes y conceptos organizados en un orden mayor del conocimiento verificado o al menos verificable experimentalmente. Por ejemplo, partes sustanciales de la Teoría de la Relatividad han sido demostradas más veces y más a fondo que la mismísima Ley de la Gravitación Universal.

En palabras de la Academia Nacional de Ciencias de los Estados Unidos,

“La definición científica formal de ‘teoría’ es muy diferente del sentido cotidiano del término. Se refiere a una explicación detallada de algún aspecto de la naturaleza que se apoya en un vasto cuerpo de pruebas. Muchas teorías científicas están tan bien establecidas que pocas evidencias nuevas podrían alterarlas sustancialmente. Por ejemplo: ninguna evidencia nueva demostrará que la Tierra no gira alrededor del Sol (teoría heliocéntrica), o que las cosas vivas no están compuestas de células (teoría celular), que la materia no esté compuesta de átomos (teoría atómica) o que la superficie terrestre no esté dividida en placas sólidas que se han desplazado a lo largo de periodos de tiempo geológicos (teoría de la tectónica de placas). Al igual que estas otras teorías científicas fundacionales, la teoría de la evolución está apoyada por tantas observaciones y experimentos confirmadores que los científicos tienen la confianza en que sus componentes básicos no serán revocados por nuevas pruebas.”

Por su parte, la Asociación Estadounidense para el Avance de la Ciencia nos lo explica así:

“En las novelas detectivescas, una ‘teoría’ es poco más que una conjetura, a menudo basada en unos pocos hechos circunstanciales. En ciencia, la palabra ‘teoría’ significa mucho más. Una teoría científica es una explicación bien sustentada de algún aspecto del mundo natural, en base a un conjunto de hechos que se han confirmado repetidamente mediante la observación y la experimentación. Tales teorías apoyadas en hechos no son ‘conjeturas’ sino descripciones fiables del mundo real.”

Es cierto que a veces se ha abusado de la palabra teoría para dar unte a hipótesis en distintos estados de verificación o refutación. Pero esto es la excepción, no la norma. También existen algunos flecos epistemológicos sobre los límites de la teoría como orden superior del conocimiento. A efectos prácticos, en la inmensa mayoría de los casos que te encontrarás a lo largo de tu vida puedes considerar la expresión teoría científica como sinónimo de conocimiento demostrado sin mucho temor a equivocarte (siempre que esté correctamente estudiada y referenciada). Como ocurre, por ejemplo, con la Teoría de la Relatividad. En términos generales, puedes permitirte una sonrisa a costa de quienes digan “¡eso sólo son teorías!” refiriéndose a una teoría científica. No olvides sacarles de su error.

¿Un ejemplo de teoría científica a la que difícilmente se puede considerar teoría verdadera? Pues la Teoría de Cuerdas, por ejemplo, pese a su popularidad. ¿Por qué? Porque algunos de sus aspectos más importantes no son falsables ni han sido demostrados (ni es probable que ocurra en un largo periodo). Con la única excepción de algunas cuestiones vinculadas a la correspondencia AdS/CFT, no realiza ninguna predicción verificable. Se trataría más bien de un modelo o una hipótesis compleja, que puede ser verdadera o falsa, pero desde luego no reúne todavía la clase de confirmación exigible a una auténtica teoría científica.

Por otra parte, todas las llamadas ciencias blandas permiten en sus teorías un grado mayor de especulación, a diferencia de los estrictos criterios utilizados en las duras (física, química, astronomía, geología y biología). Esto no quiere decir que las teorías blandas sean necesariamente falsas o exclusivamente especulativas: sólo que sus conclusiones rara vez gozan de la misma exactitud y certeza. Una diferencia sustancial entre ambas es que las blandas tienden a preferir el análisis cualitativo, mientras las duras se apoyan sobre todo en el cuantitativo.

Planeando nuestro viaje en la Abbás Ibn Firnás.

Mapa superior del sistema solar el 6 de agosto de 2020.

El sistema solar tal como estará a las 00:00 UTC del 6 de agosto de 2020, en vista superior. Simulador del sistema solar, NASA. (Clic para ampliar)

Hecha esta aclaración, sigamos adelante. Nos proponemos realizar un viaje desde la órbita de la Tierra hasta la de Plutón, lo más cerca que podamos de la velocidad de la luz. Después, regresaremos a la Tierra para almorzar. Cuando pasemos por Saturno, nos detendremos unos momentos para tomar algunas mediciones. Puesto que a altas velocidades maniobrar resulta muy complicado y se viaja fundamentalmente en línea recta, y dado que con la clase de empuje que nos gastamos podemos obviar en gran medida las órbitas habituales, realizaremos nuestro recorrido en tres tramos rectos: Tierra-Saturno, Saturno-Plutón y Plutón-Tierra. ¿El motivo del viaje? ¡Aprendizaje y placer, claro!

Para ahorrar algo de combustible, hemos elegido un día en que estos tres planetas se hallen bien dispuestos: el 6 de agosto de 2020. En ese momento, Venus, Tierra, Júpiter, Saturno y Plutón estarán en una magnífica alineación. Sí, quizás es un poco pronto para que pueda existir algo como la Abbás ibn Firnás, pero por optimismo que no quede. A fin de cuentas, la semana pasada lo hicimos con trajes de cuero de unicornio translumínico y visores de la isla de San Borondón. ;-)

Esto de la dilatación temporal, que ya mencionamos más arriba, va a producir un fenómeno curioso. Para el resto del mundo, nuestro viaje de ida y vuelta a Plutón va a durar cerca de once horas (la distancia dividida por la casi-velocidad de la luz), con lo que si salimos a las 00:00 UTC, regresaríamos a la Tierra más o menos a la hora del almuerzo (lo que en España llamamos almuerzo, lector latinoamericano ;-) ). Sin embargo, este efecto relativista va a contraer el tiempo a bordo de la Abbás ibn Firnás, con lo que para nosotros habrá transcurrido apenas una hora: regresaremos justo a tiempo para un resopón de madrugada. Lo iremos viendo sobre la marcha.

¡Allá vamos!

La Dirección Global de Tráfico ha establecido una velocidad máxima de un 20% de la velocidad de la luz en las cercanías de los planetas habitados. Y no sabes las multas que clavan, por no mencionar que los puntos del carné de pilotar se te quedan en números imaginarios (imagina que algún día lo recuperas, tralará…). Así que vamos a respetar escrupulosamente esta limitación: aunque hemos dotado a la Abbás ibn Firnás con un impulsor experimental que posee una capacidad de aceleración asombrosa (de hecho, también imaginaria, al igual que el mecanismo para que no nos aplaste…), saldremos poquito a poco. Además, esto nos permitirá observar el primer fenómeno relativista curioso, que se vuelve evidente incluso a velocidades tan bajas. Поехали!

Le damos un poquito de gas a los impulsores y pronto comenzamos a alejarnos del sistema Tierra-Luna. Entonces, al mirar hacia atrás, vemos que está ocurriendo algo extraño. ¿No parece todo ahora como… como oscuro y rojizo?

Partida de la Tierra con la Abbás ibn Firnás: corrimiento al rojo.

Partimos en dirección a Saturno, a poco menos del 20% de la velocidad de la luz. Al mirar hacia atrás para despedirnos de la Tierra, observamos que todo parece como más oscuro y rojizo.

Este corrimiento al rojo a nuestra espalda es el primer fenómeno relativista notable que vamos a observar. Si tuviéramos un objeto delante, veríamos que éste se ha corrido al azul. Pero ahora, frente a nosotros, sólo hay ya espacio interplanetario; así que por el momento no te lo puedo enseñar (lo veremos más adelante, cuando nos estemos aproximando a Saturno). Esta transformación de colores obedece al efecto Doppler, ese que hace que oigamos el ruido de un vehículo más agudo cuando se acerca y más grave cuando se aleja; sólo que bajo la forma de efecto Doppler relativista. La razón es bastante sencilla: cuando se mueve un emisor de ondas (de sonido, de luz, las que sean), estas ondas tienden a quedar comprimidas en el sentido de la marcha (lo que equivale a una menor longitud de onda, o sea una frecuencia mayor) y a quedar expandidas hacia atrás (con mayor longitud de onda, es decir, a frecuencia menor).

Efecto Doppler

Efecto Doppler

Por tanto, cuando estamos delante de un objeto que viene hacia nosotros percibimos las ondas que emite a una frecuencia superior. Y cuando se aleja, a una frecuencia inferior. El efecto Doppler aplicado a la luz provoca el corrimiento al rojo estelar que nos permitió descubrir que este es un universo en expansión, y también nos permite calcular las distancias a estrellas y galaxias remotas (porque la longitud de onda aumenta de manera conocida, y eso se puede medir). Si alguna parte del cosmos visible no estuviera expandiéndose o estuviéra contrayéndose, no observaríamos corrimiento al rojo u observaríamos corrimiento al azul (es decir: la longitud de onda percibida se reduciría). Pero tal cosa no sucede en ningún lugar observado jamás.

Y es que el efecto Doppler se produce tanto si se mueve el objeto emisor de ondas como si se mueve el receptor (nosotros). Da igual si el emisor se aleja de nosotros o nosotros de él: la longitud de onda percibida aumentará, desplazándose hacia los graves (si es un sonido) o hacia los rojos (si es luz). Lógicamente, tanto si el emisor se acerca a nosotros como si nosotros nos acercamos a él, la longitud de onda percibida se reduciría, desplazándose hacia los agudos (si es un sonido) o hacia los azules (si es luz).

Miremos de nuevo hacia adelante. Como ya nos hemos alejado lo suficiente de la Tierra, la Dirección Global de Tráfico ya nos permite acelerar a velocidades muy superiores. Conforme nos acercamos a la mitad de la velocidad de la luz, parece como si toda la luz y las estrellas que hay delante de nosotros se comprimieran hacia un lugar brillante, directamente al frente:

Vista hacia adelante a la mitad de la velocidad de la luz.

Vista hacia adelante a la mitad de la velocidad de la luz.

Mientras que, si miramos hacia atrás, ese oscurecimiento que ya habíamos observado junto con el corrimiento al rojo aumenta más y más. Las estrellas parecen haberse desplazado hacia el frente. La Tierra se distingue a duras penas ahora, negruzca y tan rojiza que su luz se corre rápidamente hacia el infrarrojo, invisible para nuestros ojos:

Vista hacia atrás a la mitad de la velocidad de la luz.

Vista hacia atrás a la mitad de la velocidad de la luz. Quizás tengas que ajustar el monitor o la luz ambiente para distinguir la Tierra, fuertemente corrida al rojo por efecto Doppler relativista y oscurecida por aberración estelar.

Cuando alcanzamos el 80% de la velocidad de la luz, este efecto es ya clamoroso:

Vista hacia adelante al 80% de la velocidad de la luz.

Vista hacia adelante al 80% de la velocidad de la luz.

Mientras que, si miramos ahora hacia atrás, ya no se ve absolutamente nada y seguiremos sin verlo mientras prosiga el viaje a estas velocidades:

Vista hacia atrás al 80% de la velocidad de la luz.

Vista hacia atrás al 80% de la velocidad de la luz.

Este fenómeno de “distorsión de la luz hacia el sentido de la marcha” se llama aberración estelar, que en su variante relativista es directamente proporcional a la velocidad con que nos movemos hacia estas estrellas. Se entiende muy bien con el famoso ejemplo del tren que viaja en un día lluvioso pero sin viento; supongamos que nos subimos a este ferrocarril y tomamos asiento de ventanilla. Mientras el tren permanezca detenido en la estación, veremos caer la lluvia así:

Caída de la lluvia a velocidad 0.

Caída de la lluvia a velocidad 0.

En cuanto el tren se ponga en marcha, nos parecerá que las gotas de agua comienzan a caer con un cierto ángulo. Cuando la velocidad del tren iguala a la velocidad de caída de la lluvia (imagen central, abajo), este ángulo es de 45º exactos. Cuanto más rápido vayamos, más observaremos este efecto; y a gran velocidad, se nos antojará que caen casi horizontales aunque en todo momento la lluvia está cayendo directamente hacia abajo:

Caída de la lluvia a distintas velocidades

Caída de la lluvia a distintas velocidades

Por su parte, al maquinista le parecerá que la lluvia cae hacia él, cada vez más y más horizontal, procedente de un punto central en el cielo. Y el factor que se ha escaqueado un ratillo en la cabina del final, mirando hacia atrás, tendrá la impresión de que ninguna gota de agua cae hacia el tren. Sustituyendo las gotas de agua por haces de luz, empezaremos a comprender por qué si miras hacia atrás ya no se ve nada (ningún haz de luz alcanza tus ojos); mientras que en el puesto de conducción frontal, toda la luz parece proceder más y más de un solo punto central. Conforme seguimos acelerando, este efecto se va volviendo más evidente.

La aberración óptica clásica, que parece desplazar la posición de las estrellas en el cielo, funciona igual que estas gotas de lluvia. Pero la aberración relativista requiere algo más. Como nada puede viajar más rápido que la luz en el vacío, incluso viajando a la velocidad de la luz (si fuera posible) tendríamos la sensación de que la luz se inclina en un ángulo de 45º (nuestra velocidad sería igual a la “velocidad de caída” de la luz). Sin embargo, en Relatividad hay que aplicar la llamada transformación de Lorentz. Entonces, el ángulo de incidencia aparente de la luz vuelve a reducirse, aproximándose a cero: exactamente igual que pasa con las gotas de lluvia cuando nuestro ferrocarril circula a alta velocidad. El resultado final, combinado con el efecto Doppler que vimos más arriba, viene a ser como sigue:

Resultado combinado del efecto Doppler y la aberración relativista en una nave que se aproxima a la velocidad de la luz.

Resultado combinado del efecto Doppler y la aberración relativista en un objeto que se aproxima a la velocidad de la luz. El punto azul es nuestra nave espacial.

Instrumentos de la Abbás ibn Firnás a 0.8c.

Instrumentos de la Abbás ibn Firnás al 80% de la velocidad de la luz. Va observándose la dilatación temporal: el tiempo de a bordo ("proper time") ya no se corresponde con el "tiempo del mundo" ("world time").

Ahora vamos a fijarnos por un instante en el panel de instrumentos de la Abbás ibn Firnás, que podemos ver a la izquierda. Hemos recorrido los primeros cien segundos-luz, unos treinta millones de kilómetros, pero esto no es lo más notable. Lo más notable es que el tiempo de a bordo ya diverge claramente del tiempo exterior. En la Tierra han transcurrido 188 segundos desde nuestra partida, pero para nosotros han pasado sólo 149. Ya apuntamos este asunto más arriba: estamos ante la dilatación temporal. Y también ante la compresión espacial: si alguien nos viera pasar desde fuera, le daría la impresión de que estamos como achatados o comprimidos en el sentido de la marcha.

¿Cómo es esto posible? Venga, va, esta es la rayada padre de la Relatividad, que mucha gente acepta porque le dicen que es así pero no se lo acaba de creer aunque –como te conté más arriba– obligue a estar ajustando constantemente los relojes de los satélites. Hasta en aviones se ha llegado a medir. Bien, tenemos un problema aquí: esto no se puede explicar, ni siquiera contar el porqué, sin introducir todo el aparato matemático de la Teoría de la Relatividad. Por suerte, para al menos relatárnoslo, contamos con nuestro añorado amigo Carl Sagan; no voy a tratar yo de repetir torpemente en unas pocas líneas lo que él narró genialmente:


Carl Sagan hablando sobre la Relatividad en Cosmos (ve siguiendo las partes consecutivas).

De paseo por el sistema solar.

Hemos seguido acelerando la Abbás ibn Firnás hasta su velocidad de crucero, que es el 99,9% de la velocidad de la luz. Todos los efectos mencionados anteriormente se han magnificado muchísimo y lo que podemos ver ahora desde nuestro puesto de mando es esto:

Vista frontal al 99,9% de la velocidad de la luz.

Vista hacia adelante al 99,9% de la velocidad de la luz.

La aberración relativista resulta ahora enorme y la dilatación temporal es tal que por cada segundo a bordo transcurren unos 23 en la Tierra. Este efecto túnel de luz se debe fundamentalmente a la aberración. A esta pavorosa velocidad, de unos 299.500 kilómetros por segundo, nuestro sistema solar se convierte en un sitio pequeño. Estamos dando un paseo por el barrio para abrir el apetito, como si dijéramos. Enseguida tenemos que empezar a frenar, porque nos estamos acercando ya a Saturno… y frenar una cosa que avanza al 99,9% de la velocidad de la luz requiere tanto tiempo y energía como acelerarla.

¡Ahí está! Qué bonito es, ¿verdad? Como te dije, lo vemos fuertemente corrido al azul debido al efecto Doppler, puesto que aún nos estamos aproximando a él al 41% de la velocidad de la luz:

Aproximación a Saturno al 41% de la velocidad de la luz.

Aproximación a Saturno al 41% de la velocidad de la luz.

Seguimos frenando para sobrepasarlo a una velocidad inferior al 1% de la lumínica, con objeto de tomar esas medidas que queríamos hacer. Al reducir la velocidad, los efectos relativistas van desapareciendo y Saturno se nos presenta en todo su esplendor y con su color habitual:

Llegada a Saturno a 0,001c.

Llegada a Saturno al 0,001 % de la velocidad de la luz, es decir, unos 10.800 km/h (3 km/s).

Fijándonos en los instrumentos, observamos que –incluyendo la aceleración, el frenado y alguna otra pequeña maniobra– en la Tierra han transcurrido 4.500 segundos desde nuestra partida: una hora y cuarto. Sin embargo, a bordo sólo han pasado 701 segundos, poco más de once minutos. Este es el efecto de la dilatación temporal, que nos permitiría circunnavegar el universo conocido en pocas décadas utilizando una nave sólo un poco más rápida que la Abbás ibn Firnás, aunque la Tierra, el sistema solar, la galaxia y el universo conocido se hubieran reducido a polvo cósmico mientras tanto.

¿Más rápida que la Abbás ibn Firnás, capaz de viajar al 99,9% de la velocidad de la luz en el vacío? Sí. Como hemos dicho, al 99,9%, cada segundo a bordo equivale a unos 23 segundos exteriores. Y, por tanto, y un año a bordo son veintitres años para el resto del mundo. Bien: pues al 99,99%, un decimal más, cada año nuestro equivaldría a 71 años en el exterior. Al 99,99999999%, a setenta mil años. Y al 99,9999999999999%, a dos millones y medio de años. Es decir: con esta última velocidad, podríamos llegar a la galaxia Andrómeda en menos de un año de viaje para nosotros, aunque en el resto del universo hubieran pasado los dos millones y medio enteros.

Esto de la dilatación temporal relativista lo vamos a ver aún mejor conforme completemos nuestro viaje. Muy bien: ya hemos medido lo que queríamos medir aquí y aceleramos de nuevo para seguir hacia Plutón. Al alejarnos, igual que sucediera cuando salimos de la Tierra, miramos hacia atrás y vemos cómo Saturno se corre al rojo mientras la luz vuelve a distorsionarse hacia el sentido de la marcha:

Partida de Saturno a 0,15c, mirando hacia atrás.

Partida de Saturno al 15% de la velocidad de la luz, mirando hacia atrás.

También observamos cómo se oscurece, debido a la aberración óptica que tiende a concentrar la luz hacia el sentido de la marcha. Muy bien, pues ahora viene un tramito largo. Nos vamos hasta Plutón, que está a unos 5.750 millones de kilómetros de la Tierra y 4.470 millones de nuestra posición actual. Lo recorreremos al 99,9% de la velocidad de la luz, teniendo de nuevo como único paisaje el túnel de luz que observamos más arriba.

Como vamos a tardar un ratito en llegar, aprovecharé para mencionarte otro efecto óptico relativista que no vamos a ver durante este viaje, porque ya me he encargado de que no nos cruzáramos con nada por el camino. Este fenómeno es la rotación de Terrell, que se produce cuando un objeto pasa ante nuestros ojos a velocidades relativistas. En este caso, debido a fenómenos muy parecidos a los que estamos observando, el objeto aparece distorsionado, girado con respecto a nuestra posición y oscurecido:

Rotación Terrell

La rotación de Terrell. En la imagen superior, un tranvía pasa ante nuestros ojos a velocidades lentas comunes; no se observa ninguna distorsión notable. En la imagen inferior, el mismo tranvía se desplaza a velocidad relativista: la rotación de Terrell hace que nos presente "girado" con respecto a nuestra posición. La contracción espacial, el efecto Doppler y la aberración óptica, además, lo distorsionan y oscurecen.

Fin del inciso. El trayecto Saturno-Plutón dura diecisiete minutos para nosotros; en la Tierra, sin embargo, han transcurrido otras cuatro horas y cuarto largas. Bien, ahí lo tienes, arriba a la derecha:

En Plutón

En Plutón

Ya, es un planetoide eternamente congelado en los confines del sistema solar. ¿Qué te esperabas? Bueno, venga, vámonos de vuelta para la Tierra, que se hace tarde. Pon a cero los cronómetros para calcular los tiempos del viaje de regreso. Y… ¡adelante!

Universo

Los límites del universo observable se encuentran establecidos actualmente en unos 46.500 millones de años luz. Una nave espacial capaz de mantener una aceleración constante de 1g podría circunnavegarlo entero durante la vida de sus ocupantes humanos.

¿Son posibles estas velocidades? Posibles, en sentido estricto, sí: matemáticamente, no hay ningún problema en acelerar un objeto de manera constante. Si yo acelero una nave espacial a una ge (9,81 m/s2), para que la tripulación vaya cómoda y ni se entere, en cinco años de a bordo (84 para los demás) estaré al 99,9% de la velocidad de la luz. En diez años y pico, al 99,9999999%. En menos de doce, puedo estar al otro lado de la galaxia. En diecisiete y algún mes, al 99,9999999999999%, y habré recorrido más de veinte millones de años luz (en todos los casos, luego necesitaré otro tanto para frenar). En 52 años, aproximadamente una vida adulta humana, podríamos recorrer 439.070 millones de años luz (26 años acelerando y 26 frenando).

Esto conduce a una conclusión curiosa. El radio del universo observable, en estos momentos, es de unos 46.500 millones de años-luz. Y por tanto, aplicando la elemental ecuación P = 2πr, su perímetro es de 292.169 millones de años luz. Esto es: en algo menos de cincuenta y dos años, efectivamente, se puede circunnavegar el universo observable actual entero. Y cuanto mayor es la distancia, más eficaz resulta esta forma de viajar. El universo entero está a nuestro alcance si conseguimos construir una nave capaz de mantener una aceleración sostenida de una ge durante unas décadas.

Y, por supuesto, si no nos importa hacer un viaje sólo de ida en el tiempo: para el resto del cosmos, habrían pasado todos esos miles de millones de años. Como ni conocemos ni sospechamos forma posible alguna de viajar hacia atrás en el tiempo, en el siglo que lleguemos nos quedamos. Por esas fechas, haría ya mucho que nuestro Sol se habría convertido en una enana blanca, pero estaríamos aún muy dentro de la Era Estelífera: en un universo todavía ocupable y utilizable, por mucho.

¿Es realizable una nave espacial así? Puesss… no lo sabemos. :-D Como te dije al principio, con la tecnología actual, desde luego que no. Sin embargo, la ciencia actual ya viene planteando algunas posibilidades muy interesantes, que te contaré cuando hablemos más en profundidad de la Abbás ibn Firnás. Preguntarnos ahora mismo si algún día habrá naves espaciales de empuje constante capaces de aproximarse a la velocidad de la luz sería como preguntarle a un señor del siglo XVII si sería posible construir aviones supersónicos. Bueno, no tanto. Nosotros empezamos a tener algunas aproximaciones. Esto es, pues, algo que pertenece al reino del ya veremos.

Ah, sí, como en el camino de vuelta tenemos que volver a pasar muy cerca de Saturno, vamos a aprovechar para observar la acción de todos estos efectos ópticos relativistas cuando sobrepasamos un objeto próximo. Prepara la cámara y mucha atención, porque el sobrevuelo va a ser muy breve, yendo como vamos de nuevo al 99,9% de la velocidad de la luz. Atención… atención… ¡ya!

Sobrevuelo de Saturno al 99,9% de la velocidad de la luz (toma 1).

Sobrevuelo de Saturno al 99,9% de la velocidad de la luz (toma 1).

Sobrevuelo de Saturno al 99,9% de la velocidad de la luz (toma 2).

Sobrevuelo de Saturno al 99,9% de la velocidad de la luz (toma 2).

Extraño, ¿eh?

El tramo Plutón-Tierra dura diecinueve minutos y medio a bordo de la Abbás ibn Firnás, aceleraciones y frenazos incluidos, pero en la Tierra transcurren otras cinco horas y media largas. Así pues, nuestro viaje hasta los confines del sistema solar se está tomando casi once horas terrestres; y sin embargo, aquí a bordo sólo han pasado cincuenta minutos. Ahora ya estamos llegando a casa y hay radares de la DGT, o sea que reducimos la velocidad por debajo del 20% de la lumínica y nos aproximamos con cuidadito. Podemos ver la Tierra, la Luna y hasta el Sol corridos al azul, pues nos estamos acercando a ellos:

Llegando a la Tierra al 19% de la velocidad de la luz.

Llegando a la Tierra al 19% de la velocidad de la luz.

Y, finalmente, nos establecemos de nuevo en una órbita de aparcamiento alrededor de la Tierra. Los fenómenos ópticos relativistas dejan de ser evidentes (aunque siguen ahí). Ya nos podemos ir a almorzar (según el tiempo terrestre) o a recenar (según nuestro tiempo de a bordo). A tu criterio. El resto del domingo, te lo dejo libre.

La Abbas ibn Firnás se halla ya estacionada en órbita alrededor de la Tierra.

La Abbas ibn Firnás se halla estacionada en órbita alrededor de la Tierra.

Continuará: La nave espacial Abbás ibn Firnás

175 Comentarios Trackbacks / Pingbacks (3)
¡Qué malo!Pschá.No está mal.Es bueno.¡¡¡Magnífico!!! (79 votos, media: 4,91 de 5)
Loading...Loading...
Be Sociable, Share!

La bomba del juicio final.

Autoextinción humana.

En este blog ya te he contado cómo funciona un arma nuclear. Y un arma termonuclear. Y un misil balístico intercontinental. Y unas cuantas cosas más, como las posibilidades reales de los satélites espías, los aviones sin piloto o las armas láser. Hasta hemos hablado del HAARP y la bomba del arco iris, para acabar con la civilización moderna en menos de un segundo, aunque tenga poco que ver con las especulaciones de los conspiranoicos. ¿Qué nos falta? Bueno, pues aún nos faltan cosas, claro. En esto de aplicar el ingenio para joder al prójimo (en ambos sentidos del término, el bueno y el malo), los seres humanos hemos resultado ser un bicho excepcionalmente brillante.

Claro que, por otro lado, también fuimos capaces de erradicar la viruela y otras muchas enfermedades, realizar viajes interplanetarios, crear elementos nuevos, empezar a comprender el cosmos del que formamos parte y otras mil cosas que nos permitieron abandonar un pasado de mierda. Sí, los seres geniales siempre son así de contradictorios. Un delfín jamás construiría un Treblinka nazi, ni podría organizar a los jemeres rojos, ni perpetraría la colonización imperialista del Congo, ni funda tiranías teocráticas, ni se dota de dioses vengativos; pero tampoco es capaz de traer niñas pequeñas desde más allá de la muerte o preguntarse con quién más comparte la realidad. En suma, colectivamente y a pesar de todos los pesares, según mi personal opinión no nos ha ido del todo mal desde que echamos a andar por los caminos de la ciencia.

Leó Szilárd a los 18 años de edad.

Leó Szilárd a los 18 años de edad.

Hablando de seres muy geniales y muy contradictorios, permíteme presentarte al físico de origen húngaro Leó Szilárd, discípulo de Einstein y Von Laue. Hay distintas maneras de describir al doctor Szilárd, todas ellas a medio camino entre “el jodío genio” y “el puto amo”, pero elevado al cubo y multiplicado por alguna potencia de diez. Resulta difícil sobreestimar su inteligencia, capacidad y visión de futuro. Entre sus aportaciones a la humanidad se cuentan el motor de Szilárd, el refrigerador por absorción y la reacción nuclear en cadena que abrió el paso a la Era Atómica. Junto con Enrico Fermi, es el inventor del reactor nuclear.

Desafortunadamente, sus creaciones también incluyen la bomba atómica (solicitó la patente en fecha tan temprana como 1934) y una hipotética bomba del juicio final capaz de acabar con la humanidad entera, que vamos a comentar en este post. A tenor de estas dos últimas invenciones se podría pensar que el doctor Szilárd, por muy genial que fuese, era también un pelín hideputa. Nada más lejos de la realidad. Leó Szilárd, un judío secular de ideas izquierdistas y esencialmente pacifista, estaba considerado por todos los que le conocieron como un tipo estupendo, una bellísima persona y un trabajador nato: la clase de hombre con el que cualquiera se iría a tomar cañas y no te importaría si le tirara los trastos a una hija tuya aunque fuese algo extravagante. Se decía sobre él que de tan bueno y cariñoso y currante y genial, casi daba miedo.

Aunque era el padre de la bomba atómica y el verdadero redactor de la carta de Einstein a Roosevelt para recomendar su construcción, fue también el impulsor de la carta de los 155 para pedir que no se usara contra poblaciones civiles, sino que se realizara una demostración disuasoria en lugar despoblado. Obviamente, en esto último no le hicieron ni caso. Persistente, fundó junto a gente como Einstein o Linus Pauling la primera organización pacifista y antinuclear del mundo: el Comité de Emergencia de los Científicos Atómicos. Más tarde, el Council for a Livable World. Y en cuanto llegó a la conclusión de que este nuevo tipo de armamento devastador había llegado para quedarse, no quiso tener nada más que ver en el asunto y cambió de profesión: se hizo biólogo molecular. Sí, hablamos de la clase de inteligencia que es capaz de saltar de la física atómica a la biología molecular como quien se cambia de pantalones y continuar realizando contribuciones valiosas.

¿Qué es lo que empuja a un tipo tan listo y tan majo para convertirse en el padre de las armas nucleares y en el teórico de la bomba del juicio final? Sencillo: el miedo. Además de todas estas capacidades, Szilárd era un brillante analista político que supo predecir el advenimiento de la Primera Guerra Mundial, el ascenso de los nazis al poder y su conquista de Europa. Esto le empujó, judío y rojillo como era, a residir en hoteles con la maleta siempre preparada. En 1933, el mismo año en que Hitler se convertía en canciller de Alemania, dijo aquello de “estos aquí no me pillan de pardillo” y se marchó a vivir en el Reino Unido para trabajar con Ernest Rutherford. En 1936, entregaba al Almirantazgo Británico la patente de la bomba atómica que poseía con el propósito de garantizar su secreto.

Alberto Einstein y Leo Szilard

Leó Szilárd con Albert Einstein.

Aún le debió parecer que no había puesto suficiente océano por medio entre su persona y el régimen de Herr Hitler. En 1938, un año antes de que empezara la Segunda Guerra Mundial, aceptó una propuesta de la Universidad de Columbia y se mudó a Nueva York. Durante este proceso se fue encontrando con otros refugiados atómicos huídos de los nazis como Enrico Fermi, Edward Teller, Eugene Wigner, Lise Meitner, Hans Bethe o el propio Albert Einstein (y posteriormente con Niels Bohr): la más magnífica colección de cerebros reunida jamás, todos con un miedo y un enemigo común. Desde allí, Szilárd seguía con atención los avances alemanes en física nuclear hasta que éstos fueron clasificados. Entonces, temiendo que la Alemania nazi pudiera construir una bomba atómica y apoderarse del mundo con ella, sugirió a Einstein que firmara la cartita de marras a Roosevelt. El resto es historia.

Y, derrotados ya los nazis y sus aliados euroasiáticos excepto Franco, ¿a qué vino el puntito de la bomba del juicio final, postulada en febrero de 1950? Pues a una razón un poco más retorcida, pero también sustentada en el temor: observando cómo la Humanidad se deslizaba hacia una posible guerra nuclear, Szilárd quiso advertir a todo el mundo de los peligros de seguir semejante camino por el procedimiento de meterles el miedo en el cuerpo. Quiso decir que por esa vía íbamos propulsados a la autodestrucción de la humanidad, a la extinción, y que lograrlo de manera absoluta sería tan sencillo como… como esto:

Destrucción mutua asegurada por la vía de la extinción.

Lo que vino a decir Szilárd es que cualquier potencia nuclear sometida al terror absoluto de la devastación atómica, incluso ya derrotada, podía garantizar la destrucción mutua asegurada mediante una última y definitiva represalia total sin salir siquiera de su propio territorio por el expeditivo procedimiento de matar a todo el mundo literalmente; con lo que no tenía sentido intentar vencer en una guerra así, ni gastar recursos para prepararla, porque estaba empatada a cero de antemano. A población cero, quiero decir.

En aquellos momentos de principios de la Era Atómica, esta idea le parecía exageradísima a los políticos, a los militares y a buena parte de la sociedad. En 1950 faltaba casi una década para el desarrollo del primer misil balístico intercontinental, la URSS acababa de detonar su primera bomba nuclear, el número de núcleos explosivos en todo el mundo ascendía a unas pocas decenas y aún iba al colegio buena parte de la gente que se apuntaría entre sí con decenas de miles de cabezas termonucleares veinte o treinta años después. El invierno nuclear ni se sospechaba todavía. Por lo que respectaba a los presidentes y generales, las armas atómicas eran aún sólo una bomba gorda (en el sentido explosivo, pero también por su peso) que había que transportar trabajosamente hasta sus blancos con bombarderos emergidos de la Segunda Guerra Mundial. Sin embargo, científicos de la talla de Szilárd ya preveían lo que se avecinaba y quisieron dar la alarma. Pero los políticos, militares, periodistas y el público estaban muy cegados con sus delirios atómicos de grandeza, poder, éxito y falsa seguridad.

Gráfico en la patente de la bomba atómica de Leó Szilárd

Gráfico en la patente original de Leó Szilárd para una cierta "bomba atómica" (1934)

Así que Szilárd quiso hacerles ver la realidad. Y el hombre tan bondadoso que daba miedo se sentó y pergeñó un arma capaz de exterminar a la especie humana entera con una sola explosión o un número muy reducido de explosiones en cualquier parte del mundo. Quizá así toda aquella gente poderosa se aviniera a razones. No podían estar tan locos, ¿no? Quizá la gente escucharía.

Incluso usando bombas termonucleares, por aquellos tiempos aún en el tablero de diseño, causar un daño directo a la Tierra tan grande que condujera a la extinción humana completa resultaba impracticable –y en gran medida sigue siéndolo, en ausencia de tecnologías de la antimateria y sin tener en cuenta el invierno nuclear o los efectos sinérgicos de una gran cantidad de detonaciones durante el transcurso de una guerra termonuclear a gran escala–. Así que Szilárd fue por otro camino: dado que todos los seres humanos dependemos de la estrecha franja vertical de aire respirable que rodea a la Tierra y los primeros metros de mar, si esta capa (y/o el suelo) resultara contaminada con dosis mortíferas de radiación por todo el globo durante el tiempo suficiente, entonces la bomba del juicio final sería posible. Tendría que ser una bomba sucia o, más técnicamente, un arma de radiación residual incrementada.

Sin embargo, esto resulta más fácil de decir que de hacer. Por un lado, no hay isótopos que sean al mismo tiempo muy radioactivos y muy duraderos: cuanto más activo es un isótopo, antes se consume. O, dicho más técnicamente, menor es su vida media y antes transmuta en otras cosas que no son radioactivas o son poco radioactivas. Por otro, cubrir cada kilómetro cuadrado de la Tierra con suficiente cantidad de isótopos radioactivos como para cargarse a todo bicho viviente requiere una notable cantidad de material. En consecuencia, esta sustancia aniquiladora no puede ser muy cara y el mecanismo de dispersión debe ser extremadamente eficaz. A favor juegan los vientos, que tienden a repartir la contaminación por todo el planeta, como podemos ver en estas simulaciones de 2007 que contemplan distintos escenarios de dispersión de los humos en una guerra nuclear tradicional:

Animación con la diseminación de 5 Tg de humos en caso de guerra nuclear entre India y Pakistán.

Animación con la diseminación de 5 Tg de humos en caso de guerra nuclear entre India y Pakistán, a partir de un 14 de mayo, utilizando todo su arsenal disponible en 2007. Realizada por Luke Oman, NASA, sobre las conclusiones del estudio de la Universidad de Colorado, la Universidad Rutgers y la Universidad de California en Los Angeles: Climatic Consequences of Regional Nuclear Conflicts (en Atmospheric Chemistry and Physics, 7, 2003–2012, 2007). El modelo computacional utilizado es el ModelE del Centro Goddard de la NASA. Esta diseminación provocaría fuertes alteraciones climáticas y problemas agrícolas pero probablemente no un invierno nuclear global.

Animación con la diseminación de 50 Tg de humos en caso de guerra nuclear entre EEUU y Rusia usando un tercio de su arsenal en 2007.

Animación con la diseminación de 50 Tg de humos en caso de guerra nuclear entre Estados Unidos y Rusia, a partir de un 14 de mayo, utilizando un tercio de su arsenal disponible en 2007. Realizada por Luke Oman, NASA, sobre las conclusiones del estudio de la Universidad John Hopkins y la Universidad Rutgers: Nuclear winter revisited with a modern climate model and current nuclear arsenals: Still catastrophic consequences (en Journal of Geophysical Research, Vol. 112:2007, D13107, doi:10.1029/2006JD008235.). El modelo computacional utilizado es el ModelE del Centro Goddard de la NASA. Esta diseminación provocaría con bastante probabilidad un invierno nuclear global.

Animación con la diseminación de 150 Tg de humos en caso de guerra nuclear entre EEUU y Rusia usando todo su arsenal en 2007.

Animación con la diseminación de 150 Tg de humos en caso de guerra nuclear entre Estados Unidos y Rusia, a partir de un 14 de mayo, utilizando todo su arsenal disponible en 2007. Realizada por Luke Oman, NASA, sobre las conclusiones del estudio de la Universidad John Hopkins y la Universidad Rutgers: Nuclear winter revisited with a modern climate model and current nuclear arsenals: Still catastrophic consequences (en Journal of Geophysical Research, Vol. 112:2007, D13107, doi:10.1029/2006JD008235.). El modelo computacional utilizado es el ModelE del Centro Goddard de la NASA. Esta diseminación provocaría con gran probabilidad un invierno nuclear global fuerte y prolongado.

Esta acción de los vientos es clave para el diseño de la bomba del juicio final: si se consigue propulsar a la alta atmósfera suficiente cantidad de material fuertemente irradiado y capaz de mantener la radioactividad durante un periodo prolongado, en vez de un invierno nuclear nos hallaríamos ante un verano radiológico… y muy calentito. Pero, ¿qué clase de material puede ser este? ¿Y cómo aseguraremos su diseminación de semejante modo?

Cobalto refinado electrolíticamente.

Cobalto natural (cobalto-59) refinado electrolíticamente, con una pureza del 99,9%. Mediante activación neutrónica se transforma en cobalto-60, un isótopo radioactivo con 5,26 años de vida media, potente emisor de radiación gamma.

La bomba-C.

Szilárd consideró varios isótopos posibles para su bomba del juicio final y finalmente se centró en cuatro: el cobalto-59, el oro-197, el tantalio-181 y el zinc-64. Para la propulsión, lo tuvo claro: una bomba termonuclear de alta potencia, muchos megatones, sobradamente capaz de proyectar el material a la estratosfera y más allá. Ninguno de todos estos isótopos es radioactivo en condiciones normales: se trata de elementos corrientes bajo su forma más normal en la naturaleza. El oro es raro y caro, así como el tantalio, pero zinc hay a patadas y el cobalto se extrae a razón de más de 50.000 toneladas anuales.

La idea radica en que, sometidos a la intensa radiación neutrónica generada por un explosivo termonuclear, estos cuatro elementos absorben un neutrón y pasan a convertirse –respectivamente– en cobalto-60, oro-198, tantalio-182 y zinc-65. Y, mi estimado lector, mi estimada lectora, eso no es la clase de cosa que quisieras ver en el aire que respiras. Los cuatro son inestables y virulentamente radioactivos. Si prescindimos del oro y el tantalio por caros, el zinc-65 tiene una vida media de 244 días y el cobalto-60, de cinco años y cuarto antes de que 1/e del material vuelva a estabilizarse.

Así pues, la bomba del juicio final de Leó Szilárd, el pacifista bondadoso, sería una bomba de cobalto. Existe un dispositivo médico para radioterapia llamado comúnmente bomba de cobalto, con gran utilidad en el tratamiento del cáncer. Sin embargo, la bomba de cobalto de Szilárd tiene poco que ver: sólo se parecen, de forma bastante paralela, en su mecanismo de acción a nivel nuclear. La cuestión en ambos casos es que el cobalto-60 emite dos rayos gamma para convertirse en níquel corriente, con una energía 320 veces superior a la del radio; y sigue haciéndolo durante mucho tiempo. En su potencial aplicación militar, asegura una notable cantidad de fuentes de radiación gamma repartiéndose por toda la atmósfera y permaneciendo en ella o en el suelo y el mar a lo largo de años.

Para que nos hagamos una idea: en una bomba termonuclear de fisión-fusión-fisión corriente, la contaminación producida por la funda exterior o el tamper interior de uranio-238 es muy intensa al principio pero decae rápidamente. Una hora después de la explosión de un arma termonuclear normal, la radiación emitida por los productos derivados del U-238 es 15.000 veces más intensa que la ocasionada por el cobalto-60. Una semana después, 35 veces más. Un mes después, cinco veces. A los seis meses, son iguales. Pero en un año la radiación generada por el cobalto-60 es ocho veces superior a la de los productos resultantes de la fisión del uranio-238, y a los cinco años, 150 veces más intensa. El cobalto asegura que la radiación producida por una explosión atómica perdurará durante tiempo prolongado. Toda vida expuesta a esta radiación irá deteriorándose y ocasionalmente mutando, en una especie de Hiroshima interminable que puede extenderse a lo largo de décadas antes de que la radioactividad retorne a cifras sensatas. Si se consigue cubrir todo el planeta con cobalto-60, las probabilidades de supervivencia para la especie humana son francamente limitadas: vendría a ser algo así como someter a toda la humanidad a radioterapia permanente.

Disposición especulativa de una carga del juicio final.

Disposición especulativa de una posible "carga del juicio final". 1.- Acceso / control. 2.- Operaciones / mantenimiento. 3.- Generador eléctrico autónomo. 4.- Controlador automático (posible "mano del hombre muerto"). 5.- Carga termonuclear de alta potencia. 6.- "Balsa" de cobalto. - Esta disposición provocaría también que, si alguien atacara la instalación con un arma nuclear, ocasionaría parcialmente el efecto que pretende evitar. (Clic para ampliar)

Dicen que Szilárd bautizó su creación como bomba-C. C, de cobalto. Estimó que, por el sencillo procedimiento de sustituir la funda de uranio por otra de cobalto en cuatrocientas de los miles de bombas atómicas que se llegarían a construir, bastaría para cepillarse a la humanidad entera. O, alternativamente, se podría construir un solo gran dispositivo en cualquier lugar. O unos pocos. Y se dedicó a hablar de ella abiertamente, incluso en la radio, buscando provocar la reflexión a través del temor.

Inmediatamente, surgieron partidarios del armamento nuclear tratando de demostrar que tal cosa no resultaba posible. James R. Arnold, del Instituto de Estudios Nucleares de Chicago, intentó rebatir su idea sacando los cálculos matemáticos para semejante arma de extinción… y concluyó que era posible, sin duda, con una masa de unas 110.000 toneladas de cobalto. Caro y poco practicable, pero no imposible. Otros estudios redujeron la cifra significativamente. En principio, para cubrir cada kilómetro cuadrado de la superficie terrestre con un gramo de cobalto-60, sólo se requieren 510 toneladas; pero esto supone una dispersión perfecta imposible de obtener. En algún punto entre las 510 y las 110.000 toneladas se encuentra la verdad. Si uno se conforma con asegurar el exterminio en un área determinada, o con hacerle la vida muy difícil al mundo entero aunque no llegue a ocasionar la extinción, la cantidad desciende mucho más. Utilizando cargas múltiples, la eficiencia en la dispersión aumenta enormemente.

Pero no fueron estos detractores conversos los que horrorizaron a Szilárd, sino descubrir que le estaban tomando en serio. El geoquímico nuclear Harrison Brown, que se había destacado aislando plutonio para el proyecto Manhattan, declaraba triunfalmente a quien le quisiera escuchar: “las potencias occidentales podrían hacer estallar bombas de hidrógeno-cobalto en una línea norte-sur sobre la longitud de Praga, que destruiría toda vida en una franja de mil quinientas millas de ancho, extendiéndose desde Leningrado a Odessa; y tres mil millas de profundidad, desde Praga hasta los Montes Urales. Este ataque producidía una tierra quemada sin precedentes en la historia.” Diversas autoridades políticas y militares comenzaron a ponerse en contacto con él para considerar las posibilidades de su nueva arma. La gente que tomaba las decisiones no sólo no se había asustado, sino que se estaban interesando en construir esas temibles bombas de cobalto. Quizás fue en este momento cuando el bueno de Leó, que ya era el padre de un arma devastadora y no quería serlo de dos, decidió abandonar definitivamente la física atómica –cosa que ya había empezado a hacer en 1947– y pasarse con armas y bagajes a la biología molecular. No le faltaron acusaciones de traidor, comunista, perroflauta y prosoviético por negarse a seguir desarrollando la bomba del juicio final.

Portacontenedores

Hasta la más poderosa de las armas termonucleares actuales cabe muy sobradamente en un contenedor estándar de 20 pies, con o sin tamper o funda de cobalto. Incrementar su capacidad contaminante sería tan sencillo como introducir más cobalto común en los contenedores de alrededor, sin ningún límite específico. Un arma así ni siquiera necesitaría entrar a puerto para provocar inmensa mortandad de alcance regional y graves problemas debido al arrastre de la contaminación por los vientos. Una tonelada de cobalto vale actualmente unos 33.000 euros; usando zinc en su lugar, el precio cae a aproximadamente 1.700 euros por tonelada.

¿Pero es realmente practicable?

Todos los indicios apuntan a que ni EEUU ni la URSS ni nadie más llegaron a construir realmente una de estas armas de hidrógeno-cobalto. Sin embargo, resulta evidente por sí mismo que no existe ningún motivo por el que no se pueda envolver un arma nuclear o termonuclear en una cantidad mayor o menor de cobalto común.

Se ha postulado recientemente de modo muy insistente la posibilidad de que un grupo terrorista pudiera optar por una bomba sucia, recurriendo a explosivos convencionales con residuos nucleares en vez de un arma atómica verdadera: esto no tendría ni una fracción del efecto de una bomba de cobalto y su alcance sería eminentemente local. La posibilidad de que un grupo terrorista consiga y opere un arma nuclear se ha demostrado francamente remota: son equipos tecnológicos complejos cuyas exigencias de mantenimiento y operación pegan mal con la naturaleza clandestina de estas organizaciones. En todo caso, una bomba del juicio final digna de tal nombre es asunto de estados modernos o entidades de similar poder y sofisticación.

¿Y por qué no la crearon? Básicamente, porque su utilidad militar es reducida y existen maneras más flexibles y selectivas de llevar la devastación total al enemigo sin necesidad de cargarse a media humanidad… o la humanidad entera.

¿Sería verdaderamente capaz de cargarse a la humanidad entera? Es difícil de decir. Con el suficiente cobalto, sí. ¿Pero cuánto es ese cobalto? Aparentemente, según los estudios mencionados más arriba, harían falta unas decenas de miles de toneladas. ¿Cuánta radiación hace falta para matarnos? También resulta complicado de asegurar. En general, se considera que una absorción de cuerpo entero superior a ocho grays es prácticamente letal, y una de treinta, mortífera con toda seguridad. Sin embargo, estos estudios contemplan una absorción puntual, en un solo episodio (una explosión, un accidente, etc.) del que normalmente somos rescatados y evacuados; por su parte, los pacientes de radioterapia pueden absorber fácilmente treinta grays en lugares localizados del organismo a lo largo de un tratamiento. En general, somos más resistentes a la radiación cuando la absorción se produce por partes (en episodios separados en el tiempo y/o en puntos determinados del cuerpo).

Diseño esquemático de una bomba de hidrógeno-cobalto

Diseño esquemático de una bomba termonuclear de hidrógeno-cobalto. Para entender el funcionamiento de un arma de esta clase, lee el post "Así funciona un arma termonuclear". (Clic para ampliar)

No parece haber mucha información pública disponible sobre los efectos de una irradiación sostenida en el tiempo como la que podría ocasionar una de estas bombas de cobalto. En principio la absorción se acumularía rápidamente, conduciendo a la muerte con celeridad. Sin embargo, los seres humanos también somos notablemente capaces en la habilidad de salir por patas, ponernos a cubierto y buscarnos la vida en condiciones extremas. Aunque la mortandad sería enorme y la calidad de vida empeoraría radicalmente (por no mencionar el nivel de vida, que se iría a paseo de hoy para mañana), tengo mis dudas de que no pudiera sobrevivir una fracción significativa de la especie humana a menos que la diseminación sea abismalmente alta (imprácticamente alta, de hecho). Si estas explosiones atómicas de hidrógeno-cobalto se produjeran durante el transcurso de una guerra nuclear, en combinación con el efecto invernadero provocado por la misma, entonces sí considero bastante probable que nos viésemos abocados a una situación Toba.

Como te digo, parece que al final la idea de Szilárd tuvo algún efecto parcial y este tipo de arma no se llegó a construir. Realmente, es que no tiene mucho sentido: a pesar de esas organizaciones extrañas que crean los guionistas para las pelis, no conozco ninguna idea política, doctrina económica o dogma religioso digno de mención que proponga el exterminio total de la especie humana (incluyendo el suicidio completo, claro). Militarmente, tampoco tiene demasiada lógica: los soldados quieren alcanzar la victoria y derrotar al enemigo, o en su caso disuadirle, no erradicar toda vida animal del planeta Tierra. En términos generales, todo el mundo tiene hijos, sobrinos, ahijados o a sí mismos; la mayoría de personas –incluidos quienes detentan algún cargo de poder– quiere dejar alguna clase de herencia positiva para el futuro a título individual o colectivo, sobre unas convicciones más acertadas o más equivocadas. Como Leó Szilárd, por ejemplo, el hombre bueno que inventó la manera de matarnos a todos. Y para eso, tiene que haber un futuro.

112 Comentarios Trackbacks / Pingbacks (6)
¡Qué malo!Pschá.No está mal.Es bueno.¡¡¡Magnífico!!! (79 votos, media: 4,85 de 5)
Loading...Loading...
Be Sociable, Share!

¿Por qué ya no tenemos aviones civiles supersónicos?

Hace treinta años, había más de veinte aviones civiles supersónicos surcando los cielos.
Hoy, no queda ninguno y no se prevé que vuelva a suceder pronto. ¿Por qué?

Primer avión civil supersónico

Este Tupolev Tu-144, matrícula CCCP-68001, fue el primer avión civil supersónico del mundo. Todavía un prototipo, realizó su vuelo inaugural el 31 de diciembre de 1968 desde la base aérea de Zhukovsky (URSS), dos meses antes que el prototipo inicial del Concorde F-WTSS. La primera ruta comercial supersónica fue establecida con Tu-144 entre Moscú y Almá-Atá el 26 de diciembre de 1975, seguida por las del Concorde a partir del 21 de enero de 1976.

Último aterrizaje de un avión civil supersónico

Los últimos segundos de la historia del vuelo civil supersónico: el Concorde matrícula G-BOAF de British Airways aterriza en Filton (Reino Unido) a las 14:08 del 26 de noviembre de 2003, completando así el último viaje de este tipo de transporte hasta la actualidad.

Siempre se dice que es por el dinero. Sin embargo, varias líneas supersónicas resultaron ser rentables, al menos marginalmente. British Airways, por ejemplo, le sacaba veinte millones de libras anuales a sus vuelos Londres-Nueva York y Londres-Barbados en Concorde; y se dice que al final recuperaron mil setecientos millones en total frente a una inversión de mil millones. Ya en 1984, algunos medios afirmaban que el avión supersónico anglo-francés había logrado romper la barrera del beneficio (aunque Air France no se enteró mucho).

Pero las ganancias intangibles en forma de prestigio, desarrollo de tecnologías avanzadas y oportunidades empresariales fueron mucho mayores: se puede decir que difícilmente Airbus habría salido adelante si el Concorde no hubiese despegado jamás (sobre todo teniendo en cuenta el fracaso del Mercure y la precaria situación política que rodeaba al A300 en aquellos momentos). Fue el Concorde quien demostró que la cooperación intereuropea podía funcionar y crear grandes innovaciones frente a gigantes como Boeing; su emblemática silueta surcando los cielos fascinó a millones de personas, atrayendo incontables clientes a las compañías que los operaban y elevada reputación a sus países durante muchos años.

El Tu-144, aún más ambicioso (entre otras cosas, volaba significativamente más rápido y podía llevar más carga, aunque con menor alcance), estuvo plagado de problemas que limitaron enormemente su operación comercial y finalmente lo conducirían a una temprana cancelación. Sin embargo, las tecnologías derivadas permitieron a la URSS el desarrollo de grandes aviones supersónicos militares como el bombardero nuclear estratégico Tu-160, así como un número de avances de gran interés para otros aparatos militares, lanzadores espaciales mejorados en su tramo atmosférico y distintos tipos de misiles aéreos. Por no mencionar su reutilización como laboratorio volante para Rusia y la NASA norteamericana.

Por otra parte, los aparatos civiles supersónicos también se cobraron algunas vidas: 113 en el caso del Concorde (el único desastre de toda su carrera) y 16 en los dos accidentes del Tu-144 (los siniestros del Tupolev ocurrieron durante un vuelo de pruebas y otro de exhibición, con lo que el número de víctimas fue reducido).

Cabe reseñar aquí un dato frecuentemente olvidado a la hora de evaluar sus posibilidades: tanto el Concorde como el Tu-144 representaban la primera generación de aviones comerciales supersónicos (y última por el momento). En mi opinión, juzgar al transporte comercial supersónico por los resultados de estas dos aeronaves se parece mucho a juzgar las posibilidades de los aviones a reacción por los resultados del De Havilland Comet o el Avro Jetliner: una tragedia y un fracaso, respectivamente. Si después del Comet y el Avro no hubieran llegado el Tupolev Tu-104 (el primer avión comercial a reacción con éxito) o el Boeing 707, quizá ahora mismo pensaríamos que eso de los aviones a reacción es un fiasco. Y si el Tupolev Tu-124 no hubiera demostrado la eficacia de los turboventiladores frente a los turborreactores para limitar el consumo de combustible, igual hoy estaban también todos retirados del servicio por insostenibles económica y ecológicamente.

Pero detrás del Tu-144 y del Concorde no vino nadie; y por tanto nunca hubo una segunda generación de aviones comerciales supersónicos que superara los problemas y limitaciones de la primera, abriendo así la posibilidad de reducir significativamente los costes operacionales. La URSS retiró del servicio activo al Tu-144 debido a sus deficiencias, mientras British Airways y Air France operaban su reducida flota de Concordes casi como una reliquia de otros tiempos; lo que por supuesto encarecía enormemente el mantenimiento, no permitía reducir el coste por economía de escala y no dejaba beneficios que pudieran ser reinvertidos en I+D para esta segunda generación.

Cabina de pasajeros del Tu-144 y el Concorde

Cabina de pasajeros del Tu-144 (izda.) y el Concorde (dcha.)

Los Estados Unidos, por su parte, ni siquiera lograron construir un transporte civil supersónico de ninguna clase, ni bueno ni malo: tras años de trabajo y unas inversiones económicas que casi acaban con Boeing (junto a otras cancelaciones), el B-2707 fue descartado en 1971 a pesar de que ya tenía 115 pedidos de 25 aerolíneas. Es la época del famoso cartel pagado por los sindicatos que decía “por favor, la última persona en Seattle, que apague la luz”, en referencia a la catástrofe que esta cancelación representaba para el mercado laboral local.

¿Y por qué nunca hubo una segunda generación?

Sólo el Reino Unido, Francia, la URSS y los Estados Unidos (estos últimos en el ámbito exclusivamente militar) han sido capaces de crear aeronaves supersónicas pesadas, lo que ya nos da una idea de la enormidad del problema al que nos enfrentamos. La construcción de esta clase de aviones es una labor extremadamente difícil que exige importantes inversiones económicas y un plazo de tiempo suficiente para cometer errores y corregirlos antes de prometer alguna rentabilidad. En el estancado estado actual de la tecnología necesaria y con un mercado potencial tan inmaduro, por tanto, el riesgo empresarial es muy alto. Demasiado para que se sientan cómodos los accionistas de las empresas privadas, hoy en día dominantes en las actividades creativas y productivas de una mayoría de países. Digamos que ninguna de esas agencias de calificación que fallan más que una escopeta de feria –excepto cuando se dedican al negocio de la profecía autocumplida– concedería a esta inversión alguna “A”.

Tanto el Concorde como el Tu-144 fueron proyectos esencialmente estatales o de financiación estatal, al igual que el vuelo espacial, la energía nuclear o los de exploración y ciencia muy avanzadas, por poner otros ejemplos. Para la empresa privada, es muy difícil –cuando no directamente inviable– realizar semejantes inversiones, correr tales riesgos y además con un plazo indeterminado de rentabilización; a menos, claro, que disponga de acceso extensivo al dinero de todos garantizado por el estado. Conforme los modelos económicos sustentados fundamentalmente en la iniciativa privada, el crédito y la reducción del gasto público fueron ganando terreno a lo largo de las últimas décadas, toda una serie de desarrollos científico-técnicos entre los que se encuentra el transporte civil supersónico fueron alejándose cada vez más. No es sólo una cuestión de capitalización, sino también de riesgo, expectativas de los mercados y plazos de rentabilización.

Para ser justos, lo cierto es que las dificultades a las que se enfrenta quien pretenda desarrollar un transporte comercial supersónico son varias, y complejas; si yo fuera uno de esos inversores, no creo que me metiese sin ponderar mucho la cuestión. Pero mucho. La primera de estas dificultades está, por supuesto, en los motores. Desarrollar un motor para velocidades supersónicas que sea ecológicamente sostenible y económicamente competitivo (resumiendo mucho: que sea de moderado mantenimiento, gaste poco combustible y así de paso contamine poco) representa un desafío formidable. Adicionalmente, el diseño de un motor supersónico varía notablemente con respecto al de uno subsónico, con lo que una parte sustancial de la experiencia existente para mejorar la eficiencia en motores de aviación civil no resulta aplicable.

Cabinas de pilotaje del Tu-144 y el Concorde

Cabinas de pilotaje del Tu-144 (izda.) y el Concorde (dcha.)

No obstante, hay aproximaciones posibles. Una característica poco conocida de los motores supersónicos es que, aunque su consumo específico de combustible es mayor cuando operan a altas velocidades, en realidad son más eficientes que los motores subsónicos por kilómetro recorrido. Esto se debe a un hecho sencillo: sin tener en cuenta los demás condicionantes, podrían recorrer más distancia en menos tiempo, con lo que la cifra de litros por kilómetro debería ser mejor que en los subsónicos hasta bastante por encima de Mach 2. Dicho de una manera simplificada: aunque gastan más combustible por segundo, tienen que estar muchos menos segundos en el aire para completar el mismo viaje.

Sin embargo, en la práctica esto no ocurre así: las aeronaves supersónicas son enormemente tragonas en comparación con las subsónicas. El Concorde, por ejemplo, consumía hasta 166 mililitros de combustible por pasajero y kilómetro recorrido. Esta es una cifra sólo levemente superior a la de un jet privado subsónico de largo alcance como el G-550 (148 ml por pasajero y kilómetro), pero se halla a enorme distancia de los grandes jetliners intercontinentales: entre 26 y 44 ml, según las distintas fuentes, para modelos como el Airbus A330, el Boeing-747 o el Airbus A380. El abismo competitivo resulta, a todas luces, importante. Y sin embargo, el problema principal no está en los motores. El problema radica en lo que tienen que mover esos motores. Más técnicamente: en la aerodinámica general, en la resistencia aerodinámica en particular, en el rendimiento aerodinámico máximo (“lift-to-drag ratio”), el peso en vacío por pasajero, el coste extra de I+D y el coste de los materiales y procesos productivos especiales para la construcción del aparato, junto a otros asuntos menos técnicos pero también relevantes. Veámoslo.


Despegue del Tupolev Tu-144 con sus característicos
canards desplegados.

Fuerzas aerodinámicas básicas a velocidad subsónica y supersónica

Las fuerzas aerodinámicas básicas: peso, sustentación, empuje y resistencia. A velocidades supersónicas se reduce la sustentación y aumenta la resistencia, con lo que el empuje debe ser mucho mayor para mantener la altitud y velocidad.

Los desafíos de construir un avión supersónico.

El comportamiento aerodinámico de una nave supersónica resulta radicalmente distinto al de un aparato subsónico. En todo objeto que se mueva por dentro del aire, la fuerza de resistencia aerodinámica (que se opone al avance del aparato) es directamente proporcional al coeficiente de resistencia aerodinámica Cd, a la densidad del aire y al cuadrado de la velocidad. Esto significa que en cuanto la velocidad aumenta, la resistencia aerodinámica aumenta mucho más, lo que tiene el efecto de frenar el aparato (y, con ello, reducir la sustentación). Como esto es una ley física inevitable, los diseñadores de aviones muy rápidos tienen que jugar con los otros dos factores: la densidad del aire y el coeficiente de resistencia aerodinámica. Es decir, hay que crear un avión que vuele lo más alto posible (para reducir la densidad del aire circundante) y que tenga un coeficiente de resistencia aerodinámica lo más bajo posible. Esto obliga a darle una forma muy determinada y unas características muy específicas, que limitan el resto del diseño.

Lamentablemente, cuando el aparato se aproxima a la velocidad del sonido, surge otro fenómeno: la resistencia de onda. Entre Mach 0.8 y Mach 1.2, el coeficiente de resistencia aerodinámica Cd llega a multiplicarse por cuatro. Después, a velocidades claramente supersónicas, esta resistencia de onda desaparece y Cd es ya sólo un 30% a 50% más elevado que durante el vuelo subsónico. Sin embargo, este paso por la región transónica obliga a diseñar la aeronave con la potencia motriz y las características aerodinámicas necesarias para vencerla, aunque ambas sólo se vayan a usar durante unos momentos: de lo contrario, nunca lograría superarla. Tal exigencia constriñe aún más el diseño del aparato y sus motores.

A velocidades supersónicas, el rendimiento aerodinámico (lift to drag ratio) cae muy significativamente y con él la sustentación generada por las alas. Típicamente, a Mach 2 se reduce a la mitad: el Concorde, por ejemplo, presentaba un rendimiento aerodinámico de 7,14 mientras que el Boeing 747 lo tiene de 17. Esto obliga a diseñar unas alas muy especiales, con características muy distintas a las alas corrientes en los aviones subsónicos, que se comportan peor durante el vuelo a baja velocidad (sobre todo, en los despegues y aterrizajes); y, al mismo tiempo, hay que dotar al aparato de mayor empuje para que logre mantener su velocidad y altitud cuando está supersónico. O sea: más limitaciones al diseño y más potencia (y consumo) en los motores. Además, debido a todas estas razones el alcance queda reducido.

El vuelo a esas velocidades produce otro problema adicional: un enorme incremento de temperatura en las superficies y bordes de ataque por rozamiento y debido a la compresión adiabática del aire frente a la aeronave. Cuando volaba a Mach 2, el pico del Concorde se ponía a 127 ºC y el borde de ataque de las alas, a unos 105 ºC. En este rango de temperaturas, algunos materiales comúnmente usados en aviación por su coste y conveniencia como el aluminio comienzan a perder su templado y debilitarse. No ocurre de inmediato, pero sí con el uso. Por encima de estas temperaturas, hay que recurrir necesariamente a otros metales como el titanio, más pesados y con un coste mucho mayor. Como el Concorde estaba hecho con duraluminio, usando aleaciones de acero al titanio únicamente en algunos puntos, su velocidad efectiva quedaba limitada a Mach 2.02. El Tu-144, equipado con componentes de titanio en todas las zonas críticas, llegó a alcanzar Mach 2.26. Una curiosidad bastante famosa es que, debido a estas temperaturas, el Concorde se alargaba por dilatación hasta veinticinco centímetros; cosa que también hay que tener en cuenta durante el diseño.

Temperaturas estructurales del Concorde a Mach 2

Temperaturas estructurales del Concorde a Mach 2.

Otra peculiaridad menos conocida es que el color predominantemente blanco del Concorde y el Tu-144 no obedecía a una razón caprichosa: era para evitar el sobrecalentamiento adicional de la estructura en unos 10 ºC. Es decir, la misma razón por la que las casas suelen ser blancas en las regiones cálidas. Los aviones supersónicos pintados de negro por razones militares (como el SR-71 Blackbird) lo hacen a cambio de pagar una penalización térmica.

Estos regímenes térmicos obligan a una refrigeración adicional del avión y sus sistemas. El Concorde lo hacía utilizando el combustible almacenado en los depósitos y el Tu-144 mediante un sistema específico. Además, fuerzan a proteger las áreas interiores frontales –como la cabina de mandos– contra el calor. Como consecuencia de todo esto, las aeronaves supersónicas exigen diseños más afilados y estrechos, motores más potentes, sistemas adicionales de refrigeración y otras peculiaridades de diseño, lo que en su conjunto eleva el peso en vacío por asiento, antes incluso de considerar la carga de combustible. Es decir: hay que mover más avión para desplazar a un pasajero. En el Concorde, el peso en vacío por asiento era de 655 kg y en el Tu-144, de 607 (lo que daba al avión soviético una mejor capacidad de carga). Pero en aviones subsónicos, esta masa por asiento es muy inferior: 341 kg para el Boeing 747-400, 296 para el Airbus A380 y apenas 220 para el Airbus A321-200. Esto es: para transportar a un pasajero en Concorde hay que mover casi el triple de avión que para hacerlo en un Airbus A321. Eso, de manera prácticamente automática, significa que el coste va a ser como mínimo tres veces más caro.

En la práctica, un billete en Concorde de ida y vuelta para el vuelo Londres-Nueva York a finales de los años ’90 venía a estar en torno a los diez mil dólares, aunque a veces había ofertas y promociones (y en otras ocasiones te clavaban algo más). Eso equivale a unos trece o catorce mil dólares de hoy. En estos momentos, British Airways cobra exactamente eso mismo por un billete de primera clase en Boeing 747. Air France pide más de diez mil euros por el mismo viaje desde París en la première: casi quince mil dólares. Y se venden, al menos algunos, a pesar de que ahora cada vuelo dure siete u ocho horas en vez de tres. (Como curiosidad, el vuelo I/V Moscú-Almá Atá en business –no hay imperial para esa ruta– cuesta hoy unos 1.300 euros.)

Torpedo-cohete ruso VA-111 Shkval

Torpedo-cohete ruso VA-111 Shkval. Provisto con un sistema de supercavitación, que genera una capa de burbujas de aire a su alrededor y lo convierte en una especie de "avión submarino", puede alcanzar más de 370 km/h bajo el agua. Un sistema análogo para su uso en el aire, posiblemente usando tecnologías magnetohidrodinámicas, convertiría a un avión o un misil en una "nave espacial aérea" capaz de volar a velocidades hipersónicas.

Las dos soluciones hipotéticas para liberarse radicalmente de un buen número de estos problemas son un nuevo tipo de motor y/o combustible junto a una nueva aproximación aerodinámica. En este segundo caso, hay diversos estudios en curso en torno a la magnetohidrodinámica (que podría producir en el aire un fenómeno análogo a la supercavitación utilizada en el agua por el torpedo-cohete VA-111 Shkval); entre las instituciones que estudian esta cuestión se encuentran el Centro Marshall de la NASA (Estados Unidos), MBDA-France (antes Aerospatiale Matra Missiles, Francia), el Instituto de Investigación de Sistemas Hipersónicos (San Petersburgo, Rusia) y el Instituto de Investigación de Hidrodinámica Aplicada (NII-PGM, Rusia).

En Rusia, además, existe un proyecto de testbed tecnológico llamado Ayaks (Ajax), dependiente del Instituto de Investigación de Sistemas Hipersónicos y construido por Leninets. Se cree que saben cómo crear el efecto de “supercavitación aérea”, mediante el uso de unos inyectores de spray catalítico sobre un sistema de generación de ondas termohidrodinámicas (¡yeah!), pero aún no han logrado solventar el problema de control de flujo del mismo. El aparato iría propulsado por un cohete o un estatorreactor scramjet y alcanzaría el rango de Mach 6 a 10 en la primera fase y de 12 a 20 en la segunda sin necesidad de abandonar la estratosfera. Como ocurriera con el Shkval, es muy probable que su primera aplicación sea misilística.

El proyecto francés se llama PROMETHEE, y su sistema de propulsión PREPHA (un ramjet avanzado de modo doble y geometría variable). Está a cargo de MBDA-France (Chatillôn) y ONERA (Palaiseau), con fondos del Ministerio de Defensa. Públicamente, empezaron en 1999 y muy probablemente tengan estrechas relaciones con el proyecto ruso: se sabe que utilizan el concepto Ayaks. Su pimer objetivo es el Mach 12. Pratt&Whitney (EEUU) y Snecma (Francia) colaboran en tecnología de materiales. La fase de propulsión está muy avanzada, pero no se sabe cómo andan en el control de flujo magnetohidrodinámico que parece traer locos a los rusos (si es que no dependen de ellos para resolverlo).

En cuanto a los norteamericanos, es posible que se haya estado trabajando en un concepto del que el X-41, el X-43, el X-51 y el recientemente fallido HTV serían prototipos tecnológicos diseñados para operar a velocidades entre Mach 6 y 20. Su sistema de propulsión estaría constituido por diversos tipos de scramjet o cohetes y no parece utilizar el efecto magnetohidrodinámico inducido activamente del Ayaks o el PROMETHEE, sino aprovechar eficientemente el efecto que se produce de manera natural a velocidades superiores a Mach 7. Esto limitaría el concepto tecnológico a velocidades máximas en torno a Mach 15 o lo obligaría a permanecer fuera de la estratosfera. Los australianos tienen un proyecto llamado HyShot, conceptualmente similar al norteamericano. Vamos, que aproximaciones aerodinámicas revolucionarias no faltan… aunque, de momento, todas ellas están orientadas al uso militar.

Otro problema notorio de las aeronaves supersónicas (e hipersónicas, vaya) es el estampido sónico, que obligaba al Concorde a acelerar únicamente cuando ya se hallaba sobre el océano (con la consiguiente ralentización de las operaciones y también su encarecimiento, pues como ya hemos dicho los aviones supersónicos vuelan poco eficientemente por debajo de la velocidad del sonido). Este es asunto de mucha enjundia para las organizaciones ciudadanas y ecologistas, lo que se traduce en fuertes presiones políticas y termina convirtiéndose en otra cuestión técnica a resolver. La NASA ya ha logrado reducir este problema a la mitad, y se sabe que ciertas formas del fuselaje producen ondas sonoras que tienden a cancelarse entre sí, con el resultado de ocasionar un estampido mucho más leve o ninguno en absoluto. Finalmente, cabe considerar que los aviones supersónicos –por su propia sofisticación y singularidad tecnológica– son más costosos en general de desarrollar, construir, mantener y operar.


Concorde volando a velocidad supersónica y gran altitud sobre el mar.
Se puede distinguir el característico estampido doble.

¿Y entonces…?

Seguramente, tras leer todo este post estarás pensando –como he hecho yo muchas veces– que, eh, bueno… pues después de todo, esas empresas y estados tienen buenos motivos para no invertir en una segunda generación de transporte comercial supersónico. Ya te lo dije más arriba: así es, los tienen. Bajo la lógica económica actual, yo mismo pondría de patitas en la calle a quien se le ocurriera meter mi dinero en aventuras semejantes.

El problema es que, bajo esa lógica económica, nada tiene sentido a menos que proporcione un beneficio a corto plazo y venza los miedos de los siempre temerosos inversores. Si se hubiera trabajado pensando en la cuenta de resultados del próximo trimestre, seguiríamos anclados a principios del siglo XX y aparatos como un TAC serían pura ciencia-ficción. A ver si nos entendemos: yo no estoy proponiendo meter dinero público o privado a lo loco en la primera chaladura que se nos pase por la cabeza. Pero el extremo contrario, que es donde estamos ahora y además con visos de profundizarse, nos estanca. Si todo ha de ser rentable a pocos meses o años vista y razonablemente seguro, mientras al mismo tiempo se siguen recortando los presupuestos públicos en I+D, entonces los avances revolucionarios nos están vedados porque éstos son intrínsecamente impredecibles, inseguros y arriesgados. Y, a menudo, caros.

Sukhoi Gulfstream S21

Diseño conjunto de Sukhoi y Gulfstream para un jet privado supersónico totalmente exclusivo: el S-21.

Estoy tratando de imaginarme ahora mismo a Enrico Fermi y Léo Szilárd intentando convencer a un banco de inversiones de que es posible crear una cosa llamada reactor nuclear que producirá grandes cantidades de energía y puede que algún día llegue a ser rentable (cosa que sigue siendo dudosa). O a Sergei Korolev explicando a una empresa de capital-riesgo que necesita una montaña de dinero para –no se rían, señores, por favor– poner a un hombre en el espacio, mandar varias naves a Venus y quizás –en algún indeterminado futuro– lograr que todo eso tenga algún sentido económico. Tampoco parece muy probable que los inversores hagan cola en la puerta para financiar Grandes Observatorios, aceleradores de partículas, reactores de fusión, estaciones espaciales o en general ninguna de las ciencias y desarrollos de donde luego emergen las tecnologías que las empresas usarán. Ni tampoco aviones supersónicos de segunda generación. Y sin embargo, si no fuera por todo esto –que fue sentando y decantando las bases de la tecnología actual– a buenas horas estarías tú ahora leyéndome por Internet o gozando de medicina avanzada en los hospitales, entre otras mil cosas. La verdad, cada día tengo más la sensación de que este siglo XXI vive de las rentas del siglo XX… y que estas rentas se están agotando a toda velocidad.

Pero no será por falta de propuestas. En el tema que nos ocupa, ahí están –o estuvieron– prototipos experimentales como el Sukhoi-Gulfstream S-21, el Tupolev Tu-444, el Aerion SBJ o el QSST; todos ellos concebidos como jets privados (más que nada porque algunas personas muy ricas podrían estar dispuestas a pagar por esta clase extraordinaria de exclusividad) pero también con una función evidente como bancos de pruebas tecnológicos. Con dinero público, la NASA mantiene un pequeño programa de investigación llamado Quiet Spike, dirigido a reducir el estampido sónico; y antes de eso, mantuvo otro que equipaba Tu-144, pero fue cancelado en 1999. Hay incluso algunos proyectos más ambiciosos como el hipersónico A2 de Reaction Engines.

Aquí ya no estamos hablando de construir naves interplanetarias tripuladas ni nada por el estilo, sino de actualizar un tipo más rápido de avión que ya poseíamos hace cuarenta puñeteros años. Tampoco tengo claro que, en un mundo cada vez más globalizado, no exista un mercado (a medio plazo, eso sí) para reducir la duración de todos esos larguísimos viajes Londres-Nueva York, Nueva York-Tokyo, Los Angeles-Seúl, San Francisco-Tokio o Hongkong-Seúl, por no mencionar cosas como Nueva York-Singapur (el famoso vuelo SQ-21, actualmente operado mediante Airbus A340), Dubai-Los Angeles, Atlanta-Johannesburgo o Vancouver-Sydney. Estas son, respectivamente, algunas de las rutas intercontinentales más transitadas y más largas del mundo; que podrían ser mejoradas y abreviadas mediante una nueva generación de aviones supersónicos con alcance extendido (¡hasta haciendo escalas sería mucho más rápido!). ¿Realmente no hay público al que le vendría bien hacer Nueva York-Singapur en menos de ocho horas, en vez de las casi diecinueve actuales? (Sobre todo si tenemos en cuenta que este vuelo, por ejemplo, ya es íntegramente premium: sólo hay business, no dispone de asientos en clase económica). El chiste de todo esto es que aquí ni siquiera se propone una aventura revolucionaria, sino meramente actualizar, rentabilizar y hacer económica y ecológicamente sostenible algo que ya existe hace décadas, que operó durante largos años y que se usa con normalidad en el ámbito militar. Pues ni por esas, oiga.

Aeropuerto de "París-Disney".

Aeropuerto de "París-Disney". ¿Dónde está París? ¿Y Eurodisney? Yo te lo diré: a 150 y 176 km, respectivamente. Estamos en medio del campo, entre Reims y Troyes.

Es que el mantra en el mundo de la aviación, ahora mismo, es low cost. Pero low cost a saco matraco, al centimeo mezquino y navajero. Desde bastante antes de que llegara la crisis, se viene diciendo que el público lo que quiere es pagar menos aunque vuele más incómodo, más despacio y entre aeropuertos remotos con nombres que dan risa como Londres-Stansted (que podría llamarse Cambridge-Sur: está más cerca), París-Disney (más exactamente, Reims-Sur o Troyes-Norte), Fráncfort-Hahn (que también podríamos denominar Luxemburgo-Este) y el cachondísimo Düsseldorf-Weeze (más bien Eindhoven-Weeze o Arnhem-Weeze, ¿por qué no?). Si tal cosa es cierta aunque sea sin llegar a esos extremos, y según algunos números parece que sí, desde luego no queda espacio ninguno para fomentar avances revolucionarios desde el ámbito privado. (Por cierto: en último término, ¿hasta dónde se puede seguir abaratando costes?)

Otra afirmación común es que los trenes de alta velocidad asfixian al sector aéreo. Pero esto sólo vale para las rutas regionales, por debajo de quinientos o como mucho mil kilómetros (y, por cierto, demuestra que la gente paga dinero por viajar más rápido mientras la diferencia no sea desmesurada). Las propuestas de transporte supersónico se ven tan afectadas por estos ferrocarriles como el superjumbo A380: nada en absoluto. Estos tipos de aeronaves son para largas distancias, no para vuelo regional.

Finalmente, podríamos citar como desmotivador definitivo la crisis generalizada del sector aéreo, que no está para aventuras de ninguna clase. Si el colapso de Pan Am en 1991 y la lenta agonía de TWA entre 1992 y 2001 ya representaron un cambio radical de modelo (mis lectores con alguna veteranía recordarán que esas compañías eran enormes, “las alas de los Estados Unidos”), a lo largo de la última década han quebrado aerolíneas emblemáticas a porrillo: Sabena (2001); Swissair (conocida como “el banco volante” por su tradicional fortaleza financiera, en 2002); United Airlines (2002, fusionada posterioremente con Continental); US Airways (2004, fusionada con la también quebrada America West); Alitalia (2009); Mexicana de Aviación (2010); Japan Airlines (2010) o la compleja doble bancarrota y fusión de Northwest y Delta (2005-2010). Todo esto sin mencionar a cientos de compañías pequeñas y medianas. El mal no acaba ahí: actualmente, varios monstruos de la industria aérea anuncian grandes pérdidas. Por ejemplo: British Airways (casi 13.000 millones de euros de pérdidas en 2009-2010), Air France-KLM (1.550 millones de euros) o Delta (1.240 millones de dólares).

Más allá de la crisis económica occidental, los factores que afectan a esta crisis de la industria aérea son complejos y profundos. Muchas veces se achaca la culpa a los atentados del 11-S, pero eso es una simpleza: tuvo su influencia, y su influencia ya pasó. Los problemas de este sector vienen de antes y se han ido ahondando con el paso de los años, en forma de ciclos de expansión y contracción que se remontan a los inicios de la desregulación.

Tabla de horarios y precios para el Concorde en torno a 1980

Tabla de horarios y precios para el Concorde, en torno a 1980.

El incremento de los precios del combustible a partir de la crisis de 1973 y sobre todo en el periodo 2003-2008 suele citarse como el elemento de mayor importancia. Veámoslo. En 1970, un barril de petróleo costaba 3,18 dólares, que en dólares ajustados a la inflación para 2010 equivale a $8,43. Ayer sábado, el Brent Spot se cotizaba a $82,35. Bien, ciertamente es un incremento enorme: unas diez veces más. El incremento del precio del petróleo no es algo que vaya a detenerse con facilidad, por lo que cabría plantearse el problema desde el otro lado: desarrollar sistemas de propulsión que consuman mucho menos. Sin embargo, el consumo específico de los motores de aviación apenas ha descendido en estos treinta años. Uno de los primeros turboventiladores de alto índice de derivación, el CF6-6D fabricado en 1971 por General Electric para el DC-10 original, tenía un consumo específico de 0,624 lb/lbf h en vuelo de crucero . Del mismo fabricante, el GE90-85B de 1995 para el Boeing 777 presenta un consumo específico en crucero de 0,52 lb/lbf h: apenas un 20% mejor, casi un cuarto de siglo después. Motores de reciente desarrollo como el GEnx o el Trent 1000 aseguran mejorar el consumo en “un 15%” sobre la generación precedente. Evidentemente, ninguna de estas cifras se acerca ni remotamente a compensar el incremento de los costes de combustible en este mismo periodo. La industria aérea necesita con urgencia un avance revolucionario en sistemas de propulsión si quiere regresar a algo siquiera remotamente parecido a los “buenos tiempos”.

Ya dijimos que existe otra forma de combatir contra estos costes del combustible: las mejoras aerodinámicas. Como vimos más arriba, cuanto mejor sea la aerodinámica de una aeronave, menor es su resistencia al avance y menor será su consumo total. Por ejemplo: determinadas formas de las wingtips (esas aletitas que hay en la punta de las alas) reducen el consumo total entre en un 3,5 y un 5,5%. Ciertas modificaciones en las góndolas de los motores hacen lo propio, y así con todo. Sin embargo, de nuevo, las cifras son enormemente inferiores a lo necesario para compensar el incremento de los precios del combustible. Sin avances revolucionarios en aerodinámica, como los explicados para el desarrollo del vuelo hipersónico u otros análogos, la industria aérea tampoco hallará ninguna forma de minimizar el impacto de estos precios.

El conjunto de los costes operacionales, y no sólo el del combustible, se mencionan como otros factores coadyuvantes a la crisis del sector aeronáutico. Sin embargo, estos costes ya están extremadamente estirados a la baja, con las conocidas consecuencias laborales y sociales. Preguntaba arriba cuánto más se pueden rebajar. El de Ryanair habla de quitar al copiloto y no hace mucho sugerían la posibilidad de embutir pasajeros de pie como en un autobús en hora punta. Sin llegar a estos extremos, toda la industria del aire trabaja en un estrechísimo margen que cualquier novedad desafortunada puede tirar por tierra. Para disponer de márgenes más amplios, se necesitan más avances revolucionarios en automatización, economía de materiales y nuevos materiales para la construcción de piezas y repuestos, mil cosas.

En el contexto presente de crisis internacional, con la consiguiente reducción de la demanda (especialmente de la demanda premium) y una fuerte presión para bajar precios, las únicas soluciones que se proponen a las compañías aéreas son la reducción de costes y la reducción de capacidad. Es decir: hacerse más pequeñas y baratas, menos potentes. Esto es muy realista en la lógica económica presente, pero también un circulo vicioso. En ausencia de milagritos del tipo de un repentino periodo de expansión económica unido a un descenso radical del precio de los combustibles (una combinación extremadamente improbable: si la economía se recuperara con fuerza, es de suponer que el precio de los combustibles lo haría también), se trata de una senda que conduce a la decadencia.

Avión hipersónico Reaction Engines A2

Proyecto de avión hipersónico A2 de Reaction Engines.

Y sin embargo, todas estas cosas –avances radicales en la propulsión, en la aerodinámica, en materiales, en procesos fabriles, en mantenimiento, en automatización, en tecnologías aeroportuarias y de control de tráfico aéreo– son exactamente las mismas cosas que permitirían una segunda generación de aviones supersónicos. La posibilidad de construir nuevos aviones supersónicos y el despegue del sector aeronáutico más allá del estancamiento presente constituyen dos caras de la misma moneda, con los evidentes beneficios –también– para la clientela. Tiendo a pensar que un programa Apolo para la creación de nuevas aeronaves comerciales más rápidas que el sonido constituye una de las pocas posibilidades que permitirían el desarrollo rápido de estas tecnologías aunque fracasara.

Sin un revulsivo de ese o similar alcance, algo parecido al surgimiento del reactor, me cuesta imaginarme a la aviación saliendo de su estancamiento actual. Esta es la situación exacta en que o una industria encuentra la manera de reinventarse a sí misma, o está condenada a languidecer lentamente entre miserias y estrecheces cada vez mayores hasta su reducción a unos nichos irrelevantes. O el sector aeronáutico halla maneras de desarrollar tecnologías radicalmente nuevas con recursos públicos o privados como hacía en el pasado, que le permitan recuperar un amplio margen de acción, o ahí se queda y ya nunca volverá a despegar por mucho coste y capacidad que reduzca. Así, al menos, opino yo; el tiempo me dará o me quitará la razón.

Tu-144 y Concorde en Simshein

Un Tu-144 (CCCP-77112) y un Concorde (F-BVFE) en el Auto & Technik Museum Sinsheim, Alemania. Hubo un tiempo, cada vez más remoto, en que estas dos naves supersónicas surcaban los cielos a la vez.

136 Comentarios Trackbacks / Pingbacks (15)
¡Qué malo!Pschá.No está mal.Es bueno.¡¡¡Magnífico!!! (100 votos, media: 4,88 de 5)
Loading...Loading...
Be Sociable, Share!

Desde el Sol hasta los ojos

Cabalgamos sobre la luz desde que surge en el corazón del Sol
hasta que llega a tus ojos y contribuye a formar
tus pensamientos, tus emociones y tu visión del mundo.

Monumento a Alberto Einstein en Ulm

Don Alberto "el Pelanas" no aprobaría este post. O, al menos, nuestro traje y el visor de nuestro casco. (Monumento a Albert Einstein en su ciudad natal de Ulm, Alemania)

Embútete el casco a fondo y agárrate bien fuerte a mi barriga, que hoy vamos a hacer un viaje curioso a una velocidad más curiosa todavía. Va a ser una carrera breve: sólo dura 499 segundos. Pero no va a ser una carrera corta, porque nos vamos a montar en un fotón de luz a su paso por la fotosfera solar y lo cabalgaremos hasta que llegue a la Tierra y grabe algo en un cerebro humano; o sea, un poco menos de ciento cincuenta millones de kilómetros. Sí, a la velocidad de la luz, este tramito se recorre en ocho minutos y diecinueve segundos exactos. Comparado con nosotros, el Dani Pedrosa ese va a ser un pringao.

Para nuestro viaje, nos vamos a dotar de dos objetos mágicos; esto es, dos quimeras, fábulas o como quieras llamarlo que violan las leyes fundamentales de la física y muy especialmente la Teoría de la Relatividad Especial de don Alberto, el Pelanas. El primero es un traje de cuero de unicornio translumínico, con botas, capucha y guantes y todo, que nos va a proteger del calor, la aceleración y las radiaciones y nos permitirá agarrarnos al fotón para avanzar con él a la velocidad de la luz; esto último, poseyendo masa como poseemos, jamás podríamos hacerlo en la realidad (aunque sí acercarnos mucho). El segundo va a ser un visor de cristal de la Isla de San Borondón para nuestros cascos; enseguida verás por qué. Recuerda: estas son cosas enteramente mágicas que no existen ni pueden existir en nuestro universo. Además, la física cuántica introduciría algunas objeciones a eso de localizar y agarrarse a un foton en particular; vamos a ignorarlas también. Ah, sí, y la distancia indicada al Sol es la distancia media. Que luego me dirán que si soy poco riguroso y que si os meto en la cabeza fantasías que no son y tal. ;)

Preparados.

La luz del Sol –una estrella corriente, de tipo G2V, situada en el Brazo de Orión– se origina en su núcleo. Ahí ocurren las grandes reacciones termonucleares donde también se forma el polvo de estrellas que nos compuso junto al hidrógeno primordial. Estas reacciones termonucleares de fusión son resultado del incremento de presión y temperatura provocado por la gravedad que atrae entre sí a los átomos de los soles (en su mayor parte, hidrógeno); y es esta misma gravedad la que contiene normalmente toda esta energía en un único lugar, impidiendo que se disperse por ahí sin llegar a formar un solecito ni nada. El problema fundamental para el desarrollo en la Tierra de la energía nuclear de fusión radica, precisamente, en que aquí no tenemos (ni deseamos…) una enorme gravedad para garantizar la contención y nos tenemos que buscar otras maneras.

Esta energía de fusión se expresa esencialmente bajo la forma de fotones, que viajan a la velocidad de la luz y tienden a salir despedidos en todas direcciones. Sin embargo, como en el interior de las estrellas hay mucha masa a gran densidad, pronto chocan con algún átomo y son absorbidos y re-emitidos. Es decir: los fotones permanecen rebotando por dentro del Sol durante largo tiempo hasta que logran alcanzar su superficie. Tradicionalmente se dice que les cuesta millones de años, pero según la NASA esto no es cierto: sería más bien entre un mínimo de diez mil y un máximo de ciento setenta mil años.

También se podría discutir si se trata del mismo fotón. A fin de cuentas, un fotón absorbido se convierte en otras cosas, y el emitido poco después no tiene por qué ser el mismo. Por otra parte, como todos los miembros de cada tipo de partículas subatómicas son idénticos entre sí, podríamos decir que nos da lo mismo. En fin. El caso es que nuestro fotón o el linaje de nuestro fotón procede del núcleo solar, ha atravesado la zona radiante y la zona convectiva y ahora se está aproximando a la fotosfera, desde donde podrá emitirse por fin hacia el espacio exterior.

Estructura simplificada del sol

Estructura simplificada del Sol. 1.- Núcleo solar. 2.- Zona radiativa. 3.- Zona convectiva. 4.- Fotosfera. 5.- Cromosfera. 6.- Corona (se extiende a gran distancia). 7.- Manchas solares. 8.- Gránulos. 9.- Anillos coronales.

Cuasi-Alineación planetaria el 14 de abril de 2017

Disposición de los planetas interiores del sistema solar el 14 de abril de 2017 a las 00:00 UTC. Simulador del sistema solar, NASA. (Clic para ampliar)

Listos.

El día más idóneo de los próximos años para hacer nuestro viaje sería el 14 de abril (¡qué casualidad!) de 2017: Mercurio y Venus se hallarán estupendamente dispuestos a ambos lados y bastante cerca de la línea imaginaria que une el Sol y la Tierra, en lo que vendría a ser casi una alineación Sol-Mercurio-Venus-Tierra. Sin embargo, el 11 de febrero de 2014 tampoco está tan mal y cae más pronto. Otras fechas posibles para tener una vista razonablemente buena de los planetas interiores rocosos de nuestro Sistema Solar (hasta la Tierra) serían a finales de septiembre de 2016 o, ya un poco peor, a mediados de julio de 2012.

Una vez elegida la fecha, nos situamos en las cercanías del Sol con nuestro traje de unicornio translumínico y nuestro visor de cristal de la Isla de San Borondón para agarrarnos a un fotón. Digamos que nos hemos teletransportado hasta la fotosfera, que es el lugar donde se emite la luz de las estrellas; o, más rigurosamente, la región donde los fotones ya pueden escapar libremente al exterior. La fotosfera es una capa solar relativamente fresquita, a sólo un poquito más de 5.500 ºC (5.800 K), compuesta por gases muy tenues. Nuestro traje y nuestro visor mágicos empiezan a actuar, protegiéndonos del calor, de la radiación y de la intensísima luz que nos dejaría ciegos en un instante, por no mencionar el brutal tirón gravitatorio. Todo a nuestro alrededor tiene el aspecto de un plasma brillante, turbulento e indistinguible, una especie de bruma increíblemente luminosa. La bola que vemos de una estrella es su fotosfera, pues de ahí emerge su luz.

Eso significa que aquí hay trillones de fotones escapando hacia el espacio exterior. Podemos agarrarnos a cualquiera de ellos, pues como ya hemos dicho, todos son exactamente idénticos entre sí. ¿Cuál te gusta más? ¿Ese que viene por ahí? No, mejor ese otro, que es de onda más larga y se viaja más cómodo. Pues venga, tres, dos, uno…

¡Ya!

Factor de Lorentz en función de la velocidad

El factor de Lorentz (γ) indica la contracción de la longitud espacial y la dilatación temporal en función de la velocidad. Conforme la velocidad se aproxima a la de la luz, la dilatación temporal tiende a infinito. Especulativamente, en un objeto que viaje a la velocidad de la luz, la dilatación temporal es infinita y el tiempo no pasa en absoluto. Sólo las ondapartículas sin masa, como los fotones, son capaces de viajar a la velocidad de la luz; y nada que contenga materia o información (ni siquiera los fotones) puede superarla. Así pues, para "cabalgar un fotón" tendríamos que perder totalmente la masa y el tiempo no transcurriría para nosotros.

¡Móntalo! ¡Muy bien, ya estamos sobre el fotón, disparados a la velocidad de la luz hacia el espacio exterior! Eso son casi trescientos mil kilómetros por segundo, compi; ya tienes algo para vacilar por ahí, pero cuidado con no despeinarte. O soltarte. En el mundo real, ahora mismo el tiempo se detendría instantáneamente para nosotros por compresión temporal relativista. Quedaríamos algo así como como congelados y no podríamos hacer nada más a menos que algo nos descabalgara del fotón; entonces, pensaríamos que nuestro viaje ha sido instantáneo aunque hayamos acabado por la parte de A1689-zD1. De hecho, lo habría sido para nosotros: el tiempo de a bordo en un ente viajero a la velocidad de la luz sería siempre cero y su reloj nunca avanzaría ni una minúscula fracción de segundo. Sería como la vida eterna y la eterna juventud, sólo que en una parálisis total… si no fuera porque tal cosa no puede suceder en absoluto. No en este universo, no en esta realidad. Pero nuestro traje de cuero de unicornio translumínico nos mantiene en una… eh… bueno, eso, que es mágico, ¿no? Así pues, el tiempo sigue corriendo exclusivamente para nosotros con normalidad según el marco de referencia terrestre (¡sí, ya…!).

¿Que ahora tampoco ves nada, dices, como si la realidad hubiera desaparecido por completo? Bueno, es normal: al ignorar la Relatividad, nos acabamos de cargar como un centenar de leyes esenciales de la naturaleza, nuestro marco de referencia es absurdo y estamos en un no-lugar donde las matemáticas que rigen este universo dan no-resultados como divisiones por cero, infinitos sobre infinitos y límites asintóticos a mogollón. Una vez más: la realidad no tiene sentido ninguno si hay un objeto con masa desplazándose a la velocidad de la luz. Y nosotros somos dos. El no-lugar donde nos hemos no-metido al cabalgar el fotón no es ni siquiera la nada. O incluso la no-nada. Por tanto, activa tu visor mágico de cristal de la Isla de San Borondón para observar el mundo como si estuviéramos viajando a velocidades sublumínicas corrientes. ;)

¿Mejor así? Ya te dije yo que eso que le soplan al cristal los elfos de San Borondón es la caña. No, no te voy a contar en qué consiste: estamos viajando sobre un fotón a la velocidad de la luz en el vacío, así que este es un muy mal momento para que te pongas a vomitar con grandes arcadas.

¿Que sigue sin verse gran cosa? Un poco de paciencia: es que estamos aún muy cerca del Sol. En la primera centésima de segundo-Tierra hemos atravesado la cromosfera y la región de transición, dos delgadas capas gaseosas de la periferia solar compuestas por hidrógeno, helio y metales que brillan tenuemente. La temperatura ha subido desde los cinco mil y pico grados al millón de grados. ¿Te cuento una cosa intrigante? Nadie sabe realmente por qué. Lo llamamos el problema del calentamiento coronal y se cotillea por ahí que hay un premio Nobel calentito esperando a quien logre darle solución.

Merece la pena detenerse un instante en él, porque es un asunto sorprendente. Lo lógico sería que la temperatura descendiese conforme nos alejamos más y más del Sol, de la misma manera que el calor de una hoguera se percibe cada vez menos al apartarnos del fuego. Sin embargo, en las capas exteriores del sol la temperatura es cientos de veces más elevada que en la fotosfera –la bola de luz– y casi tanto como en las profundidades de la zona de convección por donde pasó nuestro fotón o su linaje antes de salir: entre uno y dos millones de grados.

Lazos en la corona solar.

Lazos o anillos coronales en el Sol, de naturaleza electromagnética. Imagen obtenida por el telescopio espacial TRACE de la NASA.

Hay varias hipótesis al respecto, y una de ellas está relacionada con los inmensos campos electromagnéticos de la corona, donde nos hallamos tras el primer segundo-Tierra de viaje sobre nuestro fotón. ¿Ves esos monumentales lazos brillantes que nos rodean? Son de naturaleza electromagnética, y en torno a ellos se forman las prominencias solares. Las grandes erupciones solares se generan también por aquí.

Estamos, pues, atravesando la corona: una extensa región, muy caliente, de gases en estado plasmático cada vez más tenues conforme nos adentramos en el espacio interplanetario. Tres segundos-Tierra después de que abandonáramos la fotosfera, nuestros alrededores ya tienen el aspecto cósmico corriente –cielo negro, estrellas y todo eso– aunque con una intensísima luz a nuestras espaldas y respetable calor. Hemos recorrido el primer millón de kilómetros.

Aprovechando que la temperatura está descendiendo muy rápidamente, vamos a relajarnos un poquito. Nos estamos dirigiendo hacia la órbita de Mercurio, que se encuentra más o menos a cincuenta y ocho millones de kilómetros del Sol. Cabalgando nuestro fotón a la velocidad de la luz, llegaremos en tres minutos-Tierra.

Esto del espacio interplanetario resulta sorprendente. No es espacio vacío, como mucha gente piensa, y menos tan cerca aún del Sol. Para encontrar algo que se parezca al espacio vacío verdadero –y aún así con muchos matices– habría que irse al espacio intergaláctico profundo, a lugares inconmensurablemente inhóspitos y misteriosos como el Supervacío de Eridanus; que, según cosmólogos como la física teórica Laura Mersini de la Universidad de Carolina del Norte, podría incluso ser la firma de otro universo dentro de este. Toma ya. Un garabatito de nada, quinientos millones de años-luz sin apenas materia o energía: como cinco mil veces nuestra galaxia entera.

Pero en los sistemas solares, el supuesto vacío interplanetario está lleno de cosas. Lo único que pasa es que su densidad es baja, no se reflejan en los sentidos humanos comunes y nos da la sensación de que no hay nada. A la velocidad a la que estamos viajando, podríamos sacar la mano y nuestro guante de cuero de unicornio translumínico recogería enseguida un montón de medio interplanetario: gas, polvo cósmico y un intenso viento solar compuesto por partículas cargadas que se extiende a lo largo de todo el sistema solar y mucho más allá. Esta corriente de partículas (en su mayor parte, protones de alta energía) constituyen una levísima atmósfera solar exterior de unos cuarenta mil millones de kilómetros de diámetro: la heliosfera. La presencia de todas estas cosas en el espacio supuestamente vacío ha permitido postular algunos proyectos especulativos para naves interplanetarias o interestelares futuras como el ramjet de Bussard (aunque presenta algunos problemas: en vez de propulsión, podría producirse un frenado); y también para velas solares ya existentes hoy en día del tipo de IKAROS.

Mercurio en falso color. Sonda MESSENGER, NASA/JPL.

Mercurio en falso color. Imagen tomada por la sonda MESSENGER. NASA/Jet Propulsion Laboratory.

Mercurio.

¡Mira, mira, Mercurio! Ahí está, el pobre, atrapado entre el fuego y el hielo y con la cara partida a golpe de meteoritos. Tan cerca del sol, la temperatura en su punto subsolar llega a 427 ºC por irradiación directa, mientras que en sus polos cae hasta –183 ºC. Sí, ciento ochenta y tres grados bajo cero, a sólo cincuenta y ocho millones de kilómetros del Sol (en realidad, tiene la órbita más excéntrica de todo el sistema solar: varía entre 46 y 70 millones de kilómetros). Es un planeta rocoso, de tipo terrestre, que no posee lunas.

Probablemente lo estudió por primera vez un desconocido astrónomo asirio, hace unos tres mil cien años; sus observaciones nos llegaron a través del MUL.APIN babilónico. ¿Cómo sabemos que fue hace ese tiempo, y no otro? Sencillo: para que las observaciones registradas en el MUL.APIN cuadren, Mercurio tenía que estar en su posición correspondiente al 1.130 aC, con un error máximo de ochenta años arriba o abajo. Es lo que tiene la astronomía: puedes saber dónde estuvo, está o estará cualquier cuerpo celeste con extrema precisión, incluso aunque la observación fuera tan primitiva. Para los griegos, era Apolo cuando se veía al amanecer y Hermes cuando aparecía al anochecer. Fueron los romanos quienes le pusieron su nombre moderno en la mayoría de idiomas, por el dios Mercurio, equivalente latino del Hermes de los helenos.

Mercurio es el planeta más pequeño del sistema solar, muy denso y con una atmósfera extremadamente tenue compuesta por oxígeno molecular, sodio, hidrógeno, helio y algunas otras cosas en poca cantidad. En el fondo de los cráteres polares, que nunca quedan expuestos al cercano Sol, parece haber una cierta cantidad de agua en forma de hielo según las observaciones radáricas. Posee un núcleo ferroso desproporcionadamente grande, fundido y denso, rodeado por un manto de silicatos y una corteza bastante gruesa. Se cree que el planeta está contrayéndose por enfriamiento de su núcleo. Tuvo actividad volcánica en el pasado.

Ninguna potencia espacial se ha planteado seriamente la exploración o colonización de Mercurio, que ocupa un lugar menor en la literatura. La tecnología necesaria sería muy parecida a la utilizada en la Luna; el geólogo especialista en Ciencias Planetarias Bruce C. Murray, que cofundara la Sociedad Planetaria junto a Carl Sagan y Louis Friedman, ha definido a este planeta como una Tierra vestida de Luna. Por desgracia, viajar hasta allí con los medios presentes de la Humanidad resulta francamente problemático: está tan metido en el pozo de potencial gravitatorio del Sol que –además de exigir un montón de delta-V– obligaría a permanecer seis años dando vueltas a su alrededor antes de poder aterrizar. Pero en él, podrían encontrarse cantidades significativas de helio-3 para las tecnologías de fusión nuclear y diversos minerales valiosos; además, se ha sugerido que debe ser un buen sitio para construir grandes velas solares, lo que a su vez sería útil en la terraformación de Venus. A donde, por cierto, estamos llegando ya: han pasado seis minutos desde que abandonamos la fotosfera solar, Mercurio ha quedado a nuestras espaldas y nos aproximamos al lucero del alba: Venus, Hesperus, Lucifer.

Venus en color real.

Venus en color real. NASA/Ricardo Nunes.

Venus.

¿Qué podemos decir de Venus que no hayamos dicho ya? Bueno, pues muchas cosas, la verdad. La hermana de la Tierra es otro planeta rocoso, como ya sabemos cubierto por una densa atmósfera muy rica en dióxido de carbono, lo que le hace mantener una temperatura superficial capaz de fundir el plomo; los estudios sobre la atmósfera venusiana, con la muy significativa participación de nuestro astrofísico favorito, fueron los primeros en hacernos entender que el incremento de dióxido de carbono de origen antropogénico representaban un peligro grave para el clima terrestre. Así comenzó a investigarse el calentamiento global.

Por su distancia al Sol, Venus debería ser un planeta tórrido pero perfectamente habitable. Sin embargo, esa catástrofe carbónica en su atmósfera lo convierte en un verdadero infierno al que sólo las naves Venera lograron vencer, en lo que fueron los primeros viajes interplanetarios de máquinas creadas por esta especie nuestra.

Las órbitas de los planetas son elípticas, pero la de Venus es circular casi por completo y se toma algo más de 224 días terrestres y medio para describir una vuelta completa alrededor del Sol. Además, su rotación resulta bastante extraña. Por un lado, es la más lenta entre los planetas grandes del sistema solar: un día venusiano equivale a 243 días terrestres, con lo que este día venusiano resulta más largo que el año venusiano. Por otro, gira sobre sí mismo en sentido contrario a la mayoría de planetas, incluída la Tierra. Se cree que estas anomalías obedecen a un complejo blocaje de marea con el Sol y a fenómenos relacionados con su densa atmósfera.

Pero como estamos viajando tan deprisa, Venus ya queda atrás y nos acercamos a la Tierra. Sí, es ese mundo azul de ahí delante. Me han dicho que hay en él algunas cosas curiosas. Llevamos ahora mismo unos ocho minutos de viaje.

Tierra en color real

Tierra en color real. Earth Observatory, NASA.

Tierra.

Tierra es un planeta rocoso, aunque la presencia de agua líquida, hielo y aire en su superficie le otorga ese aspecto peculiar como de canica azul. Si te fijas bien, sobre algunos puntos de sus continentes se distinguen zonas verduzcas. Eso es porque hay vida en ella, ¿te lo puedes creer? Vida terrestre vegetal, sustentada en la clorofila, lo que le otorga esa tonalidad. Algunas investigaciones aseguran que hay también animales, incluído uno que camina sobre dos patas y sabe encender luces en la oscuridad como si se creyera una especie de luciérnaga artificial. Qué bichejo más gracioso, ¿verdad? ¿Verlo desde aquí? No, por supuesto que a esta distancia resulta invisible. Además, no tiene mayor importancia, es un animalejo muy primitivo. Fíjate tú que se pasa la vida tirando líneas en el mapa a las que llama “fronteras” y luego las marca con orina, no, perdón, con trapos de colores, creo, ¡y hasta se mata por defenderlas! En un lugar tan pequeño, ¿no es cosa de risa? Nada, un bichejo irrelevante, ya te digo.

Tierra da una vuelta al Sol cada 365 días terrestres y un cuarto, aproximadamente. Quitando esas curiosidades de su superficie, es un planeta de lo más normalucho; sólo destaca por ser el más denso del sistema solar y por poseer una Luna bastante aburrida y muerta. Ah, sí, y porque tiene tectónica de placas: esos continentes que ves se mueven, muy lentamente, a lo largo de los eones.

Vamos directos a ella. Sujétate fuerte: existe un 25% de probabilidades de que choquemos con algún átomo o molécula durante nuestro recorrido hasta la superficie. En ese caso, contribuiríamos a formar parte del color del cielo terrestre mediante dos fenómenos llamados dispersión de Rayleigh y difusión de Mie. ¡Mira cómo se la pegan esos! Cuando la luz alcanza una molécula del aire, una parte de ella tiende a ser absorbida y después irradiada en una dirección distinta. La luz de onda corta (correspondiente a un color azulado, con aportación de verdes y violetas) resulta más absorbida e irradiada que la de onda larga (rojos, amarillos, naranjas). Es decir: la fría luz azul sufre mucha más dispersión de Rayleigh que la de los colores más cálidos. De hecho, le afecta tanto que se dispersa por toda la atmósfera y, mires adonde mires, te llega algo de ella. Este es el motivo de que el cielo sea normalmente azul.

Cuando miras hacia el horizonte, da la impresión de que el cielo tiene una tonalidad más pálida. Esto se debe a que la luz dispersada se dispersa y mezcla aún más, muchas veces, antes de alcanzar tus ojos (hay mucha más masa de aire si miras en horizontal que si miras hacia la vertical). Esta es también la razón de que parezca que el sol brilla menos cuando sale o cuando se pone. Y hace que los atardeceres y amaneceres tengan tonos rojizos: toda la luz de onda más corta resulta dispersada (azules, verdes) y sólo la de onda más larga (rojo, naranja) logra atravesar la atmósfera hasta tu retina. Este espectáculo de colores es el resultado de la dispersión de Rayleigh para los fotones de luz.

Puesta de sol desde la ISS

Puesta de sol a través de la atmósfera terrestre, tomada desde la Estación Espacial Internacional. Debido a una combinación curiosa de los fenómenos de dispersión y difusión mencionados en el texto, cada uno de los colores se corresponde a grandes rasgos con las distintas capas de la atmósfera (troposfera en amarillos y naranjas; estratosfera en blancos y grises; mesosfera, termosfera, ionosfera y exosfera en azules). La región negra inferior es la superficie terrestre y la superior, el espacio exterior. En esa estrecha franja de colores, que tratamos con tan enorme irresponsabilidad, alienta casi todo lo que amamos en este cosmos.

Sin embargo, si la luz se encuentra con partículas de mayor tamaño que los átomos y moléculas de la atmósfera (por ejemplo, las gotas de agua que forman las nubes), la dispersión de Rayleigh no puede producirse porque depende de la relación entre la amplitud de onda de la luz y el tamaño del objeto interpuesto. Cuando el tamaño de estas partículas alcanza un 10% aproximadamente de la longitud de onda de la luz incidente, el modelo de Rayleigh colapsa y deja paso a la difusión de Lorenz-Mie (no confundir con Lorentz). Siguiendo a Mie, la luz de todas las frecuencias (y no sólo la azul) resulta dispersada de manera muy parecida. Por tanto, no se produce una selección de un color específico (salvo debido a las propiedades físico-químicas de la materia donde esté incidiendo la luz). Y ese es el motivo de que las nubes sean blancas o grises.

En general, la luz de onda más larga (correspondiente a los colores cálidos) atraviesa la atmósfera y llega a la superficie sin muchos problemas. Como nosotros elegimos un fotón de onda larga, no hemos topado con nada, no hemos sufrido dispersión y por tanto estamos llegando ya al duro suelo. Ops, creo que vamos a dar contra esa mesa de ahí: esa a la que está sentado uno de esos bichejos de dos patas leyendo no sé qué en uno de sus ordenadores. Como hemos viajado a la velocidad de la luz (ejem…), hace 499 segundos que salimos del Sol, hemos recorrido unos ciento cincuenta millones de kilómetros y ahora vamos a…

Ojo.

…¡chocar! En realidad, lo que ocurre es que hemos caído dentro del radio de influencia de uno de los átomos que componen la mesa. Ahora pueden ocurrir dos cosas: que seamos absorbidos o que seamos rebotados. Los átomos que componen la mesa, por su naturaleza químico-física, tienden a absorber la luz en determinadas frecuencias y a reflejarla en otras. La luz reflejada puede entonces alcanzar los ojos e instrumentos que se encuentren alrededor, excitándolos; por lo que tales ojos e instrumentos (como el sensor de una cámara) verán la mesa (o cualquier otro objeto) gracias a la luz que ésta ha rechazado (reflejado). Es decir: vemos las cosas por la luz reflejada en las frecuencias (colores) que sus átomos no quieren y por tanto expulsan. Por esto decimos que las cosas son de todos los colores menos del color que las vemos.

Como viajábamos sobre un fotón de onda larga y luz cálida (rojos, naranjas, amarillos), y al menos algún elemento de la mesa tiene esa tonalidad, sus átomos nos han rechazado y hemos salido rebotados en dirección a… ¡bueno, pues parece que hacia el ojo del bichejo! Como le dé por parpadear ahora mismo, igual salimos reflejados otra vez (hacia cualquier otro lugar como, por ejemplo, una cámara que le estuviera haciendo una foto de la cara: entonces, contribuiríamos a formar la imagen del párpado cerrado).

Ojo humano

Ojo humano (sección)

Al penetrar en su córnea –la envoltura transparente delantera del ojo, compuesta por tres capas y dos membranas que las separan– vamos a sufrir un fenómeno llamado refracción. Es decir, un cambio brusco de dirección; tanto que la imagen se va a invertir por completo. Debido a la forma del ojo, la córnea actúa como una lente y concentra la mayor parte de los fotones de luz incidente hacia un punto en el interior; costó muchos cientos de millones de años de evolución biológica e incontables callejones sin salida llegar a algo así. Por fortuna, como hay tantos ojos en la naturaleza y han ido apareciendo a lo largo de tanto tiempo, la evolución del ojo es una de las mejor conocidas. Y sin embargo, el ojo humano tiene varias imperfecciones, una de ellas traducida en un punto ciego, que las sepias por ejemplo no sufren. En realidad, nuestro ojo dista de ser perfecto en comparación con el de otros animales.

Aún cabalgando nuestro fotón absorbido-reemitido por la mesa, atravesamos la cámara anterior –llena de humor acuoso– y pasamos por la pupila: la apertura circular en el centro del iris, esa membrana que cada persona tiene de un color distinto. El iris es básicamente un esfínter fotosensible, que se contrae o distiende según la cantidad de fotones incidentes para ajustar la iluminación total en el interior del ojo. Cuando hay poca luz se abre, permitiendo que entre toda la posible; y cuando hay mucha se cierra, evitando el deslumbramiento hasta cierto límite. Cruzamos así las puertas del iris y nos adentramos en el cristalino.

El cristalino es una lente autoajustable bajo el control del sistema nervioso que permite enfocar objetos a distintas distancias, fenómeno conocido como acomodación; esto provoca una segunda refracción (cambio de dirección de los fotones) que ajusta con más finura la causada por la córnea. Así, atravesamos ya el gel transparente que rellena la esfera del ojo –llamado humor vítreo– y nos precipitamos hacia el fondo de la retina.

Este es ya un tejido nervioso complejo, conectado directamente al cerebro mediante el nervio óptico, hasta tal punto que casi casi se podría denominar una proyección especializada del cerebro dentro del ojo. La retina está compuesta por grandes cantidades de neuronas interconectadas mediante sinapsis. Entre estas neuronas se encuentran unas muy especializadas en captar la luz. Son las células fotorreceptoras, típicamente conos y bastones.

La disposición de estas células y de las otras neuronas que las conectan al nervio óptico conduce a otro divertido debate con los partidarios del diseño inteligente (creacionismo bajo tapadera pseudocientífica). Resulta que en el ojo humano las células conectoras están dispuestas por delante de las células fotorreceptoras, con lo que muchos fotones quedan absorbidos en ellas sin efecto alguno, obstruyendo el paso de la luz y reduciendo así la agudeza visual; evidentemente, cabe preguntarse qué clase de diseñador hace pasar el cableado de una cámara por delante del sensor CCD. De nuevo, son las sepias quienes tienen dispuestas las células de la retina a la manera lógica; quizá ellas sean el pueblo elegido.

La retina según Santiago Ramón y Cajal

Estructura de la retina según la dibujó D. Santiago Ramón y Cajal (ca. 1900). En el Instituto Cajal del CSIC, Madrid.

Aquí acaba el recorrido de nuestro fotón, bien atrapado estúpidamente en una de estas células interconectoras o bien logrando actuar un fotorreceptor, tras su viaje de ocho minutos y diecinueve segundos desde el Sol. Si logra superar ese fallo de diseño de la retina, excitará uno de estos conos o bastones. Los bastones son extremadamente sensibles, capaces de detectar un solo fotón, permitiendo así la visión en condiciones de baja visibilidad (visión escotópica); a cambio, no pueden detectar colores. Son monocromáticos, con una sensibilidad óptima en torno a las frecuencias verdeazuladas. Por eso, cuando la iluminación desciende, seguimos siendo capaces de ver sombras pero perdemos la mayor parte de la visión en color.

Los conos, por el contrario, necesitan mucha más energía lumínica para excitarse. Sin embargo, en el ojo humano están presentes en tres sabores, cada uno de ellos más sensible a las frecuencias correspondientes a un color: verde, roja y azul. Así, nos proporcionan la visión fotópica tricromática: lo que llamamos ver en colores. La mayor parte de los mamíferos sólo son capaces de ver en dos colores, o carecen por completo de la capacidad para ver en color. Sin embargo, la mayor parte de las aves y algunos peces y anfibios poseen visión tetracromática: pueden ver un cuarto color, invisible para nosotros. ¿Y cuál es ese cuarto color? Pues a menudo la luz ultravioleta, que se difunde en una frecuencia indetectable por los fotorreceptores humanos (aunque no por sus instrumentos, claro). Parece ser que ciertas hembras humanas podrían tener una tenue visión tetracromática, pero esto no está demostrado todavía.

Algunas mariposas, lampreas y aves como las palomas son pentácromas. Esto es: poseen conos especializados en distinguir cinco colores básicos (e incluso más). Como resultado, pueden ver unos cien mil millones de colores distintos, mucho más allá de lo que constituye luz visible para la gente humana. Esa es una experiencia inimaginable. Aunque nosotros –por supuesto– seamos capaces de observar en todas esas frecuencias y muchas más a través de nuestros aparatos, la experiencia de ver realmente un mundo tan multicolor nos está vedada por completo: es como tratar de imaginarse la cuarta dimensión. No existen tales fotorreceptores en nuestros ojos y nuestro cerebro no ha podido evolucionar con ellos, por lo que estaríamos de todos modos incapacitados para interpretar sus señales. Dependemos de los datos instrumentales y las imágenes sintéticas en falso color para acceder a esa parte de la realidad; cualquier paloma la ve con un simple vistazo.

Los fotones incidentes excitan estas células fotorreceptoras estimulando algunas moléculas que se encuentran en su interior: la rodopsina y las yodopsinas, un conjunto de proteínas sensibles a la luz denominadas opsinas. Aquí se da otro fenómeno curioso. Todas estas células están activadas constantemente. Cuando resultan excitadas por la luz, entonces se inhiben y dejan de transmitir señales electroquímicas. Es esta desconexión la que activa las células transmisoras (las que están por delante) y entonces se emite una señal visual hacia el cerebro por el nervio óptico. Esto es, funciona al revés de como uno se podría imaginar en un principio: los fotorreceptores quedan inhibidos y eso es lo que dispara la señal visual hacia el cerebro en los transmisores.

O sea, que esto ya se asemeja a uno de esos bromazos a los que Mamá Naturaleza es tan aficionada: vemos las cosas de todos los colores menos de los colores que son (que admiten); las vemos boca abajo debido a la refracción en sus lentes (es nuestro cerebro quien se encarga de ponerlas boca arriba otra vez); y además las vemos porque detienen (en vez de activar) la acción de las células fotorreceptoras, lo que a su vez activa (en vez de detener) al sistema neurotransmisor. El mundo al revés, vaya. Para acabar de arreglarlo, aproximadamente la mitad de las fibras de cada nervio óptico se cruzan en el quiasma óptico y van a parar al lado opuesto del cerebro. Así las señales que viajan por ellas llegan finalmente a la corteza visual, que se encuentra (¡cómo no!) en la parte posterior de la cabeza, encima de la nuca. Es en esta corteza donde se construye el mapa de toda la información captada a través de los ojos, constituyendo así –literalmente– nuestra visión del mundo y contribuyendo decisivamente a formar nuestros pensamientos y emociones.

Y la energía que mueve todo esto procede también del Sol. Además de la radiación solar directa que mantiene viva la biosfera terrestre, los animales somos parásitos de las plantas a través de la cadena alimentaria; plantas que dependen a su vez de la fotosíntesis (propulsada por energía solar). Hijos e hijas del Sol y de la lluvia, polvo de estrellas, desde siempre y para siempre jamás.

Escrito sobre una idea original de Orlando Sánchez Maroto al que, por tanto, dedico este post. ¡Gracias, Orlando!

Premio Experientia Docet a la divulgación científica

Premio Experientia Docet a la excelencia en la divulgación científica.

Este post ha recibido el premio Experientia Docet a la excelencia en la divulgación científica.
Con mi agradecimiento. :-)

74 Comentarios Trackbacks / Pingbacks (3)
¡Qué malo!Pschá.No está mal.Es bueno.¡¡¡Magnífico!!! (95 votos, media: 4,93 de 5)
Loading...Loading...
Be Sociable, Share!

No verás muchos objetos como este sobre la faz de la Tierra

Desde luego, no tan de cerca.

Te ruego que hagas una pausa. Que cierres los ojos durante un instante. Y después, que los vuelvas a abrir y mires con profundidad la siguiente fotografía:

El casco de Chernóbyl - The Chernobyl helmet

El casco de Chernóbyl - The Chernobyl helmet. © César Toimil. Todos los derechos reservados. All rights reserved.

Es, efectivamente, un casco de bombero. Un casco de bombero soviético de 1986. Un casco de bombero soviético que estuvo en Chernóbyl la noche del accidente y que ahora yace olvidado en un armario del hospital abandonado de Pripyat, adonde llevaban a los heridos y enfermos durante las primeras horas.

La radiación natural normal suele variar entre veinte y treinta millonésimas de roentgen por hora. El límite máximo de seguridad en la Unión Europea para los trabajadores de la industria nuclear más expuestos equivale aproximadamente a medio roentgen al año (más rigurosamente, 50 milisieverts/año con un máximo de 100 mSv durante cinco años consecutivos). Una exposición a quinientos roentgens en cinco horas se considera generalmente mortal de necesidad. En Hiroshima, una hora después del bombardeo atómico, hacían mil roentgens por hora (Laboratorio Nacional de Oak Ridge, DWG 78-265).

Este casco, y el hombre que se cubría con él, estuvo expuesto a una radiación de veinte mil roentgens por hora durante un periodo de tiempo difícil de determinar pero sin duda prolongado. Muchas decenas de minutos. Puede que más de una hora.

No verás muchos objetos sobre la faz de la Tierra que hayan estado expuestos a semejante radioactividad. No tan de cerca, al menos. Aún hoy, casi un cuarto de siglo respués, este casco sigue siendo un objeto radioactivo peligroso al que no resulta nada conveniente acercarse demasiado. Si alguien va a robarlo, tiene bastantes números para llevarse la penitencia con el pecado y seguirá teniéndolos durante una larga temporada.

Ahora, por favor, vuelve a mirar la foto.

César Toimil se acercó, un poquito, para conseguir esta fotografía. César es un lector de este blog, fotoperiodista para la Voz de Galicia, que ha estado tres veces en Chernóbyl con objeto de realizar un libro fotográfico aún inédito sobre el lugar y se lo conoce ya como la palma de su mano. Nos lo cuenta así: un día, paseando por Pripyat con un amigo de fiar…

…me dice: “te voy a enseñar algo que lo ha visto muy poca gente” y me lleva a una habitación del hospital de la ciudad. Un sitio especialmente tétrico y bastante poco fotografiado. Coge un palo largo y con él saca de un armario un casco de bombero. “Este casco pertenece a uno de los bomberos que llegaron primero al incendio del reactor. No encontrarás muchas cosas que hayan estado a más de 20.000 roentgens”.

Yo quiero darle las gracias a César por compartirlo con nosotros autorizándome a reproducirla en la Pizarra de Yuri; y recordar a todo el mundo que esta fotografía le pertenece y está protegida por copyright y los demás derechos aplicables en estos casos. César gastó mucho tiempo, trabajo, dinero y algún riesgo para conseguirla, junto al resto de su extraordinaria colección; este esfuerzo no merece que se la pasen al dominio público sin al menos pedirle permiso.

Escrito en memoria del hombre que fue con este casco a protegernos a todos, y sus camaradas.

Monumento a los liquidadores en Kovel, Ucrania

Monumento a los liquidadores en Kovel, Ucrania. (Del dominio público)

PD: Sí, con la ayuda de César y alguna persona cualificada más, estoy preparando una. Una gorda. Permanezcan atentos a sus pantallas, aunque no necesariamente de manera inminente. ;-)

101 Comentarios Trackbacks / Pingbacks (4)
¡Qué malo!Pschá.No está mal.Es bueno.¡¡¡Magnífico!!! (51 votos, media: 4,71 de 5)
Loading...Loading...
Be Sociable, Share!

« Entradas anteriores Página siguiente » Página siguiente »