Archivo de noviembre, 2010

¿…y sólo sobrevivirán las cucarachas y las ratas…?

Los extremófilos no sólo constituyen una asombrosa demostración de la tenacidad de la vida terrestre,
sino que también abren posibilidades extraordinarias en el campo de la vida extraterrestre.

Esta Eosphaera de Gunflint (Minnesota-Ontario, Norteamérica) tiene unos 2.000 millones de años y es el fósil indisputado más antiguo que se conoce.

Esta Eosphaera de Gunflint (Minnesota-Ontario, Norteamérica) tiene unos 2.000 millones de años y es uno de los fósiles indisputados más antiguos que se conocen en la actualidad. Se trataría de un alga primitiva emparentada con las modernas Volvocaceae. Los estromatolitos contienen indicios notables de actividad biológica mucho más antiguos, remontándose al menos a unos 3.000 millones de años y quizás hasta 4.250. (H. Hoffmann, Universidad McGill)

La vida en la Tierra surgió hace unos 3.500 millones de años, ha sobrevivido a cataclismos extraordinarios y no se rendirá con facilidad. Las formas de vida sí desaparecen a menudo, en el proceso que llamamos extinción, pero la vida como tal ha demostrado ser asombrosamente tenaz. Hay una línea continua desde su aparición hasta el presente, sin interrupción alguna, derrotando a todos los algos que intentaron acabar con ella para regresar con más fuerza aún. Tiene cierto mérito eso de haber vencido a todo, medrando y evolucionando para sobrevivir ocupar todos los espacios disponibles a continuación, durante una puñetera cuarta parte de la edad del universo.

Existe incluso una hipótesis, todavía sin demostrar, que dice que la vida es aún más antigua –unos 4.250 millones de años, la tercera parte de la edad del universo– y sobrevivió incluso al último Bombardeo Intenso Tardío en el fondo de los mares y quizás en el mismísimo espacio exterior. Sea cierto esto último o no, no cabe ninguna duda de que la vida es muy antigua y sobre todo muy persistente. Con frecuencia se ha dicho que, si fuéramos tan imbéciles de aniquilarnos a nosotros mismos en una guerra nuclear, sólo sobrevivirían las cucarachas y las ratas. Sin embargo, esto dista mucho de ser una afirmación rigurosa. Las cucarachas y las ratas, aunque más resistentes a la radiación que los humanos, no lo son tanto.

Pero hay seres en nuestro mismo planeta capaces de resistir niveles espectaculares de radiación y otras condiciones extremas. Esto es muy interesante, porque rompe radicalmente algunas imposibilidades relativas al surgimiento y desarrollo de la vida, incluso de la vida basada en el agua y el carbono, tanto terrestre como extraterrestre. Y, por ello, resulta de gran importancia en astrobiología. Veámoslo.

Radiación y vida.

Esto de la radiación es importante, porque junto a la presencia de materia y a la temperatura constituye una de los grandes aguafiestas a la hora de pensar en vida extraterrestre. Una radiación elevada de cualquier clase mata todo lo que pilla, por el sencillo procedimiento de alterar o cargarse los átomos o moléculas necesarios para sustentar cualquier forma sensatamente imaginable de vida (por ejemplo, una radiación excesiva pasa la materia a estado plasmático, en el cual la vida resulta difícilmente posible). De manera muy particular, interfiere en los procesos reproductivos, dislocando los mecanismos biológicos de replicación. Las radiaciones ionizantes (empezando por el alto-ultravioleta y continuando por la radiación gamma y X) se usan habitualmente como una técnica de esterilización contra los microorganismos.

Por otra parte, un nivel demasiado bajo de radiación parece también incompatible con la vida y su evolución. Sin radiación, no hay transferencia significativa de energía a grandes distancias (por ejemplo: la luz y calor de un sol a un planeta) y un nivel saludable de radiaciones ionizantes facilita la mutación, y por tanto la evolución. La pregunta, por tanto, se centra en delimitar los límites de la radiación para que la vida siga siendo razonablemente posible.

Zona de habitabilidad.

La zona habitable de los sistemas solares se define como la región en torno a la estrella donde el agua puede permanecer en estado líquido. (Nueva ventana o pestaña para ampliar)

En general, un nivel de radiación tan bajo que mantenga congelados todos los solventes habituales –como el agua– dificultará enormemente el surgimiento y desarrollo de la vida porque ralentiza y en la práctica impide la interacción a gran escala entre los átomos y moléculas que la constituyen. En condiciones de presión más o menos normales, esto son 0ºC para el agua, 77ºC bajo cero para el amoníaco, 84ºC bajo cero para el fluoruro de hidrógeno y 183ºC bajo cero para el metano. Estos son los solventes más referenciados como posible medio para la vida, y los alternativos no se van mucho tampoco. Un lugar sin suficiente radiación para mantener una temperatura mínima en este rango está, muy probablemente, muerto.

Por el extremo contrario, estos solventes pasan a estado gaseoso y pierden su función biológica en una banda de temperaturas igualmente limitada: 100ºC para el agua, 20ºC para el fluoruro de hidrógeno, el amoníaco se evapora a 33ºC bajo cero y el metano lo hace a 161ºC bajo cero. A niveles mucho mayores, nos vamos al estado plasmático. Esto nos deja un rango francamente estrecho de temperatura operacional para la vida: 104ºC para el fluoruro de hidrógeno, 100 ºC para el agua, 44 ºC para el amoníaco y apenas 22ºC en el caso del metano. Todo nivel de radiación que produzca una temperatura fuera de estos rangos, por exceso o por defecto, tiene muy pocos números para ser compatible con la vida.

La radiación es un fenómeno eminentemente electromagnético (aunque también puede ser corpuscular, como la neutrónica, por ejemplo). Distinguimos entre radiaciones ionizantes y radiaciones no-ionizantes por la manera como interactúan con la materia y específicamente con sus electrones. Como su nombre indica, la radiación ionizante es la que puede ionizar átomos; dicho en plan sencillo, la que lleva energía suficiente para arrancarles los electrones. Esto, lógicamente, provoca una grave alteración del comportamiento químico (y por tanto bioquímico) de la materia. Las radiaciones ionizantes constituyen buena parte de lo que conocemos como radioactividad (junto a algunas no-ionizantes, como las corpusculares).

El centro de la Vía Láctea en el infrarrojo, Telescopio Espacial Spitzer

Los núcleos galácticos son potentes emisores de radiación, lo que puede esterilizar el espacio circundante hasta decenas de miles de años-luz de distancia. En la imagen, el centro de nuestra Vía Láctea en el infrarrojo. (Telescopio Espacial Spitzer, NASA)

La radioactividad se considera peligrosa porque es capaz de alterar significativamente la estructura y comportamiento de las cosas vivas a niveles relativamente bajos de energía total. Provoca con facilidad quemaduras, mutaciones y otros daños que pueden matar con facilidad a un ser vivo. Por ello, un nivel excesivamente elevado de estas radiaciones ionizantes se considera incompatible con la vida, aunque la suma total de irradiación recibida se encuentre en el rango del agua o cualquier otro solvente. Debido a esta razón, las zonas próximas al centro de las galaxias se creen esencialmente muertas (próximas vienen a ser unos 25.000 años-luz en el caso de nuestra Vía Láctea): en los núcleos galácticos se ha detectado una cantidad enorme de radiaciones tanto ionizantes como no-ionizantes.

¿Cuánta radiación ionizante es demasiada radiación? En la vida terrestre, depende de cada organismo en particular. El efecto de la radioactividad sobre los seres humanos está muy estudiado por motivos bien conocidos, con lo que tenemos una idea bastante clara de nuestros límites en este respecto. En general, una dosis inferior a 0,1 millonésimas de gray por hora se considera segura indefinidamente para las radiaciones ionizantes electromagnéticas, y cinco millonésimas por hora durante un año resulta probablemente aceptable. La radiación natural de fondo en España viene a estar entre 0,1 y 0,2 millonésimas de gray por hora (aplicando la conversión 1 sievert = 1 gray utilizada usualmente para la radiación gamma y X; deben aplicarse factores correctores, por ejemplo, en la alfa y de neutrones).

Aunque cifras relativamente bajas pueden ocasionar cáncer y otras enfermedades, los efectos perniciosos de las radiaciones ionizantes en el ser humano comienzan a evidenciarse claramente con exposiciones mucho mayores, aproximadamente a partir de un gray. Hasta el 5% de una población humana expuesta a uno o dos grays morirá durante las siguientes seis u ocho semanas. Una cifra de cinco grays puede matar a la mitad de la población expuesta en un mes más o menos, y diez grays nos aproximan al 100% de mortalidad en dos o cuatro semanas. Hay muy pocas personas que hayan sobrevivido a más de diez grays de radiación ionizante; entre estas, se encuentran algunos liquidadores de Chernóbyl, que en todos los casos resultaron expuestos de manera fraccionaria (en dosis menores separadas en el tiempo). En Hiroshima, algunas personas situadas a 21 kilómetros de la explosión recibieron doce grays; todas murieron. Por ello, consideraremos esta cifra de diez grays en una sola exposición como el límite de resistencia para los seres humanos. Las dosis superiores a treinta grays se consideran totalmente letales en cualquiera de sus formas, con las víctimas pereciendo en menos de dos días.

Rata

Las ratas son mamíferos euarcontoglires como nosotros, los primates, y por tanto acusan la radiación y otras agresiones ambientales de manera muy parecida. Se necesitan 7,5 grays de radiación ionizante para matar a la mitad de una población de ratas, apenas un 50% más de los cinco necesarios para hacer lo mismo con una humana.

Ratas, cucarachas, escarabajos de la harina y ositos de agua.

Las ratas no resisten la radiación ionizante mucho mejor que nosotros. Ambos somos mamíferos euarcontoglires, con un montón de similitudes biológicas. Allá donde la radiación esté matando a la gente como chinches, el resto de mamíferos morirán pronto también, y entre ellos las ratas. Para matar a la mitad de una población de pollos hacen falta seis grays, 7,5 para las ratas, 9 para los ratones y la mitad de una población de peces necesita veinte grays. En general, mamíferos, aves, anfibios y peces estamos mal adaptados a la radioactividad. Los crustáceos, que son artrópodos como los insectos, aguantan mejor: cargarse a la mitad de una población requiere doscientos grays, cuarenta veces más de lo que hace falta para liquidar a la mitad de una población humana.

Las cucarachas son asunto distinto. Pero no por cucarachas, sino por insectos; de hecho, hay insectos muchísimo más resistentes a la radiación ionizante que estas molestas compañeras de la humanidad sedentarizada. Estos bichejos con superávit de patas son tipos realmente duros. Veámoslo.

Diversos estudios habían establecido la resistencia a las radiaciones ionizantes de la cucaracha americana en un máximo de 675 grays; y entre 900 y 1.050 para la “cucaracha rubia” o alemana (sin embargo, sólo hacen falta 64 para matar al 93% de una población inmadura). Estas son, sin duda, cifras impresionantes: hasta ciento cinco veces la radiación máxima que podemos soportar los humanos. Las cucarachas parecen, pues, buenas candidatas para sobrevivir elegantemente a nuestra estupidez: con casi total seguridad, no tenemos armamento capaz de asegurar esos niveles de radiación en todas las tierras emergidas del planeta Tierra donde estos animalitos pueden medrar.

Para su temporada de 2008, la popular serie de televisión estadounidense Cazadores de mitos se propuso comprobar si esto era verdad. Y, ya metidos en materia, comparar a las cucas con otros insectos: la mosca de la fruta y el escarabajo de la harina (de quien ya les habían chivado algo…). Así pues, prepararon una serie de poblaciones de estas tres especies y se dirigieron al Laboratorio Nacional Pacific Northwest para enseñarles una fuente de cobalto-60 capaz de producir 550 grays por hora de radiación beta y gamma; como hemos visto, eso enferma de muerte a un ser humano en diez minutos.

Escarabajo del gusano de la harina (Tenebrio molitor)

El escarabajo del gusano de la harina (Tenebrio molitor) es uno de los insectos más resistentes a la radiación, mucho más que las cucarachas. En la prueba mencionada en el texto, sobrevivieron el doble que ellas a 100 grays y fueron los únicos en resistir 1.000 grays (cien veces más de lo necesario para matar a un ser humano).

Primero les arrearon diez grays, el límite máximo de supervivencia para las personas. Dos días después, habían muerto treinta de cada cien moscas de la fruta, una de cada diez cucarachas (alemanas) y dos de cada cien escarabajos de la harina; en el grupo de control no había perecido ningún individuo de las tres especies. A los quince días habían fallecido todas las moscas de la fruta, tanto en el grupo expuesto como en el de control (las moscas de la fruta sólo viven de dos a tres semanas). Pero de las cucarachas, sólo murieron el 30% (frente al 10% de control) y entre los escarabajos, apenas el 10% (contra el 6% de control). En un mes, la mitad de las cucas estaban difuntas (el 30% en el grupo de control), pero sólo el 26% de los escarabajos (10% en el grupo de control).

Así que decidieron preparar más grupos y meterles más caña: cien grays. Esa fue más o menos la radiación gamma en el aire durante los primeros momentos del ataque contra Hiroshima. En los primeros dos días, habían caído cuatro de cada diez moscas de la fruta, dos de cada diez cucarachas y… seis de cada cien escarabajos. Las mosquitas de la fruta se murieron pronto como es de natural en ellas, pero a los quince días quedaban la mitad de las cucas y el 87% de los escarabajos (90% y 94% de supervivientes, respectivamente, en los grupos de control). Y al mes seguían tan campantes el 30% de las cucas y el 60% de los escarabajitos (70% y 90% en los grupos de control).

Vaya, sí que son duras y duros. En el último intento, les sacudieron con mil grays. No se ha visto muchas veces semejante radiación en nuestro planeta, y todas ellas fue por causa humana. Para hacernos una idea, eso son cuatro veces más que el máximo alcanzado por hora en el entorno del reactor Chernóbyl-4 durante el accidente o en la primera hora después del bombardeo de Nagasaki; y más o menos lo que cabría esperar a unos cien metros de una cabeza termonuclear de un megatón estallando ante nuestros ojos. Ciento nueve minutos enteros de cobalto-60 a saco matraco, oiga.

Con mil grays, todas las cucarachas estaban muertas en dos días. Pero sólo el 60% de las moscas de la fruta. Y apenas el 10% de los escarabajos de la harina. A las dos semanas, no quedaba ninguna cucaracha ni mosca de la fruta (que, recordemos, se mueren de muerte natural en este plazo), pero aún vivían la mitad de los escarabajos (frente al 94% del grupo de control). Y al mes, sobrevivían todavía el 10% (90% en el grupo de control). Dicho de otra manera, uno de cada diez escarabajos de la harina podrían haberse paseado durante cuatro horas en torno al reactor reventado de Chernóbyl y sobrevivir durante al menos un mes. Desafortunadamente, el estudio de Cazadores de mitos no incluye información sobre lo que ocurrió después, ni especifica si fueron capaces de reproducirse y en su caso qué pasó con la descendencia.

Tardigrado u osito de agua, un poliextremófilo extremadamente resistente.

El ¿simpático? osito de agua es un poliextremófilo capaz de sobrevivir a 6.000 atmósferas de presión, en el espacio exterior y a más de 5.000 grays de radiación, quinientas veces más de lo necesario para aniquilar a los humanos. Se trata del animal más resistente conocido.

El escarabajo de la harina es uno de los insectos más resistentes a la radiación, pero tiene competencia. Por ejemplo, de una avispita llamada Habrobracon: necesitas 1.800 grays para asegurarte de que las matas a todas (Wharton y Wharton, 1959). Eso son 180 veces más de lo preciso para matar a todos los humanos de una población expuesta. Existen otros animalitos que no son insectos capaces de sobrevivir a estas dosis monumentales de radiación ionizante. Los Bdelloidea, unos bichitos invertebrados acuáticos de la familia de los rotíferos, pueden resistir 1.120 grays manteniendo una décima parte de su capacidad reproductiva (y produciendo descendencia sana).

Sin embargo, estos no son los animales más resistentes. El animal más resistente a la radiación que se conoce es un pequeño protóstomo, el tardígrado u osito de agua. Este animalín de apenas un milímetro es un durísimo poliextremófilo capaz de sobrevivir a un grado por encima del cero absoluto durante unos minutos, diez días deshidratado por completo, o lo que le de la real gana a seis mil atmósferas de presión (¡seis mil atmósferas de presión, como seis veces en el fondo de la fosa de las Marianas, o sea como en la recámara del cañón de un tanque T-80 durante el disparo!). De hecho, es que puede sobrevivir en el espacio exterior, a presión casi cero y temperaturas bajísimas, expuesto directamente a l0s rayos cósmicos y la radiación solar ultravioleta: después de su viaje de doce días en la nave rusa FOTON-M3, el 12% consiguieron seguir reproduciéndose con normalidad.

Este humilde y probablemente simpático osito de agua se ha encontrado en el Himalaya, a 4.000 metros de profundidad, en el Polo Norte, en el Ecuador… y puede aguantar la friolera de 5.000 grays de radiación gamma y hasta 6.400 de iones pesados, aunque pierde la capacidad de reproducirse. Cuando la mantiene, a veces se reproduce por partenogénesis pero más a menudo por vía sexuada, en ambos casos mediante huevos. De entre los que somos pluricelulares, no se conoce a ningún hijo de madre más duro que él. Pero en materia de supervivencia nadie, nadie puede competir con las bacterias.

Deinococcus radiodurans, thermococcus gammatolerans.

Los hongos y las bacterias son francamente duros de pelar. Muy, muy duros de pelar. Para cargarte a la mitad de una población típica de cualquier bacteria de andar por casa, necesitas esos mismos mil grays que sólo algunos animales logran soportar. La popular Candida, un hongo que se pega mucho si no usas condón, pide 24.000 grays para morirse de una buena vez: 2.400 veces más de lo necesario para aniquilar a la gente humana. Pero los más tenaces de entre todos los vivientes se encuentran en el reino casi infinito de las bacterias y sobre todo de las archaeas.

Deinococcus radiodurans

Deinococcus radiodurans mantiene el 37% de su viabilidad a 15.000 Grays, mil quinientas veces más de lo que mata a un ser humano.

Deinococcus radiodurans, también conocida como Conan the Bacterium, para por ser la más dura entre las duras de todos los vivientes que medramos en esta Tierra vieja; y como tal aparece en el Libro Guiness de los Récords. Pertenece al phylum Deinococcus, no parece ocasionar ninguna enfermedad y suele agruparse de cuatro en cuatro. Es como una esfera rosada de tamaño respetable para una bacteria (1,5 a 3,5 micras) y se cultiva con facilidad. Su presencia produce mal olor, como a repollo podrido. Tiñe en gram-positivo aunque presenta algunas características de las gram-negativas, no forma endosporas y carece de movimiento propio. Es un quimioorganoheterótrofo aeróbico, o sea que necesita oxígeno para producir su energía a partir de compuestos orgánicos presentes en el entorno; en ese sentido, se nos parece mucho. Por ello, se halla en lugares ricos en estos compuestos orgánicos, como la tierra, las heces, la carne o el alcantarillado, aunque también se ha encontrado en el polvo, la comida deshidratada, los instrumentos quirúrgicos y los tejidos. Sería un microorganismo como cualquier otro si no fuese por su resistencia a las agresiones del medio.

Y esa resistencia es extraordinaria: estamos ante un poliextremófilo radical. Pero donde destaca es, sobre todo, en su capacidad para soportar las radiaciones ionizantes. Deinococcus radiotolerans resiste 5.000 grays sin inmutarse, mantiene el 37% de su capacidad de crecer y reproducirse a 15.000 (es decir, 1.500 veces lo necesario para matar a toda una población humana) y algunas logran sobrevivir por encima de 30.000 (fuente 1, fuente 2). Estas son cifras fabulosas de radiación, cien veces superiores a lo que se llega a ver en un gran accidente o explosión nuclear. También resulta muy resistente a las variaciones de temperatura, a la deshidratación y a la presencia de contaminantes químicos tóxicos. Por ello, se están usando –con algunos retoques de ingeniería genética– para procesar los residuos resultantes de la fabricación (y desmantelamiento) de las armas nucleares y otros residuos radiológicos.

No es la única. Algunas especies de rubrobacter y chroococcidiopsis –una de las cianobacterias más primitivas que se conocen– rivalizan con Deinococcus radiodurans en tenacidad ante la radiación; la segunda se ha propuesto para la terraformación de Marte. Sin embargo, la más resistente de todas es una archaea llamada Thermococcus gammatolerans, un heterótrofo estrictamente anaeróbico con movilidad propia. Adquiere la forma de una esfera flagelada de una micra de diámetro y, como ocurre con todas las arqueas, no causa enfermedades ni se constituye en parásito.

Thermococcus gammatolerans

Thermococcus gammatolerans recupera su viabilidad y puede seguir reproduciéndose y medrando después de ser sometida a 30.000 grays (cepa EJ3), tres mil veces más de lo que podemos soportar nosotros.

Ya las archaeas tienden a ser duritas: se descubrieron como extremófilos, en lugares como lagos de sal o las aguas termales volcánicas, aunque ahora sabemos que están por todas partes. Pero Thermococcus gammatolerans es una cosa excepcional. Se siente cómoda en los respiraderos hidrotermales submarinos, a temperaturas de entre 55 y 95 ºC, o sea apenas cinco grados por debajo del punto de ebullición del agua; aunque se lo pasa pipa en torno a 88 ºC. Prefiere una acidez pH 6, con presencia de azufre, y medra a 2.000 metros de profundidad frente a la costa de Guyana. Es decir, a 200 atmósferas de presión. Esas son unas condiciones parecidas a las que hay en la caldera de una locomotora a vapor (algo menos de temperatura y bastante más presión).

Pero su resistencia a las radiaciones resulta difícil de asimilar. El límite de esta archaea, que se descubrió no hace mucho, aún no está bien estudiado. Pero se sabe esto: Thermococcus radiotolerans no se inmuta ante 3.000 grays y recupera su capacidad reproductiva (cepa EJ3) después de haber sido tratada con 30.000 grays. O sea, tres mil veces lo necesario para matarnos a ti o a mí con toda seguridad. Treinta kilograys es como… ¡cómo te lo diría yo! :-D Si no fuera por los efectos explosivos, sería como estar sentado a horcajadas sobre una bomba de hidrógeno cuando explota, en plan Teléfono Rojo: volamos hacia Moscú. Como pasarse cinco días enteros residiendo junto al reactor reventado de Chernóbyl. Qué quieres que te cuente.

¿Cómo puede ser esto? ¿Cómo pueden aguantar estos organismos semejantes niveles de radiación?

La mayor parte de ellos, porque no gastan médula ósea ni un tracto intestinal como el nuestro, que son especialmente frágiles ante la acción de las radiaciones ionizantes. Pero, para adentrarse en el ámbito de la resistencia ante miles de grays, hace falta algo más. Este algo más es la capacidad de regenerar rápidamente su ADN.

El ADN acusa mucho los efectos de la radiación: la luz ultravioleta (no-ionizante en frecuencia inferior, ionizante en superior) afecta seriamente a la citosina y la timina formando dímeros de pirimidina, mientras que las radiaciones ionizantes ocasionan fusión entrecruzada entre el ADN y las proteínas, desplazamiento tautomérico y radiólisis del agua circundante. Esto último crea agua oxigenada y radicales libres, más mutágenos aún que la misma radiación (la presencia de agua oxigenada en el citoplasma –o el núcleo, cuando lo hay– ocasiona hasta 2.600 veces más lesiones en el ADN que la radioactividad a pelo). Cuando la radiación es muy elevada, estas lesiones ocurren en avalancha y el ADN (o el ARN) resultan destruidos por completo, resultando en numerosos fragmentos severamente alterados.

Seres como el osito de agua, Deinococcus radiodurans, Thermococcus gammatolerans o los demás resistentes a la radiación mencionados en este post  parecen tener un ADN más resistente a estos efectos, y sobre todo una capacidad excepcional para regenerar rápidamente el dañado. El mecanismo exacto aún no se comprende bien, aunque por ejemplo Deinococcus radiodurans presenta un genoma organizado en anillos toroidales estrechamente empaquetados, lo que ayudaría a los pedazos de ADN a mantener su posición original, favoreciendo así su recomposición. Thermococcus gammatolerans tiene el ADN organizado en forma circular, pero parece gozar de una multitud de mecanismos regeneradores a nivel metabólico y enzimático.

Una pregunta intrigante es por qué estos seres han desarrollado semejante resistencia a la radiación, si en la naturaleza terrestre no hay tales niveles de radioactividad y por tanto no hay presión evolutiva en ese sentido. Aún no se sabe, pero una de las hipótesis más fuertes es que se trata de un efecto secundario de su resistencia a otras agresiones ambientales: si puedes reconstruir tu ADN después de una pasadita por el agua oxigenada, por ejemplo, en principio no deberías tener problemas para hacerlo después de un repaso radiológico de similar violencia. Por ello, todos estos organismos son poliextremófilos.

Resistencia a la radiación de diversos microorganismos seleccionados, incluyendo Thermococcus gammatolerans y Deinococcus radiodurans.

Resistencia a la radiación de diversos microorganismos seleccionados entre 0 y 10.000 grays, incluyendo Thermococcus gammatolerans y Deinococcus radiodurans. En Jolivet, E et al. 2003, "Thermococcus gammatolerans sp. nov., a hyperthermophilic archaeon from a deep-sea hydrothermal vent that resists ionizing radiation", Int J Syst Evol Microbiol 53 (2003), 847-851. De los supervivientes a estas dosis de radiación surge la cepa Thermococcus gammatolerans EJ3, que soporta 30.000 grays regenerando su viabilidad. (Clic para ampliar)

Extremófilos: en los límites de la vida terrestre.

El estudio de los extremófilos, es decir los seres vivientes que pueden seguir siéndolo bajo condiciones extremas, resulta de lo más interesante en una diversidad de campos que van desde la astrofísica hasta la medicina: incluso una mejora menor en la capacidad del ADN humano para resistir este tipo de agresiones –digamos, un pequeño retoque con ingeniería genética en base a estos conocimientos– se traduciría inmediatamente en una mayor resistencia a la radiación, a los contaminantes ambientales, al cáncer y a las enfermedades hereditarias.

Extremos de altitud: Buitre de Rüppel (estratosfera) y estrella de mar (fosas hadalpelágicas).

Sin considearse estrictamente extremófilos, algunos animales son conocidos por hacer acto de presencia en lugares extremos. El 29 de noviembre de 1973, un buitre de Rüppel (arriba) fue ingerido por el reactor de un avión a 11.000 m de altitud, ya en plena estratosfera (temperatura típica a 11.000 m: –51 ºC; presión: 0,25 atmósferas). La estrella de mar (abajo) ha sido observada en lo más profundo de las fosas hadalpelágicas, donde la presión es de 1.100 atmósferas y la temperatura, de 2 a 4 ºC.

Los extremófilos tienen la capacidad de sobrevivir, reproducirse y medrar en condiciones que matarían a la inmensa mayoría de las cosas vivas, pasándoselo de lo más bien. Según el conocimiento actual, los límites absolutos para la vida terrestre parecen ser estos:

  • Temperatura.
    • Límite superior (termófilos): al menos 122 ºC (la archaea Methanopyrus kandleri, cepa 116) o 121 ºC (Archaea 121). El osito de agua puede resistir temporalmente hasta 151 ºC.
    • Límite inferior (psicrófilos, manteniendo la actividad metabólica): El agua puede permanecer líquida muy por debajo de 0 ºC si está mezclada con sales u otras sustancias; se cree que, mientras haya un solvente líquido, no hay un límite de temperatura inferior para la vida (Price, B., y Sowers, T. 2004. Temperature dependence of metabolism rates for microbial growth, maintenance, and survival. Proceedings of the National Academy of Sciences, EEUU. 101:4631-4636.). Se ha observado actividad fotosintética en líquenes criptoendolíticos a –20ºC (Friedmann, E.I., y Sun, H.J. 2005. Communities adjust their temperature optima by shifting producer-to-consumer ratio, en Lichens as models: 1. Hypothesis. Microb. Ecol. 49:523-527). Hay indicios de transferencia electrónica y actividad enzimática a –80 ºC (Junge, K, Eicken, H., Swanson, B.D., y Deming, J.W. 2006. Bacterial incorporation of leucine into protein down to –20°C with evidence for potential activity in subeutectic saline ice formations. Cryobiology 52(3):417-429.). Se ha registrado actividad enzimática en una mezcla de agua, metanol y glicol a –100 ºC (Bragger, J.M., Dunn, R.V., y Daniel, R.M. 2000. Enzyme activity down to -100°C. Biochim. Biophys. Acta 1480:278-282.).
    • Preservación: Existen numerosos seres capaces de preservarse en temperaturas extremadamente bajas. Además de los mencionados ositos, que parecen capaces de aguantar unos minutos a apenas un grado por encima del cero absoluto (en torno a –273 ºC), numerosas especies adoptan mecanismos de conservación indefinida en el frío intenso.
  • Presión.
    • Límite superior (piezófilos): El popular microorganismo E. coli soporta presiones de al menos 16.000 atmósferas manteniendo activo su metabolismo. El experimento se realizó en una prensa para fabricar diamante artificial (Sharma et al. 2002, Diamond anvil cells used to demonstrate bacterial metabolism up to 1.6 Gpa, Science 295:1514-1516). Entre los pluricelulares eucariotas, el osito de mar aguanta al menos 6.000 atmósferas (Seki, Kunihiro y Toyoshima, Masato, 1998. Preserving tardigrades under pressure. Nature 395: 853–854). Los seres hadales viven rutinariamente a presiones en torno a 1.100 atmósferas (de hecho, necesitan estas presiones para sobrevivir).
    • Límite inferior (manteniendo la actividad metabólica): Relacionado con la conservación de la humedad (ver más abajo).
    • Preservación: No parece haber un límite inferior de preservación. Incontables organismos se deshidratan y conservan en condiciones de presión próximas al vacío absoluto.
  • Humedad (de agua).
    • Límite superior: Sin límite superior: la vida acuática es omnipresente en el planeta Tierra.
    • Límite inferior (xerófilos): Normalmente las bacterias detienen su crecimiento con una actividad acuosa inferior a 0,91 y los hongos, a 0,7. Sin embargo, microorganismos como Psychrobacter arcticus se pueden cultivar en entornos de actividad acuosa mucho más baja, en torno a 0,3. Eso es mucho más seco que el más seco de los desiertos terrestres. Numerosos mohos y levaduras son xerófilos.
    • Preservación: Gran cantidad de organismos se preservan en condiciones de deshidratación. El osito de agua puede sobrevivir una década sin contacto con la misma.
  • Acidez /alcalinidad.
    • Acidez (acidófilos): Muchos seres vivos sobreviven en pH inferior a 2. La archaea Ferroplasma acidiphilum puede vivir en ácido sulfúrico con pH próximo a cero. Por tanto, no hay límite de acidez para la vida terrestre.
    • Alcalinidad (alcalífilos): De la misma manera, muchos otros seres medran en pH entre 9 y 11. Bacillus alcalophilus TA2.A1 tiene un pH interno de 9 y medra en pH 11,5 (Olsson, K et al. 2003, Bioenergetic Properties of the Thermoalkaliphilic Bacillus sp. Strain TA2.A1, J Bacteriol. Enero 2003; 185(2): 461–465.). Esa es más o menos la alcalinidad del agua jabonosa.
  • Radiación.
    • Límite superior: Como ya hemos visto, la archaea Thermococcus gammatolerans (cepa EJ3) soporta 3.000 grays sin enterarse y 30.000 grays recuperando su viabilidad. Entre los pluricelulares, el osito de agua resiste 5.000 grays, aunque pierde su viabilidad. (Fuentes citadas)
    • Límite inferior: Sin límite inferior.
  • Otros.
    • Salinidad (halófilos): Numeros microorganismos sobreviven y se reproducen sin problemas en entornos de alta salinidad. Algunas archaeas requieren 1,5M NaCl para mantener su integridad y reproducirse.
    • Resistencia a los azúcares (osmófilos). El hongo Saccharomyces rouxii requiere una actividad acuosa relativa a los azúcares de 0,61 y Monascus bisphorus crece en 0,62.
Venus terraformado.

Impresión artística de un hipotético Venus terraformado. El uso de extremófilos se ha propuesto insistentemente para la modificación biótica de mundos muertos.

Como ya hemos apuntado, algunas de estas resistencias están relacionadas entre sí. Es por ello que existen numerosos organismos poliextremófilos, es decir, resistentes a varias de estas condiciones simultáneamente. Por ejemplo, tenemos termoacidófilos, que se desempeñan bien a temperaturas de 70-80 ºC y pH 2 a 3. Muchos xerófilos son también halófilos (u osmófilos) y psicrófilos. Ya hemos visto la cantidad de barrabasadas distintas que se le pueden hacer a nuestro osito de agua o a Deinococcus radiodurans antes de que se mueran. Otros poliextremófilos extremos, valga la redundancia, son el gusano de Pompeya, el Paralvinella sulfincola, la Pyrococcus furiosus, las bacterias del fango de las cavernas y muchos más.

Todos estos seres demuestran la feraz tenacidad de la vida y desafían nuestra comprensión tradicional sobre sus límites, incluso ciñéndonos a la terrestre basada en el carbono, el ADN/ARN y el agua. Desconocemos hoy por hoy cuáles son los límites para el surgimiento de la vida, pero obviamente es capaz de sobrevivir en condiciones asombrosas. Si un ser tan complejo como el osito de agua es capaz de sobrevivir diez días en el espacio exterior y seguir reproduciéndose, eso significa que las posibilidades son enormes. Los poliextremófilos sugieren planteamientos realistas de vida extraterrestre, de terraformación y de aumento de nuestra propia resistencia a todas estas agresiones por vías artificiales. Nos enseñan lo que es posible como mínimo, y lo que es posible como mínimo parece llegar mucho más lejos de lo que osábamos soñar.

151 Comentarios Trackbacks / Pingbacks (8)
¡Qué malo!Pschá.No está mal.Es bueno.¡¡¡Magnífico!!! (88 votos, media: 4,93 de 5)
Loading...Loading...
Be Sociable, Share!

500 exoplanetas

Existen innumerables soles;
hay innumerables tierras que giran alrededor de estos soles,
de manera similar a la que nuestros siete planetas giran alrededor de nuestro sol. […]
Hay seres vivientes que habitan estos mundos.

Giordano Bruno, De l’infinito, universo e mondi, 1584.

Estatua a Giordano Bruno en Roma.

Estatua a Giordano Bruno en Campo de' Fiori, Roma, el lugar donde la Inquisición Católica lo quemó vivo y con la lengua acerrojada el 17 de febrero de 1600 por inmoralidad, enseñanzas erróneas, blasfemia, brujería y herejía. Entre estas "enseñanzas erróneas" se contaba el heliocentrismo, el principio de la pluralidad de los mundos y los orígenes más remotos de la Teoría de la Información Cuántica.

En el momento en que empiezo a escribir este post (lunes, 22/11/2010), el catálogo que mantiene Jean Schneider (CNRS-LUTH, Observatorio de París) ya cuenta 502 candidatos a planetas extrasolares. Anteayer, PlanetQuest de la NASA actualizó a 500 también. El número de mundos detectados alrededor de otros soles crece sin parar. Hay planetas por todas partes: al menos el 10%, probablemente el 25% y hasta el 100% de las estrellas del tipo de nuestro Sol podrían tenerlos girando a su alrededor. Cada día es más cierta la segunda afirmación del cosmólogo napolitano quemado vivo hace cuatro siglos por la Inquisición Papal bajo acusación de inmoralidad, enseñanzas erróneas, blasfemia, brujería y herejía. Ni más ni menos.

De la pluralidad de los mundos.

Bruno no fue el primero de los humanos en defender la pluralidad de los mundos habitados. Que se recuerde, este honor recae en los atomistas griegos, esencialmente materialistas filosóficosLeucipo, Demócrito o Epicuro acariciaron el concepto. Sin embargo Platón y Aristóteles se oponían y afirmaban que la Tierra tenía que ser única, con la humanidad (y sobre todo unas ciertas clases de la humanidad) en la cúspide de la creación.

Por motivos obvios, a los cristianos les gustaban mucho más las ideas de Platón y Aristóteles que las de los ateos atomistas. Así que cuando la Cristiandad se impuso en Occidente, lo hizo bebiendo de una cosmología clásica geocéntrica y creacionista donde la Tierra constituía un caso único y nuclear en el cosmos: el lugar elegido por Dios para encarnarse en Jesús, el escenario esencial del plan de salvación divino. La idea de que este no fuera más que un mundo cualquiera con una vida cualquiera en un rincón perdido del cosmos era –y es– difícil de conciliar con una teología salvífica antropomórfica: el Hombre creado a imagen y semejanza de Dios, el Dios encarnado en Hombre, la verticalidad del poder y de la revelación y todo ese rollo. No resulta, pues, de extrañar que los cristianos en general y los católicos en particular se tomaran cada pensamiento discrepante como un ataque frontal a su fe y a su poder. Pese a ello, al menos Nicolás de Cusa planteó ya algunas discrepancias notables al respecto.

La pluralidad de los mundos habitados aparece, aunque de pasada, en la literatura islámica medieval. Algunos de los maravillosos Cuentos de las mil y una noches –que ahora algunos fundamentalistas islámicos también se quieren cargar– incluyen elementos que hoy en día llamaríamos de ciencia ficción; entre ellos, Las aventuras de Bulukiya relata un viaje por diversos planetas habitados.

Pero Bruno sí fue el primero que planteó el asunto en términos modernos, protocientíficos. Con su muerte y la inclusión de todas sus obras en el Índice de Libros Prohibidos, aún tuvo que transcurrir casi otro siglo antes de que la idea empezara a generalizarse en el pensamiento occidental. Ocurriría en 1686, con las Conversaciones sobre la pluralidad de los mundos de Fontenelle, y más decisivamente a partir del triunfo de la Ilustración en el siglo XVIII. Locke, Herschel y hasta los padres fundadores de los Estados Unidos Adams y Franklin exploraron provechosamente la cuestión. Para los cosmistas rusos, y especialmente para el padre de la cosmonáutica Konstantin Tsiolkovsky, la pluralidad de los mundos habitados fue asunto difícilmente discutible. Al llegar el siglo XX, ya sabíamos de sobras que las estrellas del cielo son soles como el nuestro, mayormente distribuidos en grandes galaxias, y sospechábamos con fuerza que debía haber muchos más mundos alrededor de esos otros soles. Pero no teníamos ninguna prueba fehaciente al respecto. Y ya sabes que en ciencia somos muy puñeteros con eso de las pruebas fehacientes.

Detectando planetas extrasolares.

El problema con los planetas –y lunas– situados en torno a otros sistemas solares es que no emiten luz propia y están muy lejos. Actualmente, las estrellas más próximas a nosotros son el sistema Alfa Centauri, a 4,4 años-luz de distancia: lo que vienen siendo 41 billones y pico de kilómetros. Y esas son las más cercanas. La tenue luz reflejada por un planeta o una luna resulta muy difícil de distinguir a semejantes distancias, y normalmente no se puede hacer con los instrumentos del presente. Si nosotros estuviéramos situados en Alfa Centauri, la Tierra nos resultaría invisible por completo; no digamos ya mundos más lejanos.

Detección de exoplanetas por velocidad radial o espectroscopia Doppler.

La presencia de planetas girando alrededor de una estrella obliga a todo el sistema a orbitar alrededor del centro de masas común. Esta "minórbita" descrita por la estrella puede ser detectada a inmensas distancias, delatando así la existencia de planetas extrasolares invisibles a los ojos y telescopios. En la actualidad, existen métodos para aplicar esta técnica con una precisión de un metro por segundo, a muchos años-luz de distancia. Los planetas muy grandes hacen que este efecto sea más perceptible.

Por ello, la duda sobre la existencia de estas innumerables tierras girando alrededor de otros innumerables soles perduró hasta casi el siglo XXI. Así, hubo que detectarlos por vías indirectas. La más básica es la medición de la velocidad radial o espectroscopia Doppler. El principio es relativamente sencillo: todos los astros de un sistema solar, incluyendo a la estrella (o estrellas), giran en torno al centro de masas del conjunto. Cuando hay planetas, sobre todo cuando hay planetas grandes, esto se traduce en una excentricidad o bamboleo de la estrella; y como la estrella emite enormes cantidades de luz y radiación, este comportamiento puede observarse a gran distancia.

De hecho, nuestros instrumentos son bastante buenos a la hora de detectar estas anomalías. El primero en proponer la existencia de planetas alrededor de otra estrella mediante esta técnica fue el capitán W. S. Jacob del Observatorio de Madrás, perteneciente a la Compañía Británica de las Indias Orientales, ya ¡en 1855! El objeto de su deseo –del capitán Jacob y de algunos otros que vinieron después– era 70 Ophiuchi, un sistema estelar binario relativamente próximo, a 16,64 años-luz de aquí. Este sistema presenta una órbita muy excéntrica, una anomalía que condujo a pensar que allí tenía que haber un compañero invisible con un décimo de la masa del Sol. Desafortunadamente, esta hipótesis no se ha podido confirmar. Por lo que sabemos ahora mismo, en 70 Ophiuchi no hay ningún planeta con las características descritas por Jacob y los demás. Sin embargo, naturalmente, esto podría cambiar en el futuro.

La primera detección confirmada de un planeta extrasolar, usando este método, fue realizada por un equipo canadiense en 1988. Aunque al principio fueron extremadamente cautos, dado que esta observación se encontraba en el límite de los instrumentos de su tiempo, el descubrimiento se confirmó en 2002. Está en torno a la estrella Alrai o Errai (del árabe Al-Rai, el pastor), conocida sistemáticamente como gamma Cephei, y por eso lo llamamos gamma Cephei Ab o Errai A1. Se trata de un planeta grande, un gigante gaseoso con la masa de un Júpiter y medio y un poco más, que orbita con cierta excentricidad a unos trescientos millones de kilómetros de la estrella. Su año –el tiempo que tarda en dar una vuelta alrededor de su sol– equivale a unos 903 días terrestres.

Errai A1 no fue el primer planeta en ser confirmado. Este honor corresponde al sistema solar en torno al púlsar PSR B1257+12, que se encuentra en la constelación de Virgo a unos 980 años-luz de la Tierra. Los púlsares son estrellas de neutrones que emiten radiación con una frecuencia muy precisa, tanto que se consideran las radiobalizas galácticas, y por tanto la menor anomalía en el tictac de estos relojes cósmicos resulta relativamente fácil de reconocer. Esto nos conduce a otra manera de detectar exoplanetas: la temporización de púlsares.

La temporización de púlsares se parece mucho a la detección por velocidad radial; sólo que las minúsculas variaciones en las emisiones del púlsar provocadas por este mismo fenómeno multiplica su precisión por varios órdenes de magnitud. Así se han descubierto ya planetas del tamaño de la Tierra en torno a varios púlsares. Por desgracia, sólo funciona en los púlsares, y encima ninguna clase de vida ni remotamente parecida a la que conocemos puede surgir o sobrevivir en las cercanías de estrellas de neutrones como estas; sin embargo, la detección de estos planetas del tipo de la Tierra demuestra que son posibles en otros sistemas solares.

El exoplaneta Fomalhaut b observado por el telescopio espacial Hubble en 2004 y 2006.

El exoplaneta Fomalhaut b observado por el telescopio espacial Hubble en 2004 y 2006. Ver en ventana o pestaña nueva para ampliar. (NASA)

El primer planeta confirmado en torno a una estrella de la secuencia principal del tipo del Sol (G2) fue 51 Pegasi b, a 50,9 años-luz de aquí. Se detectó también por velocidad radial y es un Júpiter caliente, que orbita a apenas 8 millones de kilómetros de su sol. Los planetas más parecidos a la Tierra que se han hallado hasta el momento, utilizando el mismo método, se encuentran en torno a una enana roja de la constelación de Libra llamada Gliese 581, a 20,3 años-luz de distancia; aunque COROT-7b tampoco es de despreciar. COROT-7b es interesante también porque se detectó fotométricamente, que es otra técnica para localizar estos exoplanetas.

La técnica fotométrica más común es la observación del tránsito. Básicamente, cuando un planeta pasa por delante de su estrella (entre su estrella y nosotros, vaya), “tapa” (eclipsa) una parte de su luz y por tanto modifica las características de luminosidad que observamos desde aquí. Es lo más parecido a ver un planeta que podemos hacer normalmente, hoy por hoy. Por desgracia, este método produce un montón de falsos positivos; por fortuna, resulta relativamente fácil descartarlos aplicando a continuación la técnica de velocidad radial. El resto son ventajas: una vez confirmada la presencia del objeto, la fotometría permite estudiar su dimensión, su densidad, su atmósfera y sus emisiones de radiación, aportando una gran cantidad de datos sobre sus características.

Existen más técnicas indirectas para la detección de exoplanetas, entre las que se encuentran las microlentes gravitacionales, de tanta utilidad para hallar incontables cosas que no ven los ojos. Sin embargo, a estas alturas ya se ha conseguido confirmar al menos diez por observación directa. Viéndolo con un telescopio, vamos. Estos suelen ser planetas gaseosos muy grandes, muchas veces Júpiter, tanto que están a punto de encenderse como pequeñas enanas marrones y por tanto emiten su propia radiación.

El escenario actual va como sigue: las técnicas de detección que tenemos hoy en día son adecuadas para detectar grandes planetas, del tipo de los exteriores de nuestro sistema solar o más grandes aún. Los planetas pequeños y rocosos resultan más esquivos, y no digamos ya las posibles lunas de unos y otros, que de momento permanecen completamente invisibles a nuestros ojos e instrumentos. Esto quiere decir que en esos casi 400 sistemas solares que hemos detectado ya (¡y los que quedan por descubrir!) podría haber innumerables tierras esperando a que las veamos con un instrumento mejor. La constante mejora de estas técnicas está ocasionando un rápido incremento en el número de candidatos a exoplanetas, lo que sería indicativo de que existen muchísimos más:

Detección de exoplanetas entre 1989 y octubre de 2010, con detalle de la técnica empleada.

Detección de candidatos a exoplanetas entre 1989 y el 3 de octubre de 2010, con detalle de la técnica empleada. En estos momentos, estamos ya cerca de descubrir cien al año. (Clic para ampliar)

Ricitos de oro y los tres osos.

Ilustración del cuento infantil "Ricitos de oro y los tres osos". La moraleja: "ni demasiado caliente ni demasiado frío, ni demasiado grande ni demasiado pequeño..."

En busca de Ricitos de oro.

El sueño húmedo de todo investigador que se precie es, por supuesto, descubrir un planeta de características análogas a las de la Tierra. Más que nada porque, si bien se puede especular todo lo que se quiera sobre formas de vida extrañas, sabemos que en los planetas de estas características la vida es posible: nosotros estamos aquí. Estos planetas, que de momento serían hipotéticos si no fuera porque la Tierra existe y está bajo nuestros pies, se han venido a denominar –no sin cierta sorna– goldilocks (“ricitos de oro“) por el cuento infantil Ricitos de Oro y los tres osos. Y quizá, también, por la cantidad de novios que les saldrían. ;-)

Un planeta (o luna) ricitos de oro es un astro que reúne las condiciones básicas para permitir la vida del tipo de la terrestre.Vamos a detenernos un momento en el concepto, porque a veces se interpreta fatal. El interés en los ricitos de oro no presupone que la vida en la Tierra sea el único tipo de vida posible; sino que la posibilidad (que no la probabilidad) de vida en los planetas del tipo de la Tierra es total (nosotros somos la prueba), mientras que en el resto no lo sabemos. Y, por tanto, parece sensato concentrar los siempre magros recursos destinados a la búsqueda de vida extraterrestre en este tipo de mundos, al menos en primera instancia.

El propósito de las búsquedas de planetas extrasolares no es, todavía, la localización de vida extrasolar. Ni siquiera la de un segundo hogar, donde el “principio ricitos de oro” tiene aún más sentido. Por el momento, esta investigación pertenece aún al ámbito de la ciencia pura, y estamos haciendo poco más que encontrarlos, contarlos y tratar de describir algunas de sus características. Hay que aprender a andar antes de correr. Pero se notan las ganas. :-D La menor sugerencia de que se ha detectado algún planeta telúrico o casi-telúrico provoca de inmediato gran revuelo tanto entre la comunidad científica como en la sociedad; ocurrió hace poco con el descartado (de momento) Gliese 581 g. Aunque esto de descartar candidatos es un suceso habitual en la búsqueda exoplanetaria, produjo claramente mucha más decepción que el descarte de un planeta pegasiano o uno chitónico, por decir algo.

Los "seres de luz" o de "energía pura", comunes a algunas expresiones de la espiritualidad y la literatura fantástica, serían virulentamente explosivos. :-P

Los "seres de luz" o de "energía pura", comunes a algunas expresiones de la espiritualidad y la literatura fantástica, serían virulentamente explosivos y deberían estar sometidos al Tratado de No Proliferación. :-P

Por supuesto, podríamos caer en un error terracéntrico si nos concentráramos sólo en estos mundos a la hora de buscar a otras gentes (aunque no si pretendiéramos encontrar ese segundo hogar…). No obstante, la aproximación ricitos de oro tiene bastante lógica. Veamos. Por un lado, resulta muy difícil imaginar tipos de vida desvinculados de la materia. En el ámbito de la religión y el esoterismo tienen gran querencia por los seres de luz y los entes de energía pura, pero un ser de luz (o sea, de fotones) sería extremadamente inestable y lo más parecido que se me ocurre a un ente de energía pura es una bomba de antimateria.

Ya he dicho alguna vez en este blog que no hay tal cosa como algo superior o inferior a otra en nuestro universo, y la idea de que la energía es de algún modo superior a la materia resulta absurda por completo. Si algo, sería al revés: la materia es una inmensa cantidad de energía exquisitamente estructurada, con un grado de estabilidad y sofisticación mucho mayor al de la energía pura (!), que es bastante primaria y básica. Es más: antes de poder dar lugar a cualquier forma de vida sensatamente imaginable, debe presentar un mínimo grado de organización. En la práctica: ser materia bariónica. El escalón de la materia y el escalón de la materia bariónica parecen dos pasos necesarios e imprescindibles en el surgimiento de algo tan diabólicamente complejo como la vida.

Y en este universo, la materia bariónica se halla sobre todo en el espacio interplanetario e intergaláctico –demasiado esparcida para dar lugar a vida por sí misma–, en las estrellas –demasiado calientes para permitir su surgimiento y estabilidad– y en los planetas y sus lunas. Estos últimos constituyen, pues, el escenario idóneo para el surgimiento de las formas de vida más probables. Por eso la vida que conocemos apareció en un planeta; como la Tierra, por ejemplo.

Zona de habitabilitad, según distintos tamaños de estrellas, comparada con nuestro sistema solar.

Zona habitable ("ricitos de oro"), según distintos tamaños de estrellas, comparada con nuestro sistema solar. (Clic para ampliar)

Hay cosas que evidentemente favorecen el nacimiento y desarrollo de al menos una forma de vida, y otras que lo desfavorecen. La presencia de un solvente líquido como el agua ayuda mucho, pues permite que átomos y moléculas de materia muy distinta entren en contacto fácilmente entre sí. Para eso, la temperatura no debe ser tan baja que esté todo congelado e inmóvil, ni tan alta que los solventes se conviertan en vapor o plasma. La región alrededor de un sol donde un solvente como el agua puede permanecer en estado líquido se denomina zona habitable. O también zona ricitos de oro. Los planetas ricitos de oro son aquellos que se encuentran dentro de la zona habitable de sus respectivas estrellas.

Existen más condicionantes que pueden alterar radicalmente la capacidad de un planeta para albergar vida. Por ejemplo, las gigantescas estrellas de tipo O probablemente barran todo el espacio circundante con un violentísimo viento solar, impidiendo la formación de planetas en su hipotética zona habitable.

En el extremo contrario, las enanas rojas –que constituyen la mayor parte de las estrellas de la galaxia– se habían descartado tradicionalmente pero en los últimos años han suscitado nuevo interés. Por la parte mala, emiten muy poca luz y calor, con lo que su zona habitable debe ser muy estrecha y cercana; cualquier planeta que se halle en esta región estará seguramente sometido a acoplamiento de marea (como la Tierra y la Luna), dando lugar a un hemisferio permanentemente expuesto al sol y otro en noche perpetua, lo que hace muy difícil la vida fuera de la estrecha zona de transición entre uno y otro; y encima son muy variables, lo que puede cargarse durante una fase de su historia todo lo logrado en la anterior. A su favor juega que son extremadamente abundantes y sobre todo longevas: durarán billones con “b” de años, permitiendo así incontables oportunidades para que se produzcan muchas tentativas; cualquiera de ellas puede dar en el clavo con una forma de vida capaz de medrar en estas circunstancias.

Radiotelescopio de Yevpatoriya (Ucrania), el más grande de Eurasia.

Desde el radiotelescopio de Yevpatoriya (Ucrania), el más grande de Eurasia, se han enviado ya al menos dos mensajes hacia 47 de Osa Mayor y otras estrellas prometedoras. 47 UMa es un sol muy parecido al nuestro, a 46 años-luz de distancia, donde ya se han detectado varios planetas.

No obstante, los soles más idóneos parecen ser los de tipo G y sobre todo K. Nosotros surgimos en torno a una estrella de tipo G, la enana amarilla llamada Sol, pero por su larga vida y comportamiento similar las de tipo K (enanas naranjas) podrían ser aún mejores. Las estrellas G y K suman al menos el 14% de los soles en nuestra galaxia y en muchas de ellas ya hemos detectado planetas. Entre las más próximas, tenemos ya candidatos a planetas en Epsilon Eridani (K2V, 10,5 años luz), 47 de Osa Mayor (G1V, 46 años luz, interesantísima) o AB Pictoris (K2V, 148 años-luz). Con toda probabilidad hay muchos más, esperando a que tengamos instrumentos más sensibles, como quisieron serlo el cancelado Darwin de la ESA o el postergado TPF de la NASA.

Lo seguro es que cada día hay más candidatos a convertirse en esas innumerables tierras de las que habló Giordano Bruno. De momento llevamos ya medio millar y, al ritmo actual, antes de cinco años habremos alcanzado los mil como mínimo, más todo los que no podemos prever aún. Si esta es la densidad planetaria típica en una galaxia, sólo en nuestra Vía Láctea debe haber entre cientos y miles de millones de planetas, más sus lunas, lo que podría elevar el número de estos astros al orden de la decena de millar de millones. Vale, los que estén más cerca de los núcleos galácticos no valen. Ni los de estrellas demasiado grandes o demasiado pequeñas. Aceptemos que tampoco los de sistemas múltiples. Sigue siendo un número asombroso: aunque apenas uno de cada diez millones de estos mundos fuera ricitos de oro, seguirían siendo mil sólo en esta galaxia.

Se considera que la zona de habitabilidad galáctica (ni demasiado cerca del centro para que la radiación no acabe con todo, ni tan lejos que dificulte la formación de elementos pesados) tiene unos seis mil años luz de ancho, empezando a una distancia de 25.000 desde el núcleo galáctico. El disco estelar de la Vía Láctea es esencialmente plano, con un grosor de apenas mil años-luz.  Si calculamos el volumen de este disco y luego le sacamos la raiz cúbica, nos sale que debería haber un ricitos de oro de media cada mil años-luz aproximadamente, lo que seguramente aporta algo de luz a la pregunta de ¿dónde está todo el mundo? En todo caso, observa que estamos utilizando las estimaciones más conservadoras posibles, suponiendo siempre formas de vida análogas a la terrestre y contando únicamente nuestra galaxia.

Así pues, a estas alturas ya podemos afirmar rotundamente con Giordano Burno: existen innumerables soles. Dependiendo del sentido, también podemos decir con él: hay innumerables tierras que giran alrededor de estos soles. Y, sin duda, podemos seguir preguntándonos legítimamente: ¿hay seres vivientes que habitan estos mundos? Bruno y quienes fueron como Bruno apostaron a que sí. Como poco, podemos contestar ya: existe una elevada probabilidad. Y es posible que la respuesta esté mucho más cerca de lo que podemos soñar hoy.

PD: Resulta difícil determinar cuál es el “exoplaneta número 500″, puesto que los candidatos entran y salen de la lista constantemente. En estos momentos, PlanetQuest de la NASA cuenta en esta posición a HD 218566 b, situado a unos 97 años-luz de aquí: un astro algo más pequeño que Saturno orbitando en torno a una estrella de tipo K3V.

77 Comentarios Trackbacks / Pingbacks (5)
¡Qué malo!Pschá.No está mal.Es bueno.¡¡¡Magnífico!!! (59 votos, media: 4,85 de 5)
Loading...Loading...
Be Sociable, Share!

38 antihidrogenitos.

El experimento ALPHA del CERN ha logrado capturar 38 antiátomos durante algo más de un sexto de segundo.
¿Qué significa esto? ¿Por qué es importante?

Salió publicado en prensa el jueves pasado: el experimento ALPHA del CERN ha logrado capturar 38 átomos de antimateria durante diecisiete centésimas de segundo, antes de que se fugaran. Qué pasada, ¿eh? Qué barbaridad, qué cosas hace la ciencia…

…venga, en serio. :-D A ver, que levante la mano quien pueda decir qué significa esto y por qué tiene a los físicos de medio mundo descorchando el champán bueno (vale, si eres físico, me imagino que ya sabes por qué andas borracho; pero ¿y si no? ¿Eh? ¿Eh? ;-) ).

El experimento ALPHA del CERN (Foto: CERN)

El experimento ALPHA del CERN (Foto: CERN)

Antimateria.

Partículas y antipartículas.

Partículas y antipartículas: electrón y positrón, protón y antiprotón, neutrón y antineutrón. Son como "imágenes en el espejo" con las cargas invertidas (el neutrón no tiene carga eléctrica, pero el antineutrón está compuesto de antiquarks, al igual que el antiprotón). Al combinarse, forman átomos y antiátomos.

Ya explicamos en este blog qué es la antimateria. Para resumirlo rápidamente, haré aquello tan feo de citarme a mí mismo:

La antimateria es, sencillamente, materia donde alguna de las cargas está invertida con respecto a la materia corriente. Veámoslo con un electrón, que se comprende muy bien. El electrón, como leptón que es, tiene masa y spin pero sólo una carga: la eléctrica, siempre negativa. Su antipartícula, llamada positrón, posee exactamente la misma masa, spin y carga eléctrica; sin embargo, en este caso la carga eléctrica es positiva.

De esta forma el positrón mantiene todas las propiedades de su antipartícula el electrón pero electromagnéticamente reacciona al revés. Por ejemplo: dos electrones, por tener carga negativa, tienden a repelerse entre sí. Pero un electrón y un positrón, aunque en todo lo demás sean idénticos, tienden a atraerse entre sí porque uno tiene carga eléctrica negativa y el otro positiva. Y así con todo.

Con los quarks ocurre lo mismo. El quark arriba, por ejemplo, tiene una carga eléctrica de +2/3 (dos terceras partes de la de un positrón). Antiarriba, en cambio, tiene una carga eléctrica de -2/3 (dos terceras partes de la de un electrón). Su carga cromática también cambia: si por ejemplo está en estado rojo, el antiquark estará en anti-rojo, que se suele llamar magenta. (Que esto de los colores no te confunda: es una forma simbólica de representar su estado de cara a la cromodinámica cuántica; no tiene nada que ver con colores de verdad).

Veamos lo que ocurre entonces con un protón y un antiprotón; por ejemplo, respecto al electromagnetismo, que es más sencillo. Hemos quedado en que los protones (como todos los bariones) están compuestos de tres quarks, y que en su caso éstos son dos arribas y un abajo. El quark arriba lleva una carga eléctrica de +2/3 y el quark abajo, otra de –1/3. Sumémoslas: (+2/3) + (+2/3) + (–1/3) = +3/3 = +1. Resultado: el protón tiene una carga positiva.

Ahora contemplemos el antiprotón, formado por dos antiquarks arriba (carga –2/3) y un antiquark abajo (carga +1/3). Observa que está formado exactamente igual, sólo que con las versiones invertidas de los quarks. Sumemos (–2/3) + (–2/3) + (+1/3) = –3/3 = –1. Resultado: el antiprotón tiene una carga negativa.

El resto de cargas también se invierten. En aquellos leptones que no tienen carga eléctrica (los neutrinos) se invierte otra propiedad distinta, la helicidad, que es la proyección del spin relativa al momento de inercia. O, alternativamente, es posible que sean partículas de Majorana y constituyan su propia antipartícula.

La antimateria ha llamado la atención de muchas personas, entre otras cosas por sus propiedades energéticas explosivas. Cuando la materia entra en contacto con la antimateria, se aniquilan mutuamente siguiendo la conocida fórmula E=mc2. Pero, así como en la fisión y en la fusión sólo es una minúscula parte de la materia o energía del átomo las que se liberan, en la aniquilación materia-antimateria toda la masa se transforma íntegramente en energía. Y esto, compi, es de una potencia pavorosa, la reacción más energética posible en todo el universo conocido:

Medio gramo de materia interactuando con medio gramo de antimateria (un gramo de masa total) genera espontáneamente 89.876 gigajulios de energía (se obtiene aplicando simplemente E = mc2; E = 0,001 · 299.792.4582 = 89.875.517.873.682 J). En términos de energía utilizable, esto equivale a unos 25 gigawatios-hora (una central nuclear como Cofrentes tirando watios a toda mecha durante casi un día entero); si queremos presentarlo en términos de energía explosiva, son 21,5 kilotones: como Nagasaki más o menos. Con un solo gramo de material.

Mapa de positrones en la Via Láctea.

Esta imagen del Observatorio Espacial Compton de la NASA presenta evidencias de que existe una nube de positrones, una forma de antimateria, extendiéndose a lo largo de unos 3.000 años-luz sobre el centro de la galaxia. Estos rayos gamma tienen una energía de 511 keV, un cuarto de millón de veces más que la luz visible, y se producen cuando los positrones de antimateria se aniquilan con los electrones de materia; así, la masa de ambos queda convertida íntegramente en energía según la conocida ecuación relativista E = mc2. Curiosamente, esta nube de antimateria parece extenderse hacia el norte del plano galáctico pero no hacia el sur.

Comparemos. El uranio-235 de grado militar puede llegar a producir, óptimamente, 88,3 gigajulios por gramo; la mezcla usada normalmente en las centrales civiles, entre medio y tres y medio. Por debajo de mil veces menos. La fusión del deuterio-tritio en las armas termonucleares puede alcanzar 337 gigajulios por gramo; y la fusión más energética posible roza los 650; esto es, ciento y pico veces menos.

La aniquilación materia-antimateria tiene otra ventaja: a diferencia de la fusión, se produce espontáneamente en todos los rangos de energía. A diferencia de la fisión, se produce con cualquier cantidad de materia/antimateria. Esto significa que no presentaría problemas de contención: el diseño conceptual de un reactor de materia-antimateria se parecería mucho al de un carburador o, si lo prefieres, a un motor cohete o una central térmica normal. Si necesitas más energía aumentas un poco el flujo, si necesitas menos lo reduces, si dejas de necesitar lo cortas. Eso es todo.

Como la antimateria presenta propiedades exactamente simétricas a la materia (o eso hemos observado hasta el momento), puede organizarse de manera idéntica. Un universo de antimateria sería indistinguible de un universo de materia. Este nuestro podría ser un universo de antimateria donde anduviéramos a la caza de la materia. De hecho, lo es: el “pro” y el “anti” dependen exclusivamente del punto de vista humano. Así pues, la antimateria se organiza en átomos igual que la materia:

Entonces imaginemos un átomo, el más básico de todos: el hidrógeno-1 o protio (hidrógeno corriente). Está compuesto por un protón (carga eléctrica positiva) y un electrón (carga eléctrica negativa) en órbita alrededor. Esta configuración es posible porque el protón y el electrón, al tener cargas distintas, tienden a atraerse (igual que hace la gravedad con una nave espacial en órbita alrededor de un planeta).

Si sustituimos el electrón por su antipartícula el positrón, o el protón por un antiprotón, este átomo se vuelve imposible: ambos tendrían idéntica carga, se repelerían violentamente y saldrían despedidos cada uno por su lado.

Pero si sustituimos los dos –el electrón y el protón– por un positrón y un antiprotón, el átomo es igualmente posible porque las relaciones entre ambos se mantienen; sólo que ahora están invertidas. Ahora la carga positiva está en el positrón orbitando y la negativa se halla en el antiprotón del núcleo, pero como la relación entre ambas se mantiene (cargas invertidas), el átomo puede existir. Y se llama antihidrógeno. No sólo puede existir, sino que hemos fabricado un poquitín. El CERN (sí, los mismos del LHC) fue el primero en lograrlo, probablemente en 1995 y de manera verificada a partir de 2002 en sus deceleradores de partículas. En los aceleradores también se ha creado un pequeño número de núcleos de antideuterio (antihidrógeno-2) y antihelio-3. Hablamos, en todo caso, de cifras de billonésimas de gramo. Con la tecnología presente, su coste sería tan exorbitante como su rareza: aproximadamente, 50 billones de euros por un gramo de antihidrógeno.

Pero no todo es tan difícil. Por ejemplo, ya existen desde hace algunos años aplicaciones tecnológicas basadas en la antimateria, como la tomografía por emisión de positrones (PET) de uso generalizado en medicina moderna.

Hidrógeno y antihidrógeno.

Un átomo de hidrógeno (isótopo: protio) y otro de antihidrógeno (isótopo: antiprotio). Esta es la antimateria que se logró contener esta semana en el CERN durante más de un sexto de segundo.

El Big Bang produjo, sobre todo, grandes cantidades de hidrógeno: la mayor parte protio y alguna pequeña cantidad de deuterio y tritio. También pudo formar algo de helio, litio y berilio. Todos los demás elementos que componen el cosmos –eso nos incluye a nosotros– surgieron en las estrellas; como decía Sagan, somos esencialmente polvo de estrellas. Y el Big Bang produjo sobre todo hidrógeno precisamente porque es el elemento más sencillo. Digamos que fue un suceso demasiado primitivo para formar cosas mucho más sofisticadas; éstas necesitaron procesos mucho más largos y complejos, en el corazón de los soles. Cuando las personas intentamos crear antimateria, también empezamos por el elemento más básico. Como ya hemos dicho, este es el antihidrógeno: un antiprotón en el núcleo y un positrón (antielectrón) orbitando alrededor.

La institución líder en el mundo para estas cuestiones de física súperavanzada es la Organización Europea de Investigaciones Nucleares (también llamada Laboratorio Europeo para la Física de Partículas), más conocido por sus siglas originales CERN. Hay otras instituciones de gran prestigio, pero algunas cosas que se hacen en el CERN no se hacen ni se pueden hacer en ningún otro lugar. Como resulta bien sabido, el CERN dispone del LHC, el acelerador de partículas más grande y potente del mundo por casi un orden de magnitud. Pero no solamente eso: también cuenta con algunos otros medios únicos. Entre ellos se encuentra el Decelerador de Antiprotones (AD). ¿Qué es esto de un decelerador?

La fábrica de antimateria.

El Decelerador de Antiprotones sucede a tres máquinas de antimateria anteriores desarrolladas en el CERN: AA, AC y LEAR. Aunque en 1995 LEAR creó al menos 9 átomos de antihidrógeno (la primera producción de antimateria atómica de la historia), en 1996 estas tres máquinas se cerraron porque era preciso liberar recursos económicos para la construcción del LHC. Cosas de las reducciones de costes y tal. Sin embargo, un grupo de científicos no estuvo de acuerdo con esta cancelación y presionaron para que se instalara al menos una nueva máquina de bajo coste. Esta nueva máquina fue el Decelerador de Antiprotones (AD).

Un decelerador es un tipo particular de acelerador; en esencia, un anillo de almacenamiento que hace cosas. Cuando una partícula choca con un blanco a velocidades próximas a las de la luz –de esto se encarga el acelerador–, se producen temperaturas locales enormes, en el rango de diez billones de grados. Sí, millones de millones. A estos niveles, una parte de la energía generada se transforma en materia: con estas máquinas somos capaces de crear materia nueva a partir de la energía. Y siempre, siempre surge como un par partícula-antipartícula. Esto es, materia y antimateria. Tal como predijo Paul Dirac a principios del siglo XX, nunca se ha observado que surja un número desigual de partículas materiales y antimateriales. Esta materia-antimateria sigue las mismas leyes que toda la demás del cosmos, con lo que forma cosas conocidas: protones, neutrones, electrones, antiprotones, antineutrones, positrones y demás fauna habitual.

El Dr. Jeffrey Hangst a los mandos del experimento ALPHA del CERN.

El profesor Jeffrey Hangst, astrofísico de la Universidad de Aarhus (Dinamarca), a los mandos del experimento ALPHA. (Foto: CERN)

Cuando se lanzan protones (casi siempre producidos por el Sincrotrón de Protones) contra un blanco, aproximadamente en un impacto de cada millón se forma un par protón-antiprotón. Parece una cifra muy baja, pero como el Sincrotrón de Protones produce muchos, pueden generarse más o menos diez millones de antiprotones por minuto. Estas partículas siguen avanzando con elevada energía, pero no todos con la misma (“esparcimiento de energía”, energy spread), ni tampoco en la misma dirección (“oscilación transversa”). Parecen un montón de críos traviesos saliendo de clase a la carrera, cada uno a una velocidad y con una dirección.

Cada vez que una de estas antipartículas entra en contacto con una partícula (por ejemplo, en las paredes del acelerador) ambas se aniquilan instantáneamente, generando energía. Sin embargo, son tan minúsculas y su número es tan bajo que no causa ningún efecto visible a los ojos. Pero, en todo caso, esto no nos conviene: queremos esos antiprotones para hacerles cositas. Así pues, utilizamos magnetos para obligarles a continuar por un camino determinado (que está, por supuesto, al vacío). De este modo llegan al decelerador, un anillo de doscientos metros de diámetro, donde continúan dando vueltas sin tocar las paredes por acción de estos magnetos.

A cada vuelta que dan por dentro del anillo, los intensos campos magnéticos van frenándolos. Cuando su velocidad desciende a una décima parte de la de la luz, se consideran decelerados y un cambio súbito en el campo magnético los saca hacia la línea de eyección, donde ya los tenemos disponibles para hacer cosas con ellos de manera manejable. Por su parte, los positrones (antielectrones) suelen proceder del isótopo radioactivo sodio-22. El experimento ATRAP se encargó de decelerar y acumular estas antipartículas frías para dar el siguiente paso: la creación artificial de antiátomos a escala significativa.

En agosto de 2002, el experimento ATHENA logró combinar estos antiprotones y positrones para formar muchos átomos de antihidrógeno de baja energía, muchos más que aquellos nueve originales de 1995: produjo cincuenta mil de ellos en un momentín. Esto se pudo confirmar con bastante facilidad, por el sencillo método de observar y contar las aniquilaciones subsiguientes con la materia del entorno.

La "celda de antiátomos" del experimento ALPHA del CERN.

La "celda de antiátomos" del experimento ALPHA del CERN.

Domando antiátomos.

Este fue un éxito enorme de esos que cabe celebrar con pompa y fanfarria. Por primera vez habíamos obtenido antimateria atómica manejable en cantidad suficiente para hacer algo con ella; y lo primero, por supuesto, estudiarla. Así se empezó a resolver una de las grandes preguntas de la física: la antimateria, ¿es de veras totalmente simétrica con respecto a la materia o presenta alguna anomalía oculta? Según el teorema CPT, sus espectros debían ser idénticos, con completa precisión. En estos momentos, sabemos ya que sus propiedades son especulares por completo hasta una precisión de una parte en cien billones.

ATHENA y ATRAP produjeron antihidrógeno combinando antiprotones y positrones en unas botellas electromagnéticas que se llaman trampas de Penning. Las trampas de Penning tienen fuertes campos magnéticos solenoidales y pozos electrostáticos longitudinales que son capaces de confinar las partículas cargadas. Como el antiprotón presenta carga negativa y el positrón la tiene positiva, ambas resultan contenidas en estas trampas de Penning.

Sin embargo, cuando ambas partículas se combinan en un átomo, la carga negativa del antiprotón y la positiva del positrón se anulan mutuamente. Entonces, el átomo de antihidrógeno resultante es electromagnéticamente neutro. Las trampas de Penning no pueden contener cosas neutras y nuestro precioso átomo antimaterial entra rápidamente en contacto con la pared material de la botella, aniquilándose pocos microsegundos después de su formación. Para estudiar el antihidrógeno con técnicas más detalladas (como la espectroscopia láser) hay que contenerlos durante más tiempo. Como mínimo, durante un séptimo de segundo en esa mezcla de anti-átomos neutros y partículas constituyentes cargadas.

Para resolver este problema se creó el experimento ALPHA. Se pueden atrapar átomos o antiátomos neutros porque tienen momento magnético y éste puede interactuar con un campo magnético exterior. Si creamos una configuración de campo con una fuerza magnética mínima, desde donde el campo se desarrolle en todas direcciones, algunos estados cuánticos del átomo se verán atraidos hacia esta región de potencia mínima. Esto suele adquirir la forma de una trampa de Ioffe-Pritchard. La idea es que cuando el antiátomo se forme, lo haga ya “prisionero” en esta trampa, disponible para su estudio al mentos durante unas fracciones perceptibles de segundo.

Y eso es exactamente lo que se supo logrado el pasado miércoles: ALPHA fue capaz de capturar 38 antihidrógenos neutros durante 170 milisegundos, más de un sexto de segundo y por tanto más de lo necesario para poder estudiar la antimateria con espectroscopia láser como si se tratara de materia vulgar. Se abre así la puerta para comprender uno de los misterios más sobrecogedores de este universo: su asimetría bariónica y por tanto la violación de la simetría CP.


Explicación del funcionamiento de la “trampa de antiátomos” del experimento ALPHA (CERN). (En inglés)

Detección de antimateria en el AD del CERN.

La aniquilación de antimateria tal como es detectada en el Decelerador de Antiprotones del CERN. El antiprotón produce cuatro piones cargados (amarillo), cuyas posiciones quedan determinadas mediante microcintas de silicio (rosa) antes de depositar su energía en los cristales de yoduro de cesio (cubos amarillos). El positrón también se aniquila, produciendo rayos gamma transversales (rojo).

Entonces, ¿esto para qué sirve?

En nuestro universo hay algunas cosas notables que todavía no nos cuadran. Una de ellas es este hecho sencillo: si la materia se forma siempre en pares partícula-antipartícula, si a cada partícula de este universo le corresponde una antipartícula… entonces, ¿dónde está toda la antimateria? Si durante el Big Bang se hubiera formado tanta materia como antimateria, ambas se habrían aniquilado entre sí y el cosmos no existiría ahora mismo.

Para empezar, ¿cómo sabemos que el universo es esencialmente material y no antimaterial? Bueno, pues porque todas las interacciones que conocemos hasta el momento sugieren un predominio radical de la materia. Cuando mandamos naves a otros planetas, no se aniquilan. En los rayos cósmicos que llegan a la Tierra, procedentes del Sol y del resto de la galaxia, hay diez mil veces más protones que antiprotones. Tampoco estamos detectando la energía de aniquilación que debería producirse en las regiones de transición entre galaxias de materia y galaxias de antimateria, si estas últimas existieran. La cantidad de antimateria en el cosmos parece ser extraordinariamente baja, y existe sólo cuando se forma a partir de procesos de la materia.

Aparentemente, la inmensa mayor parte del universo se aniquiló a sí misma durante el Big Bang. Edward W. Kolb y Michal S. Turner han estimado que durante el origen de todo se formaron treinta millones de antiquarks por cada treinta millones y un quarks. Tras la aniquilación, esa diferencia de un quark por cada treinta millones formó el cosmos presente.

Dije más arriba que en el laboratorio siempre observamos cómo de la energía surgen pares partícula-antipartícula y nunca desigualdades entre partículas y antipartículas. Esto no es exacto. En realidad, puede surgir más materia que antimateria bajo las condiciones de Sakharov; se han registrado muchas violaciones de la simetría CP y recientemente se han encontrado indicios de formación asimétrica de muones-antimuones en el Tevatrón del Fermilab estadounidense. El logro del CERN, junto a los demás avances en el campo, no sólo apuntan ya a una comprensión más profunda de los primeros momentos del universo –la ruptura de la supersimetría y la bariogénesis primordial–, sino que sugieren posibilidades futuras relacionadas con la transformación de la materia en energía y de la energía en materia.

La tomografía por emisión de positrones (PET): una aplicación práctica de la antimateria en medicina.

La tomografía por emisión de positrones (PET): una aplicación práctica de la antimateria en medicina.

Hay personas que no entienden por qué todo esto es importante ni por qué algunos defendemos a capa y espada que se prioricen recursos para esta clase de investigaciones, cuando hacen falta tantas cosas en el mundo y encima ahora que estamos en crisis. Por lo general, estas personas ignoran un hecho sustancial del progreso humano: desde hace más de cien años, sin teoría no hay práctica, sin ciencia no hay tecnología. Hubo una época, siglos atrás, en que era posible avanzar la tecnología por la cuenta de la vieja: trasteando con cosas hasta que hallabas una solución a un problema. Sin embargo, nada de lo que hemos visto suceder en el último siglo habría sido posible sin el desarrollo teórico de la ciencia. En cuanto subes un poquito el nivel, sin teoría previa, no hay práctica que valga. Tienes que comprender cómo funcionan las cosas antes de hacer algo con ellas, y no digamos ya de crear cosas nuevas.

Por ejemplo, toda la tecnología electrónica e informática moderna se derivan directamente de la Teoría Atómica, la Teoría de la Relatividad y la Teoría Cuántica, originadas a principios del siglo XX. No existe forma alguna de crear un transistor electrónico sin tener primero claros estos conceptos, y no digamos ya construir un microchip; lo mismo ocurre con la química moderna, los nuevos materiales y en general todo lo que constituye el mundo que conocemos. La medicina contemporánea sería imposible sin la Teoría Microbiana, la Teoría de la Evolución o los fundamentos teóricos de la farmacología química, entre otras muchas. Y así en todos los casos.

Actualmente, además, la ciencia es multidisciplinar y no le queda otra que serlo cada vez más. Es una situación –vamos a llamarlo así– holística, donde se requiere al mismo tiempo un grado asombroso de hiperespecialización y un grado igualmente asombroso de visión de conjunto. Hoy por hoy, no resulta extraño que un avance teórico en un oscuro rincón del conocimiento tenga consecuencias prácticas en ciencias aplicadas y tecnologías aparentemente muy distintas. Una observación astrofísica del telescopio Spitzer hoy puede ser la clave de tu tratamiento médico dentro de veinte años. Por poner sólo un ejemplo, ¿alguien se imagina un hospital moderno sin máquinas de resonancia magnética?

Manifestación de científicos del CERN contra los recortes presupuestarios.

Manifestación de científicos y otro personal del CERN contra los recortes presupuestarios frente a la sede de la institución en Meyrin (cerca de Ginebra). En la pancarta se lee: "Sin presupuesto para investigación: sin futuro para Europa". No puedo estar más de acuerdo.

La física, al estudiar las leyes básicas que rigen el universo, ocupa un lugar central en este proceso ciencia teórica -> ciencia aplicada -> tecnología. Todo avance en física, además de sus derivaciones tecnológicas directas, tiene un efecto inmediato en la química; también en la bioquímica, y por tanto en la medicina; y así en una especie de trama o red del conocimiento que se realimenta a sí misma una y otra vez. De este modo fue como se produjeron todos los grandes avances de la revolución científico-técnica y, sin ello, estamos condenados al estancamiento y la decadencia. Y la ruina. Las sociedades que no son capaces de continuar este proceso se quedan atrás y nadie va a esperarlas.

Las contribuciones anuales de los estados miembros al CERN ascienden a 1.112 millones de francos suizos, unos 823 millones de euros. Esto viene a ser más o menos como el presupuesto de una ciudad del tamaño de Valencia. Sólo en mantener las televisones autonómicas españolas ya nos gastamos mucha más pasta. Los recientes planes de rescate bancario se han tragado el presupuesto entero del CERN durante milenios; aparentemente, es mucho más importante salvar a los causantes de la crisis que apostar por las cosas que pueden contribuir a sacarnos de ella mediante el desarrollo científico-tecnológico.

Para una potencia global como Europa, ochocientos y pico millones de euros anuales es una cifra ridículamente baja hasta el extremo de la mezquindad. Tenemos la institución generadora de ciencia más avanzada del planeta Tierra y andamos haciendo el imbécil con su dinero; ahora, con la excusa de la crisis, los politicastros habituales andan recortándoselo aún más. Esto ya ha ocasionado consecuencias graves y algunas protestas.

Avances como el de esta semana son de importancia extraordinaria y sientan las bases de lo que serán la ciencia y la técnica futuras, como los avances de los científicos anteriores –que también tuvieron que luchar contra la ceguera absurda de los prácticos– constituyeron las bases de la ciencia y la técnica presente. Conforman, así, el antídoto más poderoso contra las eras de oscuridad. Sin ellos, no vamos a ninguna parte y estamos condenados al estancamiento y la recesión; la misma clase de estancamiento y recesión que sufrieron las culturas clásicas e islámicas y ahora empieza a manifestarse de nuevo en otras que no lo son.


Explicación del experimento ALPHA por el Dr. Hangst (en inglés).

104 Comentarios Trackbacks / Pingbacks (10)
¡Qué malo!Pschá.No está mal.Es bueno.¡¡¡Magnífico!!! (77 votos, media: 4,91 de 5)
Loading...Loading...
Be Sociable, Share!

El rayo, ¿sube o baja?

El fenómeno que conocemos comúnmente como “rayo”
no “cae”, sino que asciende desde la tierra al cielo
durante el transcurso de un complejo vaivén de inmensa energía.


La sonda Cassini-Huygens registra relámpagos en una nube de la atmósfera superior de Saturno.
Observación de 16 minutos comprimida en este video de 10 segundos;
audio sintético creado con las señales electromagnéticas recibidas por la nave.
(Jet Propulsion Laboratory – NASA)

Es uno de los fenómenos planetarios más notorios, allá donde haya una atmósfera gaseosa con la suficiente densidad. El rayo, ese viejo miedo y asombro de la humanidad desde que pudimos sentir, constituye el prodigio más espectacular de los muchos que se encuentran en la atmósfera terrestre. Y desde siempre, hemos dicho que el rayo cae. Que cae de los cielos sobre nosotros, vamos, como lanzado por algún Zeus. Pero, ¿es esto verdad? ¿Realmente el rayo cae, o hay algo aún más sorprendente esperándonos también detrás de este fleco de la realidad?

De las cosas que caen.

Los seres humanos somos un bicho fuertemente antropocéntrico. Esto tiene sus cosas buenas, como por ejemplo el humanismo. Y sus cosas menos buenas, porque el antropocentrismo no deja de ser una forma colectiva de egocentrismo y etnocentrismo, a menudo con rasgos profundamente narcisistas y chauvinistas. En general, los seres humanos tendemos a pensar que todo lo que hay en el universo está para favorecernos o fastidiarnos a nosotros personalmente, como individuo, como grupo o como especie. La idea de que el universo va a su bola y nosotros no hacemos mucho más que correr de acá para allá tratando de seguir su ritmo o huir de sus peligros nos resulta inquietante, indeseable. La mayoría de la gente prefiere pensar que estamos aquí por algo, que las cosas suceden por alguna razón más allá de sus causas físicas inmediatas. Adoramos suponer que las cosas vienen hacia nosotros. Que si nos parte un rayo, nos partió por algo, y no sólo porque estábamos en medio cuando saltó sin preocuparse por nosotros ni un poquitín. Este es uno de los orígenes de la religión.

Zeus con el águila y el rayo. Museo del Louvre, París.

Zeus con el águila y el rayo en un ánfora griega del 470-460 aC. Museo del Louvre (pieza G204), París.

Además, a falta de información y análisis de buena calidad (y a veces hasta teniéndolo…) las personas tendemos a interpretar la realidad según nuestras preconcepciones, prejuicios, miedos, deseos, creencias y anhelos: nuestra cosmovisión. En la cosmovisión común, todo lo que sube, baja; y si algo sucede en el cielo y afecta a cosas que están en la tierra –nosotros, por ejemplo– entonces es que viene del cielo o cae del cielo. Pensar de otra manera nos resulta confuso e incómodo.

Con estos antecedentes, parece de sentido común decir que el rayo cae del cielo, viene sobre nosotros desde el cielo. Sin embargo, lo cierto es que este fenómeno sucede demasiado deprisa para que nuestros ojos puedan percibir en qué sentido viaja: buena parte de él se desplaza a la velocidad de la luz, y ninguna parte de él va más lento que una tercera parte de la velocidad de la luz. Nuestro cerebro y nuestros ojos reaccionan mucho más despacio. En realidad, cuando pasa el rayo, lo único que llegamos a percibir es un destello instantáneo; por autosugestión, percibimos que cae hacia abajo. Pero en realidad no lo hemos visto caer hacia abajo, porque no somos capaces de tal cosa. Por fortuna, ahí está la ciencia –esa aguafiestas– y los instrumentos tecnológicos que produce para echarnos una manita.

En general, la lógica de todo lo que está en el cielo tiene que caer sólo resulta válida cuando la fuerza preponderante en el fenómeno es la gravedad. Sin embargo, en el rayo y el relámpago la gravedad no juega ningún papel significativo: se trata de un fenómeno esencialmente electromagnético. Un rayo no es otra cosa que una gran chispa saltando entre dos superficies con carga eléctrica: la tierra y la nube. Por tanto, en principio, no tiene ningún sentido de circulación preferente. La mitad inferior del rayo debería subir hacia arriba y la superior, caer hacia abajo hasta encontrarse en algún punto intermedio. Sin embargo, el fenómeno es más complejo e interesante. Veámoslo.

¿Cómo se foman los rayos?

Para responder a esta pregunta correctamente, primero debemos aprender cómo se forma una tormenta eléctrica. Las tormentas eléctricas se originan en un tipo particular de nubes: los cumulonimbos. En el planeta Tierra, la inmensa mayoría parte de los rayos y relámpagos se producen durante estas tormentas; aunque también se observan ocasionalmente en las nubes de ceniza causadas por los volcanes o por grandes incendios (como los forestales) y en ciertas tormentas de arena. Todos ellos son sitios donde el rozamiento entre una miríada de partículas en suspensión puede generar carga eléctrica y electricidad estática. En el planeta Tierra, más del 95% de los rayos y relámpagos suceden en los cumulonimbos; el 20% alcanzan el suelo y el 80% circulan de nube a nube. En todo momento, hay unas mil ochocientas tormentas eléctricas sucediendo a la vez, lo que totaliza unos dieciséis millones de ellas al año.

Un cumulonimbo.

Un cumulonimbo.

Los cumulonimbos son nubes convectivas densas y pesadas, con notable desarrollo vertical, lo que les da la forma de una montaña o de grandes torres en el cielo. Su parte superior tiende a ser plana (lo que en ocasiones les hace parecer un yunque) y a menudo suave, aunque también puede aparecer como fibrosa o estriada. Bajo la base, muy oscura, aparecen nubes desiguales. Los cumulonimbos traen lluvia y granizadas fuertes y breves, a veces en forma de virga. Si hay granizo, truenos o relámpagos, estamos sin duda ante una de estas nubes. Aunque no todos los cumulonimbos traen tormentas eléctricas. Con frecuencia, se limitan a provocar precipitaciones intensas pero de corta duración. Cuando ocasionan tormentas eléctricas, éstas suelen tener una duración máxima de media hora; si dura más, es que hay varios.

Dentro de estas nubes se forman un montón de gotitas de agua, que salen propulsadas hacia arriba debido a sus corrientes ascendentes internas (updraught). Así se enfrían con un mecanismo de sobrefusión; unas se van acumulando en forma de granizo blando y otras permanecen como minúsculas partículas heladas. Cuando el granizo es lo bastante grande y pesado, cae a través de la nube y desciende chocando y rozando contra las partículas pequeñas que viajan hacia arriba. Durante estas colisiones, algunos electrones de las partículas resultan capturados por el granizo, con lo que éste adquiere una carga negativa (mientras que las partículas que siguen subiendo a lo alto, desprovistas de esos electrones, presentan carga positiva). Así se van generando acumulaciones de carga eléctrica estática en la parte inferior y superior del cumulonimbo.

Una parte del granizo descendente con carga negativa se ha vuelo ahora tan pesado que las corrientes ascendentes no pueden propulsarlo de nuevo hacia arriba, con lo que queda durante un tiempo entre dos aguas, sin llegar a caer aún a tierra pero concentrado en las regiones inferiores de la nube. Así, la base de la nube se va volviendo fuertemente electronegativa. Como consecuencia, el trozo de tierra que hay debajo se va haciendo fuertemente electropositivo por inducción electrostática (explicado un poco a lo bruto: los electrones presentes en la parte inferior de la nube repelen a los que se encuentran sobre la superficie terrestre y los separan de sus átomos, dejando a éstos con carga positiva) Conforme el fenómeno se desarrolla, dos intensísimas cargas eléctricas se van acumulando –una negativa en la base de la nube y la otra positiva en la superficie terrestre– separadas por una capa de aire. El aire es un poderoso aislante eléctrico, lo que impide que estas cargas se reequilibren poco a poco. Así se va formando un gigantesco condensador natural, que a cada segundo aumenta más y más su carga.

En un determinado momento, esta carga es ya insoportablemente alta y se inicia un proceso de reequilibrio. El mecanismo exacto que lo dispara sigue siendo objeto de disputa, pero lo que ocurre a continuación es bien conocido. Básicamente se trata de un proceso en tres etapas, que crea canales conductores en el aire aislante. En cuanto estos canales se establezcan, una violenta descarga casi-instantánea circulará por uno de ellos para igualar las cargas entre la base de la nube y la superficie de la Tierra, con gran energía en forma de luz y calor: el rayo.

La formación de los canales conductores.

Formación del rayo.

Formación del rayo.

La formación de estos canales conductores en el aire aislante constituyen una especie de “pre-rayo” o “relámpago preliminar”. El proceso comienza con la generación de los llamados líderes escalonados (stepped leaders), de energía relativamente baja (decenas a cientos de amperios) y luz tenue, que a veces llega a ser percibida por el ojo pero más a menudo resulta invisible por completo. Estos líderes surgen cuando la atracción entre la base electronegativa de la nube y la superficie terrestre electropositiva supera un cierto umbral. Entonces, los electrones excedentes de la base nubosa comienzan a salir despedidos hacia la superficie a notable velocidad: unos 120 kilómetros por segundo.

Estos líderes no pueden viajar mucho: apenas unos cincuenta metros, con algunos llegando al centenar. Pero como siguen bajando electrones desde la nube en gran cantidad, se supera de nuevo el umbral y los líderes dan otro salto de cincuenta o cien metros, y así sucesivamente, extendiéndose en diversas direcciones como el delta de un río. Cada uno de estos saltos o escalones dura unas cincuenta millonésimas de segundo. Por donde pasan, van dejando “canales” o “riachuelos” de aire fuertemente ionizado, que se vuelve conductor de la electricidad. En unas veinte milésimas de segundo se están acercando a la superficie, con unos cinco culombios de carga.

Cuando uno de estos líderes escalonados se aproxima al suelo, provoca chispas positivas ascendentes que parten de la tierra y “salen a interceptarlo”. Estas chispas se llaman gallardetes positivos (positive streamers) y surgen típicamente de los objetos conectados al suelo más próximos a la nube: la parte superior de los árboles, los edificios, las colinas o lo que sea. Cuando los gallardetes positivos entran en contacto con los líderes escalonados, la conexión eléctrica entre la nube y la tierra queda establecida a través de estos “canales”, “riachuelos” o “cables” de aire fuertemente ionizado y por tanto conductor. Necesariamente, uno de estos caminos tendrá una resistencia más baja que los demás.

Entonces, los electrones situados en la región inferior del canal se precipitan violentamente hacia el suelo velocidades próximas a las de la luz. Esto provoca una intensísima corriente eléctrica en dirección a la superficie, ocasionando un potente destello inicial en las cercanías del suelo, con fuerte emisión de calor. El rayo acaba de comenzar.


Un rayo filmado a 7.200 FPS y reproducido a cámara lenta. Se observa perfectamente el desarrollo
de los líderes escalonados, estableciendo la conexión entre la nube y la tierra,
seguido por el intenso destello del rayo principal. (Tom A. Warner / ZT Research)

Desarrollo del rayo.

Desarrollo del rayo. (Clic para ampliar)

El rayo.

Sin embargo, esta “apertura de canal” no se traduce en una avalancha instantánea de electrones circulando desde la nube hacia el suelo. Nos lo explica el Dr. Martin A. Uman, uno de los mayores expertos mundiales en fenómenos relacionados con el rayo:

Cuando el líder queda conectado al suelo, las cargas negativas en la parte inferior del canal se mueven violentamente hacia el suelo, haciendo que fluyan hacia éste grandes corrientes y provocando que el canal se vuelva muy luminoso en esta zona.

Pero dado que las señales eléctricas (o cualquier otra señal, para el caso) tienen una velocidad máxima de 300.000 km/s –la velocidad de la luz–, el canal líder situado por encima del suelo no tiene ninguna maera de saber, durante un breve periodo de tiempo, que el líder de abajo ha tocado el suelo y se ha vuelto muy luminoso.

Así, la luminosidad del canal –el golpe de retorno (return stroke)– se propaga continuamente hacia arriba del canal y por los ramales laterales a una velocidad de entre 30.000 y 100.000 km/s. El viaje desde el suelo hasta la nube dura unas cien millonésimas de segundo.

Conforme la luminosidad del golpe de retorno se mueve hacia arriba, con ella asciende también la región de alta corriente.

–Martin A. Uman, “All about lightning”, Dover Publications, Nueva York, 1986.

Vamos a explicarlo de otra manera, por si se no ha entendido bien. Lógicamente, en un rayo común los electones van a viajar desde la base nubosa (electronegativa, con electrones excedentes) hacia el suelo (electropositivo, con déficit de electrones); esto es, hacia abajo. Pero el “fenómeno rayo”, lo que los humanos entendemos habitualmente como “un rayo” –la luz, el calor, la generación del trueno, técnicamente el golpe de retorno–, se forma hacia arriba. Por esto decimos que el rayo “asciende” en vez de “caer”.

La razón radica en que la velocidad de la luz en el vacío es el límite absoluto de rapidez para todo ente con masa o información. La información de que el canal conductivo ha quedado establecido no puede viajar hacia la base de la nube más deprisa de lo que van cayendo los electrones situados en las regiones inferiores del canal hacia abajo, puesto que éstos ya lo hacen a la velocidad de la luz. En la práctica, hacen falta unas cien millonésimas de segundo para que la base de la nube “se entere” de que el canal con el suelo ha quedado establecido y empiece a lanzar el resto de los electrones hacia abajo. Durante ese periodo el “golpe de retorno” sube hacia arriba y, con él, la región de alta corriente.

Los rayos más potentes pueden transportar corrientes de hasta 120.000 amperios y 350 culombios, aunque normalmente suelen andar por los 30.000 amperios y quince culombios. No es raro que produzcan temperaturas de hasta 30.000 ºC; este calor, al transferirse al aire, ocasiona las ondas de choque que forman el trueno (que, lógicamente, también se crea de abajo arriba). Surgen señales de radiofrecuencia de gran longitud de onda. En los últimos años se ha descubierto que los rayos generan también notables emisiones de radiación ionizante, los destellos terrestres de rayos gamma (TGF).

Completado el golpe de retorno primario, pueden producirse otros secundarios; entonces, el rayo parece “centellear”. Este fenómeno se produce de manera análoga al primero: surgen de la base nubosa los llamados líderes dardo (dart leaders) que recorren de nuevo el canal en dirección al suelo, seguidos por los nuevos golpes de retorno ascendentes. Al finalizar el fenómeno, la diferencia de carga entre la base de la nube y el suelo ha desaparecido.

Rayos positivos.

Distintos tipos de descargas eléctricas atmosféricas, en función de la altitud.

Distintos tipos de descargas eléctricas atmosféricas, en función de la altitud. (Clic para ampliar)

Existen diversos tipos de rayos, desde el electronegativo troposférico común que acabamos de ver hasta rarezas como los duendes rojos que se dan en las capas superiores de la atmósfera o los posibles rayos globulares que habrían causado el espanto más de una vez.

Hay uno en el que merece la pena detenerse de modo especial: el rayo positivo. Como hemos visto, el rayo común está ocasionado por la presencia de una fuerte carga electronegativa en la parte inferior de los cumulonimbos. Pero, ¿qué pasa con la carga electropositiva igualmente intensa que ha ido a parar a su parte superior? Pues que también puede formar rayos, muchos menos (apenas el 5% de los rayos son positivos) pero aún más potentes: hasta ¡300.000 amperios y mil millones de voltios, diez veces más que un electronegativo común! Debido a su elevada potencia y alcance, suelen causar habitualmente importantes incendios forestales, daños a las redes eléctricas y se cree que en alguna ocasión, catástrofes aéreas.

El rayo positivo resulta especialmente inquietante porque parece “salir de la nada”. Ya hemos dicho que los líderes escalonados son prácticamente invisibles al ojo, sobre todo durante el día. Su problema es que, al originarse en la parte superior de la nube, los líderes recorren una larga distancia en rumbo general horizontal antes de “inclinarse” hacia el suelo. Así, puede surgir un rayo de enorme potencia en un lugar donde aparentemente no hay nubes, ni lluvia ni nada. Los rayos positivos emiten, además de los efectos habituales, cantidades importantes de ondas de radio de muy baja frecuencia: VLF y ELF.

El pararrayos.

La tendencia de los rayos a conectarse con el punto más alto de un terreno determinado fue observada desde tiempos antiguos. Solía ocurrir con frecuencia que este punto más alto fuera la torre de un templo –el campanario de una iglesia, el minarete de una mezquita, la punta de una estupa–, lo que generaba ciertas contradicciones sobre la supuesta protección divina para aquellos que se acogían a sagrado durante una tormenta eléctrica. Si los edificios de la antigüedad ardían continuamente como teas debido a sus técnicas constructivas en madera y paja, los templos iluminaban al pueblo cada dos por tres por efecto del rayo.

Al parecer, algunas estupas budistas de Sri Lanka ya incorporaban algo parecido a un primitivo pararrayos. La torre inclinada de Nevyansk, en Rusia, fue construida entre 1725 y 1732 e incluye una estructura aparentemente concebida para actuar como pararrayos: una esfera con puntas en lo alto directamente conectada a una trama metálica que se hunde en los cimientos. En Occidente, la invención de este dispositivo se atribuye generalmente al estadounidense Ben Franklin, en 1749.

La torre inclinada de Nevyansk (Rusia), con lo que parece ser un primitivo pararrayos.

La torre inclinada de Nevyansk (Rusia), con lo que parece ser un primitivo pararrayos compuesto por una esfera con púas superior y una conexión metálica estructural al subsuelo. De ser así, precedería en 20 años al pararrayos de Franklin.

La función de un pararrayos es canalizar la corriente del rayo a través de un conductor seguro, impidiendo así que atraviese destructivamente la estructura protegida. Por tanto, consiste en un mástil conductor situado en el punto más alto conectado a un cable que se hunde profundamente en el suelo. Debido al comportamiento parcialmente caótico del rayo, la eficacia del pararrayos resulta variable; las instalaciones críticas suelen contar con varios para asegurar su protección. En las torres eléctricas, hay un cable superior desempeñando esta misma función; las centrales y estaciones de transformación cuentan con sofisticadas defensas contra este fenómeno natural. Los barcos utilizan un sistema muy parecido, con el conductor puesto en contacto con el agua.

Más intrigante resulta la protección contra el rayo en los aviones, que no mantienen contacto con el suelo. En general, por esta misma razón, las aeronaves no “atraen” al rayo (actúan un poco como “un pájaro posado sobre el cable de alta tensión”); aunque, en ocasiones, las cargas estáticas propias de cualquier aparato que avanza por el aire provocan el efecto inverso. Además, siempre puede ocurrir que un rayo conectando con el suelo atraviese casualmente a una aeronave que se encuentre en su camino, especialmente durante las operaciones a baja altitud o debido a los rayos positivos ya mencionados.

Los efectos del rayo sobre las aeronaves son generalmente menores. Por un lado, el fuselaje metálico exterior actúa como jaula de Faraday, lo que impide el paso al interior de buena parte de la descarga (los aviones modernos con gran cantidad de composites son intrínsecamente más débiles contra el rayo, pero llevan mejores protecciones). Sin embargo, siempre es posible que algo llegue a penetrar, con la posibilidad de dañar sistemas críticos. En la práctica, muy pocas veces un avión ha sido derribado por el rayo sin duda de ninguna clase. Desde 1945 hasta aquí, sólo constan dieciséis pérdidas atribuidas al rayo en todo el mundo… y es cosa sabida que esta atribución se realiza a veces como cajón desastre cuando no se puede identificar otra causa.

La más notoria, y una de las pocas difícilmente discutibles, es el accidente del vuelo 214 de Pan American el 8 de diciembre de 1963: un Boeing 707. Mientras permanecía en el patrón de espera para aterrizar en Filadelfia (EEUU), durante una fuerte tormenta eléctrica, un rayo causó la explosión de los gases combustibles en el depósito del extremo del ala de babor. El ala resultó destruida y la aeronave se precipitó a tierra, muriendo sus 81 ocupantes. Cosa parecida le pasó en Perú al LANSA 508, un Lockheed Electra que se estrelló de manera parecida en 1971, con una única superviviente entre sus 92 ocupantes. Uno que nos afectó directamente fue la pérdida de un carguero Boeing 747 de la Fuerza Aérea del Irán del Shá, en Madrid, el 9 de mayo de 1976 (17 bajas). Mucho más incierto resulta el caso del Air France 117 (1962), con 113 víctimas, o el TWA 871 en Italia (1959). El resto son aeronaves de porte menor y/o casos más que dudosos. Fabricantes notables como Airbus, la antigua McDonell Douglas, Tupolev, Antonov o Ilyushin, con decenas de millares de aviones volando durante décadas por los lugares más insólitos en toda clase de condiciones meteorológicas, no  han sufrido nunca ninguna pérdida ocasionada por el rayo.

Como puede verse, el riesgo mayor en estos casos consiste en la detonación de los gases en algún depósito de combustible, seguido por la sobrecarga de los equipos eléctricos y electrónicos de a bordo (especialmente los de navegación). Para evitarlo, las aeronaves modernas incorporan tramas o mallas de conductores, conectadas a los descargadores de estática, que en caso de contacto con el rayo actúan como canales de derivación de la energía hasta disiparla a través de estos dispositivos. También llevan barreras dieléctricas, concebidas para impedir que el rayo acceda a lugares críticos, así como sistemas eléctricos y electrónicos específicamente diseñados para derivar los pulsos de corriente generados por el rayo sin que dañen los componentes. El resultado es que, en los últimos treinta años, no se ha perdido ningún avión de gran porte debido a este motivo.

Rayos de otros mundos.

Relámpagos en Júpiter.

Relámpagos en Júpiter. Imagen obtenida por la nave espacial Galileo. (NASA)

Además de la Tierra, se han registrado rayos en Marte, Júpiter, Saturno y Urano. Probablemente también en Titán y Neptuno, y se discuten en Venus. En general, como dijimos al principio, todo lo que tiene una atmósfera de densidad suficiente parece producir tormentas eléctricas. Como hemos visto, estos fenómenos electromagnéticos emiten muchas cosas además de luz y calor: especialmente, radiofrecuencia y radiación gamma con niveles de energía superiores a 20 MeV (y posiblemente también rayos X). Esto último resulta muy interesante porque esta radiación puede viajar grandes distancias por el cosmos, en lo que constituye la base de la astronomía de rayos gamma. Aunque nuestros instrumentos aún no son lo bastante sensibles, esto abre la posibilidad de detectar y analizar atmósferas planetarias remotas en el futuro.

La emisión en radio de baja frecuencia causada por las tormentas eléctricas resulta todavía más intrigante. Estas emisiones son breves pero extremadamente poderosas: un rayo terrestre puede llegar a emitir con una potencia de 100.000 millones de vatios. Esto es perfectamente detectable desde las proximidades de la Tierra (por ejemplo, desde la cara oculta de la Luna) incluso con radiotelescopios sencillos. Una señal de un megavatio procedente de Epsilon Eridani, a 11 años luz de aquí, se puede detectar sin problemas con un plato de doscientos metros de diámetro: menos que Arecibo. Y hablamos de emisiones cien mil veces más potentes.

Es más chulo aún. Resulta que las características de la atmósfera donde se genera el rayo determinan las características de la señal. Las tormentas eléctricas de las atmósferas ricas en oxígeno, como la terrestre, emiten con un pico característico entre 5 y 7 kHz. Por tanto, aunque los desafíos técnicos y económicos son relevantes, no resulta imposible concebir un radiotelescopio especializado en la detección de atmósferas extrasolares del tipo de la terrestre mediante las emisiones de radio producidas por sus tormentas eléctricas. El principal problema provendría de las interferencias causadas por nuestros propios rayos. Por ese motivo, este radiotelescopio estaría mejor situado en el espacio y a ser posible “blindado” frente a la Tierra (¿dijimos la cara oculta de la Luna?). Por su parte, un telescopio en órbita solar a 7,4 horas-luz de distancia podría utilizar al Sol como lente gravitacional para enfocar las ondas de radio. Hay un estudio bastante interesante sobre todo esto aquí.

Durante milenios, el rayo fue objeto de temor y veneración supersticiosa. Quizás en un tiempo no tan lejano, de la mano de la ciencia, sirva para indicarnos los rumbos futuros de la humanidad: el mundo, aún ignoto, que nos espera para convertirse en nuestro segundo hogar. Si es que no está ocupado ya, lo cual sería más interesante aún.

68 Comentarios Trackbacks / Pingbacks (5)
¡Qué malo!Pschá.No está mal.Es bueno.¡¡¡Magnífico!!! (72 votos, media: 4,76 de 5)
Loading...Loading...
Be Sociable, Share!

Así funciona una central nuclear

Energía nuclear de fisión.


La película El Síndrome de China (1979) sigue conteniendo una de las mejores explicaciones sencillas del funcionamiento de una central nuclear.
Sin embargo, hoy intentaremos profundizar un poquito más.

Pues… que me he dado cuenta de que aquí hemos hablado con detalle sobre armas nucleares, termonucleares e incluso del juicio final. Y sobre las perspectivas de la fisión y de la fusión, sobre los héroes y mitos de Chernóbyl, sobre la central nuclear más grande del mundo, mil cosas… pretendo incluso elaborar un todavía futuro post sobre lo sucedido de verdad en Chernóbyl (ya te dije, resulta más difícil distinguir la paja del grano de lo que parece, y ese quiero que sea riguroso y documentado hasta el extremo)… pero aún no he explicado cómo funciona realmente una central nuclear y el ciclo de su combustible. Yo, que soy así de chulo. :-/

La central nuclear de Cofrentes vista desde el pueblo. Foto de la Pizarra de Yuri.

La central nuclear de Cofrentes (Valencia) vista desde el pueblo. Contiene bajo la cúpula un reactor de agua en ebullición (BWR) que produce 1.092 MWe. (Clic para ampliar)

Producción, demanda y balance de importación - exportación de la Red Eléctrica de España

Producción, demanda y balance importador/exportador de la Red Eléctrica de España, 1995-2010. Datos tomados de los informes mensuales en www.ree.es/operacion/balancediario.asp (Clic para ampliar)

Seguramente sabrás, y si no ya te lo cuento yo, que una central nuclear es una fábrica de electricidad. Cualquier día típico en España, las centrales nucleares producen uno de cada cinco vatios que consumimos para mover nuestras vidas (¿te imaginas un mundo sin electricidad?). Esta cifra del 19%, que antes era mayor (hace quince años era del 35%), es ahora similar a la de los Estados Unidos o el Reino Unido. Por el momento, vamos servidos: España es, desde hace más de un lustro, exportador neto de electricidad (sí, exportador; y sí, desde mucho antes de la crisis: si te han dicho otra cosa, te han mentido. Observa que en los informes de la REE el saldo importador aparece en positivo y el exportador en negativo).

Una central nuclear es, además, un tipo particular de central térmica. Es decir: la energía eléctrica se produce generando calor. En las centrales térmicas corrientes se utilizan grandes quemadores a carbón, gas natural o derivados del petróleo como el gasoil, bien sea en ciclo convencional o en ciclo combinado, con o sin cogeneración. En todo caso se trata, básicamente, de calentar agua en unas calderas hasta que ésta se convierte en vapor con fuerza suficiente como para hacer girar una turbina según los ciclos de Carnot y Rankine. El eje rotativo de la turbina impulsa a su vez el de uno o varios alternadores, que son los que producen la energía eléctrica en sí. Cuando hablamos de estos grandes generadores instalados en las centrales eléctricas y conectados a potentes turbinas de vapor, se suelen denominar turboalternadores.

La pura verdad es que no resulta un método muy eficiente: se pierde aproximadamente entre una tercera parte y las dos terceras partes de la energía térmica producida (y por tanto del combustible consumido) debido a las ineficiencias acumulativas de estos mecanismos y a las limitaciones teóricas del ciclo de Carnot. Toda central térmica del presente, nuclear o convencional, necesita producir entre dos y tres vatios térmicos para generar un vatio eléctrico. Esto es: uno o dos de cada tres kilos o litros de su valioso combustible –petróleo, gas natural, carbón, uranio– se malgastan en estropear cosas caras dentro de la instalación y ocasionar contaminación térmica en el exterior. Típicamente, una central nuclear capaz de generar mil megavatios eléctricos debe producir tres mil térmicos. Es lo que hay. Si se te ocurre alguna manera de mejorarlo, no dejes de comentármelo, que tú y yo tenemos que hablar de negocios. :-D

Así pues, la clave de toda central térmica consiste en calentar agua para producir vapor que haga girar unas turbinas y con ellas unos alternadores eléctricos. En el caso particular de una central nuclear, este calor se origina por medios… eso, nucleares. :-) Específicamente, hoy por hoy, mediante la fisión de átomos pesados e inestables como algunos isótopos del uranio. Veámoslo.


Cualquier cosa capaz de hacer girar el eje de un alternador producirá energía eléctrica.
Arriba, un alternador manual;
abajo, el eje de un gigantesco generador hidroeléctrico en la Presa Hoover, Estados Unidos.

Fisión nuclear y reacción en cadena.

Ya te conté un poquito de cómo va esto de la fisión y la reacción en cadena en Así funciona un arma nuclear. Vamos a repasarlo por encima, centrándonos en esta aplicación civil. Como sabes, existen algunas sustancias en la naturaleza que son radioactivas. ¿Qué quiere decir esto? Bueno, su propio nombre nos da una pista: radio-activas. O sea: no son totalmente inertes desde el punto de vista físico, como cualquier otro piedro, líquido o gas. Por el contrario, los núcleos de sus átomos presentan una actividad física que se expresa en forma de radiación; para ser más exactos, en forma de radiaciones ionizantes. Estas radiaciones son más energéticas y pueden causar más alteraciones en la materia que las no ionizantes, como las que emite una televisión de tubo, una antena de radio o un teléfono móvil.

¿Por qué se produce esta radioactividad? Para contestar a eso hay que responder primero a otra pregunta: ¿por qué algunos núcleos atómicos no son estables? Esto se debe a que la configuración de protones y neutrones en su núcleo es anómala y tiende a un estado de menor energía. Veámoslo con un ejemplo, que ya introdujimos en Así funciona un arma termonuclear. La mayor parte del carbono que nos compone (a nosotros y a otro buen montón de cosas en este universo) es carbono-12 (12C). Se llama así porque tiene en su núcleo seis protones y seis neutrones: en total, doce partículas. Este es un núcleo estable, que no tiende espontáneamente a un estado de menor energía bajo condiciones corrientes. El hecho de tener seis protones en su núcleo es lo que hace que sea carbono; este número no debe variar o pasará a ser otra cosa.

Algunos isótopos del carbono: carbono-12, carbono-13 y carbono-14.

Algunos isótopos del carbono: carbono-12, carbono-13 y carbono-14.

Sin embargo, su número de neutrones sí que puede variar, y seguirá siendo carbono. Por ejemplo, cuando tiene seis protones y siete neutrones (total, trece partículas) estamos ante el carbono-13 (13C). El carbono-13 es también estable en condiciones estándar y, de hecho, aproximadamente el 1,1% del carbono natural (incluyendo el que forma nuestro cuerpo) pertenece a esta variante. Como sigue siendo carbono, sus propiedades químicas (y bioquímicas) son prácticamente idénticas; las físicas varían un poquito, pero muy poco.

Si este núcleo presenta un neutrón más, entonces estamos ante el carbono-14 (14C), que constituye una billonésima parte del carbono natural y está compuesto por seis protones y ocho neutrones. ¡Ah! Aquí cambia la cosa. Esta combinación ya no es estable: tiende a perder energía (y algún neutrón) para transformarse en otra cosa. Sus propiedades químicas y bioquímicas siguen siendo las mismas, pero las físicas difieren sustancialmente. Entre estas diferencias, de manera muy notoria, surge la radioactividad. Con el paso del tiempo, estos núcleos de carbono-14 van a sufrir transmutación espontánea para convertirse en otra cosa. Por ejemplo, en una muestra de carbono-14, la mitad de sus átomos transmutarán en 5.730 años aproximadamente. Cualquiera de ellos puede hacerlo en cualquier momento, por mero azar.

El carbono-14 lo hace por desintegración beta negativa: uno de sus neutrones se reajusta, pierde una carga negativa (en forma de un electrón) y con eso deja de ser neutrón (sin carga) y pasa a tener una carga positiva, con lo que ahora es un protón. Dicho en términos sencillos: un neutrón (neutro, como su nombre indica) “expulsa un negativo” para “quedarse en positivo”. Y al “quedarse en positivo” ya no es un neutrón, porque ya no es neutro: se ha convertido en protón (que es positivo). Con lo que ahora tenemos en el núcleo siete protones y siete neutrones. ¿Hemos dicho siete protones? ¡Entonces ya no puede ser carbono! Acaba de transformarse en nitrógeno, un gas en condiciones estándar con propiedades físico-químicas totalmente distintas; para ser exactos, en nitrógeno-14 (14N), el nitrógeno común. Sí, como en la transmutación que soñaban los alquimistas y que finalmente resolvió la física nuclear. (Observa que durante este último proceso el número de partículas en el núcleo no ha cambiado. Lo que ha cambiado es su naturaleza y configuración.)

Uranio-235 altamente enriquecido.

Uranio-235 altamente enriquecido. Rebajado con uranio-238 y dispuesto en forma de pastillas, constituye el combustible más frecuente de las centrales nucleares.

¿Y qué pasa con el electrón (“el negativo”) que ha emitido? Pues que escapa hacia el exterior, y además lo hace con una cierta energía: 156.000 electronvoltios. Estamos ante la radiación beta. Ya tenemos nuestra radioactividad.

Los núcleos atómicos pueden decaer y desintegrarse de distintas maneras, lo que ocasiona los distintos tipos de radioactividad. Pueden hacerlo en forma de un pequeño grupo de dos protones y dos neutrones (o sea, un núcleo de helio-4), que se llama partícula alfa y constituye la radiación alfa. O como acabamos de ver, emitiendo un electrón o un positrón, lo que forma la radiación beta. O en forma de fotones muy energéticos, de naturaleza electromagnética, que da lugar a la radiación gamma y X. O lanzando neutrones libres, en lo que viene a ser la radiación neutrónica. Cada una de ellas tiene unos efectos y una peligrosidad diferentes, pero todas son distintas manifestaciones del mismo fenómeno: la radioactividad. Todas estas emisiones son capaces de desarrollar trabajo, hacer cosas; entre otras, producen calor. Este calor es el que vamos a utilizar para calentar el agua que moverá las turbinas y con ellas los generadores de electricidad.

Algunos núcleos resultan tan inestables que además son fisionables. Es decir: no se conforman con hacerse retoques aquí y allá, sino que se parten en otros núcleos más pequeños. Al hacerlo, despiden una notable cantidad de energía en forma de energía cinética de los fragmentos, fotones (radiación gamma) y neutrones libres. De manera espontánea, esto sólo ocurre con núcleos muy grandes y pesados, que pueden contener unas configuraciones de lo más raro. Entre estos se encuentra el torio-232 (232Th) o el uranio-238 (238U).

Unos pocos núcleos fisionables son además fisibles. Es decir: la energía que emiten cuando se rompen es tan alta, su estabilidad resulta tan pobre y su sensibilidad al impacto de los neutrones libres es tan elevada que pueden fisionarse entre sí muy rápidamente, intecambiando neutrones una y otra vez. Cuando esto sucede, estamos ante la reacción en cadena: la fisión espontánea de un solo núcleo puede romper varios más, que a su vez rompen muchos más, y así hasta que se agote el material fisible. Hay muy pocos isótopos que reúnan estas condiciones; en la práctica, sólo dos sirven para producir energía de fisión a gran escala. Uno está presente en la naturaleza: el uranio-235 (235U). El otro hay que producirlo artificialmente: se trata del plutonio-239 (239Pu). Hay algunos más, todos ellos sintéticos, como el uranio-233 (233U).


La reacción en cadena. Un neutrón fragmenta un núcleo fisible, lo que produce más neutrones que fisionan los de alrededor, y así sucesivamente hasta que se agota el material o la reacción se contamina demasiado. Cada una de estas fisiones produce energía que se plasma, entre otras cosas, en forma de calor.

Es posible que hayas oído también hablar del torio como combustible para la fisión nuclear. Hablaré de ello con más detalle próximamente, pero ya te adelanto que no es ni con mucho la “solución mágica” que algunos pretenden.

Pila Chicago 1

La Pila Chicago-1, en Estados Unidos, donde Enrico Fermi y Leó Szilárd consiguieron la primera reacción en cadena autosostenida de la historia.

Masa crítica.

Hecho este inciso, sigamos. ¿Cómo se consigue la reacción en cadena? Pues es muy sencillo: simplemente acumulando el suficiente material fisible. Sí, sí, si echas el suficiente uranio-235 enriquecido o plutonio-239 en un cubo, él solito se activará y comenzará a producir energía. De hecho, así ocurren los accidentes de criticidad, como los dos del famoso núcleo del demonio en el Laboratorio Nacional Los Álamos.

¿Cómo es esto posible? Sencillo. En cualquier masa de material fisible hay siempre algún átomo sufriendo fisión espontánea, que vimos más arriba. Si no hay mucho material, los neutrones generados escapan al medio exterior y la reacción en cadena no se produce. Pero cuando se alcanza cierta cantidad de material fisible, la probabilidad de que estos neutrones alcancen a otros núcleos durante su fuga se incrementa; entonces, estos núcleos fisionan y producen más neutrones. Ya tenemos la reacción en cadena.

En consecuencia, por el simple hecho de echar suficiente material fisible en una piscina de agua, éste sufrirá una reacción en cadena y el agua se calentará. Usando uranio-235 puro, bastaría con unir las dos mitades de una esfera de 52 kg dentro de una balsa y tendrías tu reactor nuclear. Claro, la cosa no es tan sencilla. Para empezar, tú no quieres hacer eso; porque si lo haces, obtendrás una excursión instantánea de energía nuclear y con ella uno de esos bonitos accidentes de criticidad abierta que se parecen a una bomba atómica floja aunque no sean realmente una bomba atómica. Y luego, ¿cómo lo paras?

El primer reactor nuclear de la historia fue la Pila Chicago-1, creada por Enrico Fermi y Leó Szilárd: un precario montaje de madera que soportaba capas alternas de grafito mezclado con seis toneladas de uranio puro junto a otras 34 de óxido de uranio. El grafito es un potente moderador neutrónico capaz de ralentizar los neutrones rápidos producidos por la fisión y transformarlos en neutrones térmicos (los alemanes tuvieron un error con el grafito y por eso no pudieron completar nucna un reactor operativo).  Esto tiene dos efectos. El primero es que facilita la fisión entre todo ese material disperso: los neutrones rápidos son demasiado energéticos y tienden a escapar al exterior, mientras que los térmicos están en su punto justo para mantener la reacción en cadena. El segundo es que lo puedes utilizar para acelerar y decelerar la reacción a tu gusto. Sin embargo, la Pila Chicago-1 sólo usaba el grafito para la primera función; la segunda quedaba asegurada mediante unas barras de cadmio, que absorbe los neutrones. Esto dio lugar al peculiar puesto de trabajo del hombre del hacha, quien debía cortar la cuerda para que estas barras cayeran de golpe si todo saliera mal. A las 3:25 de la tarde del día 2 de diciembre de 1942, esta Pila Chicago-1 situada en la ciudad estadounidense del mismo nombre produjo la primera reacción en cadena sostenida de la historia de la humanidad. Comenzaba así la Era Atómica.

Gráfica de intensidad neutrónica de la Pila Chicago-1

Gráfica de intensidad neutrónica de la Pila Chicago-1, el 2 de diciembre de 1942. Puede observarse el momento en que la reacción en cadena neutrónica se dispara por sí misma y no deja de aumentar hasta que se insertan las barras de control.

Las centrales nucleares modernas.

Tomemos como ejemplo la Central Nuclear de Cofrentes (Valencia), que me pilla cerca de casa. Cofrentes es un diseño estadounidense, desarrollado por General Electric, que se llama de reactor de agua en ebullición (BWR). Es el segundo diseño más popular entre los utilizados comúnmente en Occidente,  sólo por detrás del reactor de agua a presión (PWR). Veamos una representación esquemática de este BWR:

Diseño esquemático BWR de la Central Nuclear de Cofrentes (Valencia)

Diseño esquemático BWR de la Central Nuclear de Cofrentes (Valencia). (Iberdrola) (Clic para ampliar)

Vamos a concentrarnos en la parte central derecha de la imagen anterior, que es donde se genera la energía y se halla distribuida del siguiente modo:

Distribución general de los edificios de reactor, combustible y turbinas en la Central Nuclear de Cofrentes

Distribución general de los edificios de reactor, combustible y turbinas en la Central Nuclear de Cofrentes. (Iberdrola) (Clic para ampliar)

…y específicamente en el reactor, donde se produce la energía térmica que luego convertiremos en eléctrica. Ya dijimos que las centrales térmicas son muy poco eficientes: este reactor en particular genera 3.237 megavatios térmicos; sin embargo, la potencia final resultante es de 1.092 megavatios eléctricos. Eso es un 33,7%, apenas un pelín más de la tercera parte. Expresado de otra manera, el 66,3% de la producción (o sea, del valioso combustible nuclear) se pierde por las vías ya mencionadas (sin contar la emisión neutrínica que se funde casi el 5% antes incluso de empezar a producir energía térmica).

Detalle esquemático del reactor nuclear de Cofrentes.

Detalle esquemático del reactor nuclear de Cofrentes. 1.- Venteo y rociador de la tapa. 2.- Barra para izado del secador. 3.- Conjunto del secador de vapor. 4.- Salida de vapor. 5.- Entrada para rociadores del núcleo. 6.- Conjunto de separadores de vapor. 7.- Entrada de agua de alimentación. 8.- Distribuidor de agua de alimentación. 9.- Entrada de la inyección de refrigerante. 10.- Tubería de rociadores del núcleo. 11.- Distribuidor para rociadores del núcleo. 12.- Guía superior. 13.- Bombas de chorro. 14.- Envolvente del núcleo. 15.- Elementos combustibles. 16.- Barra de control. 17.- Placa soporte del núcleo. 18.- Entrada de agua de recirculación. 19.- Salida de agua de recirculación. 20.- Soporte de la vasija. 21.- Blindaje del reactor. 22.- Accionadores de las barras de control. 23.- Tuberías de accionamiento hidráulico de las barras de control. 24.- Detectores internos de neutrones. (Iberdrola)

El reactor es una vasija de acero SA-533 GrB con revestimiento interior inoxidable, de 21,3 metros de altura por 5,53 de diámetro; el grosor mínimo del acero asciende a 13,6 cm, para soportar una presión máxima de 87,5 kg/cm2 (unas 84,7 atmósferas). Los reactores BWR utilizan agua destilada corriente como refrigerante y como moderador, por lo que aquí no nos encontramos con grafito ni agua pesada ni nada de eso; pero, por esta razón, requiere para funcionar uranio ligeramente enriquecido en el isótopo fisible 235U. En el caso particular de Cofrentes, utiliza uranio enriquecido al 3,6% (el llamado uranio natural tiene un 0,7% de 235U).

Este combustible está organizado en forma de pequeñas esferas o perdigones de dióxido de uranio, introducidos en varillas y ensamblajes de un material que se llama zircaloy. El zircaloy es una aleación compuesta en su gran mayoría por zirconio. El zirconio, un metal, tiene una característica peculiar: es muy transparente a los neutrones. O sea: los neutrones que aseguran el sostenimiento de la reacción en cadena pueden pasar libremente a su través, saltando de barra en barra.

Para el uranio natural, el agua corriente (agua ligera) es un absorbente neutrónico y bloquea la reacción en cadena. Sin embargo, con este uranio enriquecido al 3,6%, la radiación neutrónica es lo bastante intensa para mantenerla y entonces el agua ligera actúa de moderador como si fuera grafito o agua pesada. Esto presenta varias ventajas significativas. La primera es que el agua ligera destilada sale enormemente más barata y accesible que el agua pesada. Al mismo tiempo, no presenta el riesgo de incendio del grafito (en Chernóbyl, el incendio principal fue un incendio de grafito). Sirve para transportar el calor producido. Y, adicionalmente, el flujo y temperatura del agua se pueden utilizar en el control de la reacción.

Pero el control principal corre por cuenta de 154 barras de carburo de boro, un poderoso absorbente neutrónico con poca tendencia a crear isótopos raros como resultado de esta absorción. Cuando se insertan estas barras entre las de combustible, atrapan los neutrones producidos por la fisión del uranio presente en estas últimas y deceleran o interrumpen la reacción en cadena. Al extraerlas, permiten la circulación de los neutrones y el reactor se acelera.

La lógica del invento resulta bastante sencilla. Hemos quedado en que la mera acumulación de un material fisible como el uranio-235 inicia espontáneamente una reacción en cadena, cuya intensidad depende fundamentalmente del enriquecimiento y de la densidad; esta reacción se produce porque los neutrones emitidos en cada fisión espontánea pueden alcanzar otros átomos de uranio-235, haciéndolos fisionar a su vez, y así sucesivamente.

En un reactor recién cargado pero aún parado tenemos las barras de combustible introducidas en el agua, lo que debería iniciar de inmediato esta reacción en cadena espontánea; sin embargo, hemos metido por entre medias las barras de control, el absorbente neutrónico, con lo que los neutrones no pueden saltar de barra en barra y por tanto la reacción no se produce o lo hace con una intensidad muy pobre.

Entonces, para poner en marcha la central comenzamos a extraer las barras de control (de absorbente neutrónico). Las fisiones espontáneas en los núcleos de uranio-235 (o, para el caso, plutonio-239) comienzan a lanzar neutrones en todas direcciones, y específicamente hacia las demás barras de combustible.

Estos neutrones producidos por la fisión son mayoritariamente neutrones rápidos. Los neutrones rápidos tienen una capacidad relativamente pobre de provocar nuevas fisiones; ya dijimos que, por explicarlo de algún modo, pasan demasiado deprisa para tener un efecto. Pero entonces se encuentran con el moderador, que tradicionalmente era grafito o agua pesada y aquí es agua destilada corriente. Cuando el uranio está poco enriquecido, el agua actúa como absorbente neutrónico –igual que si fuera una enorme barra de control– y los detiene por completo, interrumpiendo la reacción. Pero cuando el uranio está algo más enriquecido (como en este caso, al 3,6%), el agua actúa como moderador neutrónico: es decir, los ralentiza hasta convertirlos en neutrones térmicos, óptimos para provocar nuevas fisiones.

Así que al extraer las barras de control y dejar a las de combustible envueltas en agua, la reacción en cadena comienza a acelerar, calentando este agua de su alrededor. Mediante una compleja combinación de barras de control y flujo del agua, se puede ajustar la reacción en cada zona exacta del núcleo con gran precisión.

De este modo, la temperatura del agua circundante aumenta rápidamente. En la gran mayoría de los reactores nucleares, esta agua moderadora-controladora-transportadora se encuentra contenida en un circuito cerrado con circulación forzada que nunca entra en contacto directo con el exterior (o no debe hacerlo, vamos). Este circuito cerrado que pasa por dentro del reactor se llama circuito primario.

En un reactor de agua en ebullición, el agua de este circuito primario se halla a unas 70 o 75 atmósferas de presión (en Cofrentes está a 70,1). Esto permite que entre en ebullición cuando la temperatura alcanza unos 285ºC (los reactores de agua a presión se mantienen a casi 160 atmósferas, lo que no deja que haya ebullición). Así se forma rápidamente vapor en la parte superior de la vasija, que circula por unas canalizaciones hacia la turbina de alta presión. Ya tenemos energía. Ahora hay que convertirla en electricidad.

Central nuclear de Cofrentes desde una loma cercana.

La central nuclear de Cofrentes vista desde una loma cercana, con las torres de refrigeración proyectando los característicos –e inocuos– penachos de vapor.

Cuando este vapor a elevada presión y temperatura llega a la turbina de alta presión, la hace girar sobre su eje siguiendo las leyes de Carnot y Rankine que mencionamos más arriba. Y con ello hace girar un alternador que produce energía eléctrica, exactamente como cualquier otra clase de central térmica y la inmensa mayoría de los generadores. De ahí, el vapor –que aún mantiene una cantidad importante de energía aprovechable– pasa a las turbinas de baja presión, cuyos alternadores producen más electricidad. Toda esta corriente es remitida a los transformadores exteriores y de ahí a la red de 400.000 voltios para su distribución comercial.

Ahora ya sólo queda asegurarnos de que el agua vuelve al reactor para mantener el ciclo sin fin, más fría y de nuevo en estado líquido. Esta es la función de los condensadores, que son, en esencia, cambiadores de calor. Los condensadores se mantienen fríos con agua procedente de algún río o mar próximo, que viaja por su propio circuito: el circuito secundario. Así, cuando el agua del circuito primario pasa por estos condensadores, pierde temperatura suficiente como para volver al estado líquido por completo y regresar al reactor. Ambos circuitos no entran nunca en contacto, garantizando que la contaminación radioactiva ocasionada al pasar por el reactor permanezca contenida en el primario.

Finalmente, el agua del secundario –que se ha calentado al pasar por los condensadores– es enfriada en las torres de refrigeración. Así se forman esas características nubes de vapor blanco que podemos ver en la imagen de la izquierda.

En mi opinión, las centrales nucleares de fisión son una buena manera de producir la muy necesaria electricidad. Lo que pasa es que tienen sus limitaciones. En realidad, no son ni la pesadilla que creen unos ni la panacea que creen otros. Ya apunté las razones en el post El renacimiento nuclear, en la incubadora. De manera muy resumida, es cara, es incierta, tiene sus riesgos y resulta poco flexible en los mercados liberalizados. Resulta tremendamente significativo que el 89% de los reactores que se construyen en la actualidad pertenezcan a empresas monopolísticas estatales o paraestatales, mientras sólo seis unidades representan una apuesta privada.

De hecho, la energía nuclear de fisión ha sido la más subvencionada de toda la historia: sólo en los Estados Unidos, representó el 96% de los subsidios totales al desarrollo energético entre 1947 y 1999. El coste de instalación por kilovatio es varias veces mayor que el de, por ejemplo, una central de ciclo combinado a gas natural. El precio en el mercado del kilovatio final no sale tan ventajoso. Y tampoco garantiza la independencia en tecnologías energéticas: por razones de liberalización y deslocalización de los mercados, existen componentes esenciales de las centrales nucleares que únicamente se fabrican en Japón, China y Rusia. Las mayores minas de uranio sólo están en Canadá, Australia, Kazajstán, Rusia, Namibia y Níger: muchos menos países que productores de petróleo o gas. Si se opta por combustible reprocesado, únicamente quedan reactores regeneradores a gran escala en Rusia. (Los datos de todo esto están en el post mencionado sobre el renacimiento nuclear)

En suma: después de décadas de cultura de la seguridad, ni milagro ni diablo. Sólo una fuente de energía más, al menos en el presente orden socioeconómico, que nos obliga a seguir investigando otras maneras de extraerle a la naturaleza la energía que necesitamos. Y necesitaremos.


Otra explicación básica del funcionamiento de una central nuclear.

Próximamente: El ciclo del combustible nuclear.

128 Comentarios Trackbacks / Pingbacks (18)
¡Qué malo!Pschá.No está mal.Es bueno.¡¡¡Magnífico!!! (77 votos, media: 4,84 de 5)
Loading...Loading...
Be Sociable, Share!

Así te persigue un misil.

¿Cómo lo hace una máquina para perseguirte con la furia gélida de los robots?


Un UAV georgiano Hermes 450 de fabricación israelí graba el instante en que fue derribado por un caza ruso MiG-29,
el 20 de abril de 2008, durante los prolegómenos de la última guerra entre ambos países.
El derribo, probablemente con un misil R-73 “Arquero”, se produjo frente a la costa de la disputada Abjasia.
Ministerio del Interior de Georgia, Reuters

El bífaz Excalibur, hallado en la sima de Atapuerca.

El bífaz Excalibur, un hacha de 400.000 años de antigüedad hallada en Atapuerca. ¿Una ofrenda, un utensilio, un arma...? En todo caso, una herramienta.

A ojos extraterrestres, probablemente el rasgo más distintivo de la especie humana con respecto a los demás animales sería nuestra capacidad para construir herramientas. Somos mucho más capaces de construir herramientas –materiales e intelectuales– que cualquier otro de los terrestres, y encima sabemos utilizarlas para crear herramientas aún más complejas, en una carrera sin fin llamada tecnología. La historia de la humanidad es, sobre todo, la historia de su tecnología y del conocimiento acertado o equivocado que hay detrás: la filosofía, la religión, la ciencia.

Desde el principio, aplicamos esta capacidad a la construcción de armamento. Como cualquier otra especie biológica, la gente humana necesitamos cazar, defendernos, atacar. En esto no nos diferenciamos en absoluto de los demás vivientes: la violencia forma parte sustancial de nuestra naturaleza. Eso no es ni bueno ni malo; simplemente, es. Toda la historia de la civilización es la historia de cómo aprendimos a ir contra natura; a limitar, articular e incluso suprimir nuestra naturaleza en favor de un bien percibido mayor –la colectividad, el progreso, la justicia, la ley, el orden social, la prosperidad–, que a su vez forman parte de estas herramientas intelectuales con las que sabemos dotarnos.

Así, los actos de violencia adquieren en las sociedades humanas una dualidad extraña. Matar por razones individuales, egoístas, se convierte en un crimen: el homicidio, el asesinato. Matar por razones colectivas –la tribu, la nación, la religión, la clase, la política, la ley– pasa a ser un acto de heroísmo. El mismo individuo al que las turbas gritan “¡asesino!” durante su camino al juzgado para ser condenado por matar a veinte personas es llamado “héroe” durante el desfile de la victoria, por esas mismas masas, si sus veinte víctimas pertenecían al enemigo. Por lo que hoy es un espantoso crimen, mañana dan medallas. En ausencia de una ética universal, los actos humanos carecen de sentido y de valor moral por sí mismos: todo depende del contexto, de la ética local, de la narrativa, de la propaganda.

De este modo los creadores de armas nuevas –herramientas nuevas para la violencia– se suelen considerar geniales y magníficos cuando son de los nuestros o pérfidos y diabólicos cuando son de los ellos. Esto se observa desde que existen registros escritos, y sigue viéndose en la actualidad sin cambio alguno; por ejemplo, en las condenas a los países que intentan crear armas de destrucción masiva… por parte de países que poseen decenas de miles de armas de destrucción masiva. El argumento es siempre igual: lo nuestro está justificado (por nuestro contexto, nuestra ética local, nuestra narrativa, nuestra propaganda); lo de ellos no. Y viceversa, claro.

Siendo un poco más eclécticos, se comprende que el afán de crear armas nuevas capaces de aportarnos una ventaja decisiva contra ellos ha sido una constante en todas las sociedades humanas. Con alguna perspectiva histórica, la verdad es que a estas alturas nos importan bien poco los valores que defendía el bífaz Excalibur de Atapuerca, suponiendo que defendiese alguno. Los viejos lamentos de que la reintroducción de la ballesta en Occidente iba a acabar con la nobleza medieval, al permitir al plebeyo infante perforar la coraza del caballero montado, se nos antojan hoy anticuados y hasta risibles; entre otras cosas, porque los valores de la aristocracia feudal –que la ballesta, en efecto, contribuyó a destruir– ya no nos parecen dignos de mantener. Y qué decir de la pólvora. O la dinamita. O la industrialización de la guerra, que nos llevó al concepto moderno de guerra total. La historia de las armas es la historia de la tecnología, de la ciencia y del pensamiento de las sociedades que las crearon.

La literatura está llena de referencias a toda clase de anheladas armas mágicas a caballo entre la religión, la ciencia, la filosofía y la leyenda. Por ejemplo, las distintas espadas con nombre propio capaces de derrotar a incontables ellos: Tizona, Colada, Zulfiqar, Durandarte, Kladenets, Taming Sari, Kusanagi, la Excalibur artúrica. O las defensas mitológicas: Égida, Svalinn, los escudos de Ajax y Lancelot, el baño de Aquiles en el río Estigia. Y, por supuesto, lanzas y flechas que jamás fallaban su blanco: Gungnir, Gandiva, Gáe Bulga, el arco de Hércules. Inevitablemente fue la ciencia, y su hija la tecnología, quienes terminaron por crearlas. O al menos, cosas parecidas.

Soldados alemanes preparan un misil de crucero V-1 para su lanzamiento. Deutsches Bundesarchiv.

Soldados alemanes preparan una "bomba volante" o misil de crucero V-1 para su lanzamiento. Probablemente la V-1 nazi fue el primer misil operacional verdadero de la historia. Deutsches Bundesarchiv.

La flecha que nunca falla. O eso se pretende.

La idea de crear una especie de flecha capaz de perseguir a su blanco por sí sola habría puesto sin duda los ojos como platos a cualquier guerrero antiguo. Si además le hubiéramos contado que esa flecha se propulsaría a sí misma y destruiría el más grande de los barcos, la más resistente de las murallas y la más impresionante máquina bélica de ellos en un destello de fuego deslumbrador, o nos habría tomado por locos o nos habría pedido que siguiéramos contándole esa leyenda tan chula. Durante milenios, lo más parecido que tuvo la humanidad a un arma autoguiada fueron los perros de caza y combate y otros animales de uso militar.

Las primeras armas capaces de guiarse a sí mismas aparecieron durante la Primera Guerra Mundial. Se trataba, básicamente, de complicados mecanismos de relojería capaces de hacer que un avión o torpedo describiese una trayectoria prefijada antes de precipitarse sobre su blanco. Entre estos intentos primitivos se cuentan el torpedo volante del inventor estadounidense del piloto automático Lawrence Sperry, el Kettering Bug de este mismo país –a caballo entre lo que hoy en día llamaríamos un misil de crucero y un UAV– o los blancos aéreos británicos guiados por radio. Parece que los alemanes también intentaron alguna clase de torpedo guiado para su lanzamiento desde zepelines.

Durante el periodo de entreguerras fueron surgiendo conceptos cada vez más sofisticados, pero aún insuficientes para ser tomados seriamente en consideración por los militares. Entre estos se encuentran el Larynx británico y el GIRD-06 soviético de Sergei Korolev, que además de un autopiloto giroscópico incorporaba ya un pequeño cohete como impulsor. Pero no fue hasta mediados de la Segunda Guerra Mundial cuando las armas autopropulsadas y autoguiadas encontraron definitivamente su camino al frente de batalla. Sucedió en 1943, de modo casi simultáneo, con el torpedo alemán G7e/T4 Falke y el Mark 24 FIDO estadounidense. Ambos seguían el ruido subacuático emitido por sus blancos –buques y submarinos– y se demostraron tan eficaces que ya no hubo marcha atrás. Al año siguiente, 1944, la Alemania nazi ponía en servicio el primer misil de crucero real: la V-1. Y en septiembre de ese mismo año, el primer misil balístico eficaz: la V-2.

Tanto la V-1 como la V-2 utilizaban pilotos automáticos para alcanzar un punto determinado del territorio enemigo, por lo que no seguían al blanco, sino que atacaban objetivos estáticos (los misiles de crucero y los ICBM actuales siguen haciendo exactamente lo mismo, si bien con ayudas mejoradas a la navegación y mucha mayor precisión y eficacia). Su enorme visibilidad hizo que otros inventos alemanes capaces de perseguir a su blanco pasaran bastante desapercibidos en el imaginario colectivo. Así, pocos recuerdan al Fritz X, que hundió al acorazado Roma –buque insignia de la flota italiana– cuando ya se estaba pasando a los aliados; sin embargo, el Fritz X era un arma de telecomando, que seguía a su blanco gracias a las acciones de un operador humano, no de un sistema de guía autónomo.

Corbeta Komar disparando un misil P-15 Termit (SS-N-2 Styx).

Durante la Guerra de los Seis Días, el 21 de octubre de 1967, la Armada Egipcia hundió al destructor israelí Eilat con tres misiles P-15 Termit (SS-N-2 Styx). El lanzamiento fue realizado por dos corbetas Komar, sin salir del puerto de Port Said, a 17 millas de distancia. Fue la primera vez en que un buque resultaba hundido por misiles completamente autopropulsados y autoguiados, cambiando así la historia de la guerra naval. En la imagen, una corbeta Komar lanza un misil P-15 Termit. (Mały okręt rakietowy, Wydawnictwo MON, Varsovia, 1974)

El Ruhrstal X-4, que no llegó a entrar en servicio, pretendía derribar bombarderos también bajo el comando de un ser humano. Lo mismo cabe decir del Hs 293, que consiguió algunos éxitos antes de que los aliados aprendieran a interferir la señal de telecomando. Los antiaéreos Wasserfall y Feuerlilie también eran teleguiados, no autoguiados; ninguno de los dos estaba terminado cuando acabó la guerra. Más interesante resulta el Enzian. Aunque aún telecomandado, iba provisto con una guía final infrarroja denominada Madrid que dependía igualmente de la acción humana pero ya empezaba a apuntar hacia el futuro. Ninguno de todos estos conceptos llegó a tiempo para tener una influencia significativa en la Segunda Guerra Mundial.

Resulta difícil decir cuál fue el primer misil moderno verdadero, pues fueron el resultado de una evolución progresiva durante la Guerra Fría. También depende del tipo de misil del que hablemos. Se puede afirmar que la V-2 alemana ya era un misil balístico moderno verdadero; aunque le faltaban algunas características de los actuales (etapas y cabezas múltiples, guía astroinercial…), ya “hacía lo que tenía que hacer” y era dispara-y-olvida por completo. En sentido estricto, la V-1 también entraría en esta clasificación, como misil de crucero. Entre los misiles aire-aire, probablemente el honor corresponda a alguna versión del estadounidense AIM-9 Sidewinder.

Los tierra-aire, en cambio, tardaron más en desprenderse del telecomando humano; sistemas legendarios de la Guerra Fría como el SA-2 soviético o los Nike norteamericanos dependían por completo de sus operadores. Incluso las primeras versiones del S-300 y el Patriot utilizaban teleguiado parcial, que sigue usándose actualmente en algunos modos de operación. La mayor parte de misiles genéricamente llamados antitanque, contra blancos móviles terrestres, siguen dependiendo de algún sistema de puntería manejado por una persona. Los antibuque, en cambio, se independizaron desde por lo menos el P-15 Termit soviético (SS-N-2 Styx, en denominación OTAN). Y entre los aire-superficie hubo y hay una diversidad de soluciones, dependiendo de su función exacta. Veámoslo.

Misilística básica.

En sus idiomas originales –francés e inglés– la palabra missile viene del latín missilis (“lanzable”) y puede referirse a cualquier proyectil, incluso una piedra, arrojado deliberadamente o no. Sin embargo, hoy en día decimos que un misil es un tipo de arma aeroespacial autopropulsada y autoguiada. Así, se distinguen de los torpedos guiados (que no son aeroespaciales, sino submarinos), de las bombas guiadas o inteligentes (que carecen de propulsión autónoma), de los cohetes no guiados (artillería de cohetes, cohetes sin guía como los RPG, los LAW, los Zuni o las series S rusas) y de los lanzadores espaciales (aeroespaciales, autopropulsados y autoguiados, pero no armas en sí mismos).

Por centrar el post, vamos a estudiar los misiles que son capaces de seguir autónomamente a un blanco. Es decir, eso de las pelis: apuntas a algo, le lanzas un misil y te olvidas mientras el otro tipo hace lo que puede por evitarlo. ¿De qué manera puede una máquina perseguir a su oponente cual Terminator con trastorno obsesivo-compulsivo? Bien: todas ellas lo hacen husmeando sus emisiones.

Todo lo que existe, emite. Y además, emite radiación electromagnética. Tu cuerpo, por ejemplo, emite calor debido a sus procesos metabólicos; es decir, radiación térmica, en la banda del infrarrojo. También refleja la luz visible procedente del sol, la luna, las estrellas o cualquier fuente de iluminación artificial. Por eso se nos puede ver: los ojos son receptores de radiación electromagnética en la banda de la luz visible. Esta es, de hecho, la manera más antigua de localizar al enemigo utilizada por la humanidad: verlo.

Guía Avtomatika L-112E para el misil anti-radiación ruso Kh-31P (MAKS 2009).

Guía Avtomatika L-112E para el misil anti-radiación ruso Kh-31P de 1988. Actualmente han sido reemplazadas por las L-130. (MAKS 2009)

Empecemos con uno de los conceptos más fáciles: el misil anti-radiación. Los misiles anti-radiación se usan para atacar objetivos que están emitiendo voluntariamente, como los radares o los transmisores de radio y radiotelefonía. Los ejércitos modernos y las sociedades modernas en general dependen de una montaña de emisiones, desde los grandes radares de alerta temprana hasta los teléfonos móviles. Y todo lo que emite se delata a sí mismo. Usando tecnología similar a la de tu oponente, tú puedes detectar una emisora enemiga como mínimo al doble de distancia a la que esa emisora es eficaz, y por lo tanto atacarla desde el doble de distancia si tienes un arma con ese alcance. ¿Cómo puede ser esto?

Veámoslo con un ejemplo sencillo. Supongamos que tú vienes en un avión a atacarme a mí y yo quiero detectarte con un radar; ambos tenemos un nivel tecnológico similar. Yo enciendo mi radar, tú vienes hacia mí. Como las señales de radio (el radar usa señales de radio) reducen su intensidad con el cuadrado de la distancia, al principio estamos demasiado lejos y la señal pierde potencia hasta el punto en que no puede excitar un receptor a ninguno de los dos lados: ninguno detecta al otro. Tú sigues acercándote. A una distancia dada, mi señal mantiene intensidad suficiente para excitar los receptores que llevas a bordo: tú acabas de detectarme a mí. Pero la señal aún tiene que rebotar sobre ti y hacer el viaje de vuelta hasta mi radar, con lo que pierde demasiada intensidad durante el retorno y sigo sin detectarte: tú me estás detectando a mí, yo no te estoy detectando a ti. Me estoy delatando yo solito y tú puedes utilizar técnicas de radiogoniometría para ubicarme con gran precisión, y yo aún no te veo. Tendrás que acercarte mucho más, al menos a la mitad de distancia, para que mi señal rebote sobre ti y vuelva a mi radar con la intensidad suficiente para excitar mis receptores: sólo entonces te detectaré. Mientras te mantengas en la “segunda mitad” de la distancia que nos separaba en el momento en que me detectaste por primera vez, estás a salvo por completo salvo que mis receptores fueran mucho más sensibles que los tuyos.

Con receptores iguales, un blanco puede detectar al radar antes de que el radar lo detecte a él.

El cazador cazado: con receptores iguales, un blanco puede descubrir al radar antes de que el radar lo descubra a él. Teóricamente, aplicando la ley del inverso del cuadrado, al doble de distancia exacta. El blanco puede aprovechar esa diferencia para atacar al radar desde una distancia de seguridad donde no está siendo detectado. Si el avión encendiera su radar, perdería esta ventaja de inmediato. (Clic para ampliar)

Misil antirradiación estadounidense AGM-88 HARM.

Misil antirradiación estadounidense AGM-88 HARM, aire-superficie. La Fuerza Aérea Española equipa estos proyectiles con los cazabombarderos EF-18.

Evidentemente, desde esa “segunda mitad” de distancia puedes dispararme un arma con toda la tranquilidad del mundo. Y yo seguiré sin detectarte. Lo primero que veré de ti será… tu misil, directamente hacia mi posición. En un caso como este, decimos que mi radar está en modo activo (porque emite y recibe) mientras que tu avión está en modo pasivo (porque sólo recibe); mientras la cosa se mantenga así, tu avión tendrá una ventaja decisiva sobre mi radar.

Para ti, sería idóneo llevar ahora un misil anti-radiación de alcance suficiente para atacar mi radar sin entrar en su zona de detección. Un misil anti-radiación, en sus modelos más básicos, es un cohete con un receptor de radio que tiende a volar hacia el punto en que la radiación electromagnética (o sea, la emisión de radio o radar) es más intensa. Si siempre se dirige hacia el punto donde la radiación es más intensa, pues al final se encontrará… con la antena del radar, lógicamente. Bum.

Hay cosas que yo puedo hacer para evitar que tu misil anti-radiación me alcance. Por ejemplo, cambiar de frecuencia, a alguna que su receptor no logre captar. O simplemente apagar el radar unos minutos, con lo cual ya no podrá seguirme y se perderá. Debido a eso, los misiles anti-radiación modernos llevan receptores mejorados y sistemas de guía adicionales; por ejemplo, una segunda guía de tipo infrarrojo que “se enganche” al calor residual disipado por los equipos electrónicos del radar aún cuando ya esté apagado. E incluso un sencillo navegador inercial que mantenga la dirección de vuelo hacia las coordenadas donde detectó mayor emisión antes de que el radar se apagara.

Pero en términos generales, el ejemplo del misil anti-radiación nos sirve muy bien para entender el principio en el que se sustentan todos los misiles que persiguen al blanco: viajan hacia el punto donde la radiación característica emitida (o reflejada) por su objetivo es más intensa. Por simple teoría de campos, ese punto es el propio objetivo: un radar, una radio, un teléfono celular o satelitario, su estación base, cualquier cosa que emita de manera identificable.

El misil anti-radiación básico es también un buen ejemplo de un sistema de guía completamente pasivo. Esto es: la guía del misil no emite nada para localizar a su objetivo. Es el objetivo quien lo emite todo, delatándose así y ofreciéndole en bandeja una trayectoria al misil.

Misil anti-AWACS ruso R-37.

Misil aire-aire anti-AWACS ruso R-37. Fue desarrollado para destruir aviones-radar AWACS y otros C4ISTAR desde largas distancias (supuestamente hasta 400 km), tras detectar sus emisiones.

Quiero tu calor.

Este es el principio de funcionamiento de todos los misiles (y torpedos) provistos con guías pasivas: aprovechar una emisión inherente al blanco para localizarlo y perseguirlo. Desde el principio, se observó que las emisiones inherentes más interesantes desde el punto de vista militar eran el calor y el sonido. Todo lo que lleva un motor a bordo emite necesariamente calor y sonido; los equipos eléctricos y electrónicos también disipan calor.

Perfil de emisión térmica del MiG-27.

Perfil de emisión térmica de un avión táctico MiG-27 de 1975. La luz solar incidente es reflejada y re-emitida por la estructura y el material de la cabina, con intensidad dependiente de sus acabados. La parte posterior de la estructura, calentada por el motor, hace que el fuselaje trasero emita en banda de 4μ y la tobera en torno a 2μ. La "pluma" del reactor se expande y enfría detrás de la aeronave, absorbiendo algunas de las longitudes de onda más cortas emitidas por la tobera pero emitiendo en banda infrarroja más larga (de 4 a 8μ). La intensidad de la emisión viene generalmente definida por la temperatura, que a veinte metros detrás de la cola viene a ser de unos 100ºC sin posquemador y de 300ºC con posquemador. (Clic para ampliar)

Las ondas sonoras se transmiten mucho mejor en el agua que en el aire, y esa es la razón de que la mayor parte de los torpedos con guía pasiva se apoyen sobre todo en el sonido emitido por el blanco para alcanzarlo. La radiación térmica del calor, una forma de radiación electromagnética, se difunde mucho mejor por el aire que por el agua; y ese es el motivo de que un gran número de misiles aéreos aprovechen las emisiones infrarrojas del objetivo para atacarlo en el cielo o en la superficie. Casi todos los misiles pasivos aire-aire y una parte significativa de los aire-superficie utilizan guías infrarrojas para perseguir a sus blancos.

Las máquinas de volar son grandes emisores de radiación infrarroja. Un motor a reacción militar, por ejemplo, desprende mucho calor durante el vuelo; algunas partes del mismo alcanzan más de 1.000 ºC. A los ojos de una guía infrarroja, esto es un “destello en el cielo” casi tan brillante como el sol. Al igual que ocurre con los misiles anti-radiación en la banda de radio, un misil básico de guía infrarroja tiende a volar hacia la fuente de emisión electromagnética en la frecuencia infrarroja más intensa dentro de su cono de detección.

Uno de los trucos más antiguos para despistar a un misil de guía infrarroja fue posicionar tu avión contra el sol, de tal modo que el arma tendiese a buscar el punto más caliente (con más emisión térmica) del cielo: el astro rey. Así, el misil se olvidaba de tus reactores y se iba a perseguir un punto imposible del espacio exterior, quedándose sin energía rápidamente. En buena lógica, una de las primeras mejoras que se aplicaron a las guías infrarrojas de los misiles fue diseñarlas de tal modo que ignoraran al sol como fuente de radiación infrarroja.

Un misil aire-aire moderno de guía infrarroja pasiva está compuesto por cinco secciones principales. La sección de empuje es un motor-cohete de alta aceleración; los más avanzados disponen de tobera vectorizada para multiplicar su maniobrabilidad. La sección aerodinámica está compuesta por diversas aletas, canards y alerones móviles más sus mecanismos de control, encargadas de orientarlo constantemente en la dirección precisa; algunos disponen de desestabilizadores, con el propósito de incrementar la velocidad de reacción en maniobras ultrarrápidas. La cabeza explosiva consta de un cartucho detonante envuelto en metralla, normalmente provista con una espoleta de impacto convencional. También tenemos la espoleta de proximidad, que se encarga de hacer estallar la cabeza explosiva cuando no hay impacto directo, en el instante en que la distancia al blanco deja de reducirse. Y, por supuesto, el sistema de guía, con su sensor infrarrojo y toda la electrónica de control.

Esquema del misil aire-aire ruso R-73 (AA-11 Archer).

Esquema del misil aire-aire ruso con guía infrarroja pasiva todo-aspecto Vympel R-73 (llamado en Occidente AA-11 Arquero). La versión original de 1982 tenía 20 km de alcance, mientras que la más moderna R-73M2 es efectiva hasta a 40 km de distancia, con una velocidad de Mach 2.5; cada unidad cuesta entre 50.000 y 60.000 dólares (por el Sidewinder norteamericano, con 18 km de alcance, cobran $85.000). Este fue, probablemente, el misil empleado en el video que abre este post por el MiG-29 para derribar al UAV georgiano; los UAV, con su minúsculo motor a hélice, dejan una traza infrarroja muy débil y resulta conveniente acercarse para asegurar el tiro.

Buscador infrarrojo de un misil europeo Iris-T.

Buscador infrarrojo de un misil europeo Iris-T de 2005. Puede observarse el montaje en cárdan.

Los sensores infrarrojos modernos suelen ir montados en un cardán (gimbal) para incrementar su capacidad de detección fuera de eje (off-boresight). Así no es preciso que el misil o el avión lanzador estén apuntando en la dirección general del blanco todo el tiempo, sino que pueden desviarse para optimizar la aproximación o atacar desde un lateral o desde altitudes muy distintas. El R-73 original de 1982 tenía una capacidad off-boresight de 60º, el Sidewinder AIM-9X de 2003 la mejora a 90º y el R-73M2 llega hasta 120º. Esto les permite también mejorar su navegación proporcional, aumentando las posibilidades de derribar blancos en alcances extremos o ángulos difíciles.

Las guías infrarrojas del presente son también todo-aspecto. Antiguamente, la guía tenía que apuntar directamente a la fuente de calor para “engancharse” (blocar) adecuadamente al blanco; esto significaba que era preciso lanzar el misil desde un estrecho cono detrás del objetivo, donde la emisión térmica de sus motores resulta más intensa. Las actuales, mucho más sensibles, pueden ver el calor del blanco desde cualquier ángulo; esto permite, por ejemplo, disparos frontales de gran alcance o realizados durante fuertes maniobras donde el ángulo relativo al eje del blanco varía brutalmente. Para lograrlo, han sustituido los tradicionales sensores infrarrojos de sulfuro de plomo (PbS) por otros fabricados con antimoniuro de indio (InSb) o telururo de mercurio-cadmio (HgTeCd, MerCad), refrigerados con nitrógeno líquido u otros gases comprimidos. Junto a una aerodinámica y un cobertor frontal mejorados, que reducen el calentamiento del propio misil al acelerar a velocidades supersónicas, estos nuevos sensores les permiten ver señales más tenues y/o a mayor distancia.

La mejor manera de engañar a un misil de guía infrarroja es enfrentándolo a otras fuentes de calor que se confundan con las del blanco. Además del truco solar mencionado más arriba, la más clásica era instalar una rejilla desprendible en la tobera, que se separaba durante la aproximación de un misil mientras el avión realizaba un brusco viraje para salirse de su campo de búsqueda. Así, el misil tendía a seguir persiguiendo la rejilla caliente, en vez de al avión. Poco después llegaron las bengalas, que arden a miles de grados y por tanto ofrecen al buscador una fuente térmica mucho más intensa que el blanco.


Dos cargueros C-130 Hércules de la Fuerza Aérea Estadounidense disparan bengalas durante una exhibición,
con su característica forma de “alas de ángel”.
El propósito de estas bengalas es ofrecer fuentes de calor alternativas a los misiles de guía infrarroja para confundirlos.

Los avances en las cabezas buscadoras infrarrojas han ido convirtiendo progresivamente estas defensas en obsoletas. Por ejemplo: los sensores antiguos eran monocromáticos, esto es, ajustados para ver en una sola frecuencia; típicamente en torno a la longitud de onda de 4,2 μm, correspondiente a la emisión característica del CO2 caliente a la salida de un reactor. Esto era relativamente sencillo de confundir con bengalas que emitían calor en una frecuencia muy parecida. Después aparecieron los sensores bicromáticos, que ven también en la longitud de onda entre 8 y 13 μm, donde la absorción del aire es menor y por tanto la radiación llega más lejos. En la actualidad, claro, ya los hay policromáticos: observan en estas dos bandas y en otras donde las bengalas responden peor, por lo que se distinguen mejor de los gases y el fuselaje caliente del blanco.

Contramedida infrarroja direccional AN/AAQ-24V Nemesis.

Contramedida infrarroja direccional (DRCM) AN/AAQ-24(V) "Nemesis" de Northrop Grumman, para inducir confusión en los misiles con guía infrarroja mediante el uso de señales direccionales láser. Se suele equipar en cargueros, aviones ligeros y helicópteros, especialmente frágiles a esta amenaza.

Otro problema tradicional con estas guías se producía al aproximarse al objetivo. Los buscadores antiguos utilizaban modulación por amplitud para determinar la posición angular del blanco con respecto a la del misil, y por tanto indicar a éste cuánto debía virar para echársele encima. Durante el tramo final, esta técnica daba problemas porque el mayor tamaño percibido del blanco provocaba una señal más fuerte, conduciendo a errores de cálculo que además podían utilizarse para engañar al proyectil con bruscas maniobras que cambiaban el aspecto del objetivo. Este problema se resolvió cambiando a frecuencia modulada, que permite discriminar correctamente la distancia sin dejarse confundir por el tamaño aparente.

En cuanto a la manera como el sensor busca, del barrido por giro se pasó al barrido cónico y hoy en día a la composición digital; en estas guías de última generación, el sensor es una especie de cámara CCD infrarroja-ultravioleta que compone constantemente un mapa tridimensional de la posición del misil y la de su blanco en el ordenador de a bordo del primero. El perfil de vuelo de un avión o un helicóptero es muy distinto al de una bengala, por lo que el misil puede distinguir entre ambos y atacar al correcto.

Más allá de las bengalas, existen perturbadores para inducir errores en el análisis de la señal infrarroja del misil. Estos sistemas, llamados genéricamente contramedidas infrarrojas o IRCM, constan de una fuente de radiación infrarroja modulada con una intensidad mayor que la de los motores y superficies del blanco. Esta señal de modulación alterada introduce confusión en la cabeza buscadora y puede provocar un desblocaje; entonces, es más probable que el misil vuelva a blocarse contra una de las bengalas que se disparan simultáneamente. El problema es que, si este truco no sale bien, la guía del misil tiene una fuente infrarroja inmejorable en la propia contramedida, típicamente fijada al objetivo. Los misiles modernos están diseñados para hacer un blocaje contra el perturbador (lock-on-jam) en cuanto detectan esto, conduciendo a un derribo prácticamente seguro.

DRCM Sukhogruz montada en la cola de un Sukhoi Su-25T.

Otra DRCM: la Sukhogruz, montada en la cola de un Sukhoi Su-25T.

Para mejorar esto se están creando nuevas contramedidas, las DRCM y CRCM, que utilizan a su vez un sensor infrarrojo para detectar el calor del misil en aproximación y un láser para inducirle directamente las señales espurias en el sensor. Y los diseñadores de guías infrarrojas para misiles disponen ya de nuevas técnicas con el propósito de suprimirlas e incluso aprovecharlas. En general, el más mínimo cambio o error puede transformar una de estas contramedidas por emisión (IRCM, DRCM, CRCM) en una estupenda baliza infrarroja que atraiga al misil con mucha más eficacia que si no se estuviera usando; por ello, el uso de estas contramedidas debe medirse cuidadosamente, caso por caso y situación por situación.

Guías activas.

Como hemos visto, las guías pasivas dependen de las emisiones inherentes al blanco para perseguirlo hasta su destrucción. Son extremadamente eficaces y, más importante todavía, no se delatan de ninguna manera hasta que ya están prácticamente encima del objetivo. Sin embargo, tienen sus limitaciones. Aunque resultan óptimas para atacar blancos que emiten intensamente (como un radar terrestre o áereo, tipo AWACS), presentan más problemas a la hora de perseguir objetivos que no emiten tan intensamente de manera natural. Por ello, los misiles infrarrojos más avanzados y de mayor alcance pueden atacar a un máximo de 40 km aproximadamente. A distancias superiores, las emisiones inherentes al blanco se disipan demasiado como para poderse detectar.

La solución resulta obvia: forzar al blanco a emitir con más intensidad o al menos de una manera que se pueda localizar a mayor distancia. Esto se consigue realizando nosotros una emisión que rebote en el blanco y retorne a nuestros receptores: el radar en el aire (aprovechando la mejor difusión aérea de las ondas electromagnéticas), el sonar bajo el agua (aprovechando la mejor difusión submarina de las ondas sonoras). Ya dijimos más arriba que todo lo que emite voluntariamente está en modo activo; y, en el momento en que lo hace, se puede detectar a su vez.

Componentes de un sistema antiaéreo ruso Almaz-Antey S-400.

Componentes de un sistema antiaéreo ruso Almaz-Antey S-400, que entró en servicio en 2007. De izquierda a derecha, vehículo de mando 55K6E, radar móvil de adquisición 96L6, radar móvil de tiro 92N2E y vehículo TEL lanzamisiles 5P85TE2. Además de este "set básico", hay otros componentes adicionales, entre ellos el radar pasivo ucranio Kolchuga. El S-400 podría atacar blancos hasta a 400 km de distancia con el misil hipersónico 40N6.

Los sistemas de telelocalización y seguimiento activos presentan una ventaja sustancial: yo controlo las características de la señal, lo que incrementa enormemente el alcance y precisión a largas distancias. Todas las guías pasivas tienen que pelearse con un montón de incertidumbres sobre la naturaleza del blanco y las señales que emite bajo una multitud de circunstancias distintas; por ello, sólo se aclaran bien a una distancia relativamente corta, donde esas señales llegan ya con mucha nitidez e intensidad. Usando un radar o un sonar, en cambio, obligo al objetivo a reflejar y re-emitir una señal conocida y bien determinada cuyas alteraciones puedo estudiar para mayor información.

Y la desventaja ya mencionada: todo sistema activo se delata a sí mismo al menos al doble de distancia de la que puede detectar y/o atacar. En el campo de batalla moderno, encender un radar (o cualquier otro transmisor) equivale a chillar: “¡estoy aquí!”. En la actualidad existen los llamados radares de baja probabilidad de intercepción (“radares furtivos”), como los que equipan el caza norteamericano F-22 Raptor (el AN/APG-77) o los antiaéreos rusos S-300PMU2 y S-400. Estos “radares furtivos” utilizan una diversidad de técnicas para reducir la posibilidad de que los detecten, localicen o ataquen, como el uso de onda continua con ancho espectral ampliado mediante rápidos saltos de frecuencia, reducir la potencia al mínimo imprescindible, usar un haz muy estrecho con gran control sobre los lóbulos laterales y posteriores o introducir los llamados radares pasivos (que no son un verdadero radar porque no emiten nada, pero pueden detectar señales emitidas por otros a grandes distancias).

Guía por radar activo del R-77 original.

Guía por radar activo del R-77 (RVV-AE, AA-12 Adder) original de 1994 (MAKS 2009).

Existen dos grandes categorías de misiles con guía radar: los activos y los semi-activos. Los misiles activos son del tipo “dispara y olvida” por completo: van provistos de su propio radar y lo usan para localizar y perseguir al blanco. Normalmente van equipados con un sistema adicional de navegación inercial, para recorrer partes de su trayectoria sin delatarse encendiendo el radar. Entre estos se encuentran algunos de los misiles más conocidos: los aire-aire de alcance medio AMRAAM y R-77 o antibuques como el Exocet,  el Harpoon o el Raduga Kh-15.

Estos misiles tan chulos y famosos tienen un problema: son pequeños. Más exactamente: sus antenas son pequeñas para que quepan en ese diámetro, y tampoco pueden cargar una enorme cantidad de electrónica, al menos en comparación con sus blancos. Por ello, cuando el “dispara y olvida” no resulta estrictamente necesario, se utilizan guías semiactivas. En una guía semiactiva, la señal principal es suministrada por un radar grande (un radar terrestre, naval o aéreo; por ejemplo, el radar del avión lanzador o un AWACS) y el misil se limita a captar el rebote y dirigirse hacia él. Así son, por ejemplo, los famosos antiaéreos Patriot y S-300/S-400. Ambos utilizan diversas combinaciones de modos semiactivos y activos; en la más básica, el misil es guiado hacia su blanco por una señal semiactiva emitida por sus potentes emisores terrestres  o áereos y usa su propio radar sólo para la aproximación final (homing).

La contramedida más antigua frente a este tipo de sensores es el chaff, ya utilizado contra los primeros radares, durante la Segunda Guerra Mundial. Sigue siendo sorprendentemente eficaz, y hasta los ICBM más avanzados lo incorporan tal cual o en forma gaseosa. Básicamente, se trata de cintas o hilillos metálicos que producen una miriada de rebotes en el radar, haciendo desaparecer la imagen en una neblina de incertidumbre. O, cuando se usa en un vehículo, generando un “segundo blanco” producido por los reflejos de la nube de chaff detrás del auténtico.

Casi setenta años después, sigue sin existir un método totalmente seguro para contrarrestar la eficacia del chaff. El más básico es medir la velocidad de los blancos detectados: la nube de chaff tiende a decelerar rápidamente detrás del blanco, lo que ayuda a distinguirla. Esto funciona bien con aviones pero mal con objetivos más lentos, como los barcos. Otro método consiste en hacer que el buscador del misil reaccione sólo ante las señales que proceden de un pequeño espacio alrededor del blanco, ignorando así el chaff que queda detrás; pero esto, además de reducir las capacidades todo-aspecto del buscador, se puede confundir utilizando lo que se llama un gate-stealer, que desplaza la señal rebotada por el blanco hacia la nube de chaff.

Este gate-stealer (¡es que no hay forma de traducirlo!) es una de las varias contramedidas posibles contra un misil guiado por radar. Casi todas ellas se basan en inducir señales falsas en el radar atacante y adolecen del mismo problema que ya vimos en los infrarrojos: cuando funcionan bien, funcionan muy bien; pero cuando funcionan mal, constituyen una emisión adicional que regala al misil un blanco perfecto (home-on-jam). Y, claro, no es posible predecir cuándo va a salir bien y cuándo va a salir mal.

En los años ’80 del pasado siglo, el misil francés Exocet se labró una fama curiosa atacando con éxito diversos buques civiles y militares; estos últimos iban equipados, obviamente, con numerosas contramedidas. Durante la Guerra de las Malvinas (1982), el destructor británico HMS Sheffield resultó destruido por uno de estos misiles y el HMS Glamorgan, gravemente dañado a manos de otro. También destruyeron al portacontenedores MV Atlantic Conveyor, cargado hasta las antenas con material militar, y los argentinos juran y perjuran que lograron al menos un impacto parcial en un portaaviones. Sea cierto esto último o no, el Exocet fue la única arma verdaderamente eficaz para la Argentina durante este conflicto. Tanto el Sheffield como el Glamorgan y los portaaviones estaban provistos con lanzadores de chaff, contramedidas electrónicas diversas y primitivos misiles anti-misil Sea Dart.

Durante la Guerra entre Irán e Iraq (1980-1988) Saddam era aún uno de nuestros chicos y estaba provisto con gran cantidad de armamento occidental. Sus misiles Exocet causaron una pesadilla en la navegación del Golfo Pérsico que vino a conocerse como la Guerra de los Petroleros; entre otros, hundieron al buque más grande jamás construido, un superpetrolero ULCC entonces llamado Seawise Giant. El 17 de mayo de 1987, un Mirage F1 iraquí –aparentemente por error– le endiñó dos de estos Exocets a la fragata estadounidense USS Stark, matando a 37 ocupantes. El gringo no se hundió por el sencillo hecho de que le arrearon bastante por encima de la línea de flotación y sus tripulantes lograron hacerse con los incendios y las vías de agua, pero el buque había quedado inutilizado por completo y la chapa y pintura costó 142 millones de dólares. La USS Stark iba provista con un sistema de defensa terminal Phalanx, un módulo de chaff y contramedidas automatizadas SRBOC, así como misiles Standard con posible uso marginal como defensa antimisil. Le sirvieron de lo mismo que al Sheffield y al Glamorgan: de nada.

La fragata estadounidense USS Stark escora tras ser alcanzada por dos misiles Exocet.

La fragata estadounidense USS Stark escora a babor tras ser alcanzada por dos misiles iraquíes Exocet de fabricación francesa, el 17 de mayo de 1987. (US Navy)

¿Cuál fue la clave del éxito del Exocet? Fácil: ninguno de sus blancos lo vio llegar. En todos los casos, el único preaviso fue un marinerito berreando despavorido aquello de “¡misil por babor!”. Bueno, en todos no: el Glamorgan pudo detectarlo por radar en el último momento, lo que le permitió ejecutar un brusco viraje para ponerle la popa. Así, el Exocet sólo le atizó en el hangar de helicópteros, haciendo estallar al Westland Wessex que estaba dentro, provocando un fuerte incendio y matando a trece tripulantes. Pero logró alejarse, renqueando.

¿Cómo es posible que no lo vieran llegar? Bueno, es que el Exocet es un misil rozaolas (sea-skimming). Y, diga lo que diga la propaganda habitual, los misiles rozaolas eran y siguen siendo muy difíciles de detectar con tiempo suficiente para hacer algo. Es que la Tierra es curva, sabeusté. Cuando algo vuela a muy poca altitud, queda por debajo del horizonte según se ve desde su objetivo, y eso vale tanto para los ojos como para el radar. Al aproximarse por debajo del horizonte radar, el Exocet simplemente no es detectado hasta que está ya encima como quien dice. Y si ya está encima, como recitamos en román paladino, te queda el tiempo justo para besarte el trasero y decirle adiós.

Lo que nos conduce a la defensa más eficaz en guerra moderna: que no te vean, ve tú al enemigo antes que el enemigo a ti. Esto ha sido efectivo desde siempre, pero en la actualidad es ley e incumplirla se castiga con la muerte. Atrás quedaron los tiempos de andar buscándose las vueltas con clarines, trompetas y banderones. Si puedes ver al enemigo antes de que el enemigo te vea a ti, puedes dispararle antes de que te disparen a ti. Y si tu arma hace lo que tiene que hacer, es probable que ellos sólo la vean llegar cuando ya estén a punto de comérsela sin patatas ni nada.

Para que no te vean, lo más eficaz es mantenerse disimulado en el ruido de fondo hasta que llegue el momento de atacar. Con las tecnologías de detección contemporáneas, mantenerse oculto por completo resulta casi siempre muy difícil e incluso imposible. Pero un buen camuflaje, una buena maskirovka, puede obrar efectos asombrosos. Disimularse en el ruido suele ser mucho mejor que pretender absurdamente que no estás allí en absoluto. La otra alternativa es, obviamente, mantenerse a distancia suficiente e ir recopilando pacientemente la información necesaria para lanzar un buen ataque por sorpresa desde fuera del alcance del enemigo.

En general, la espada ha demostrado históricamente ser mucho más poderosa que el escudo. La espada elige arma, táctica, espacio y tiempo; el escudo tiene que permanecer ahí todo el rato, gastando energía y recursos, esperando a ver si viene alguien o no, siempre expuesto a discreta observación y análisis para hallar sus puntos débiles. Los misiles, la última evolución de la flecha o la lanza, se acoplan perfectamente a este papel de espada. La única defensa segura es inutilizarlos antes de que lleguen a atacar, o mantenerse lejos de su radio de acción. Una vez en el aire, resultan muy difíciles de detener y su efecto es devastador. Por eso y por lo que decía al principio, los veremos cada vez más, durante mucho tiempo más.


Ejercicios de tiro con antiaéreos S-300 (ca. año 2000).

76 Comentarios Trackbacks / Pingbacks (6)
¡Qué malo!Pschá.No está mal.Es bueno.¡¡¡Magnífico!!! (63 votos, media: 4,92 de 5)
Loading...Loading...
Be Sociable, Share!

Superbacterias: enfermedades resistentes a los antibióticos.

El abuso y mal uso de los antibióticos durante el último siglo
ha conducido a la evolución de enfermedades resistentes a los mismos.
Actualmente, se considera ya un grave problema de salud pública.

Cepa de "superbacteria" SARM resistente a los antibióticos

Cultivo de "superbacteria" SARM resistente a la mayoría de los antibióticos. Esta cepa ya sólo puede atacarse con tigecilina y colistinas.

Esta semana se celebraron en Barcelona las V Jornadas de la Red Española de Investigación en Patologías Infecciosas (REIPI), que reúne a algún centenar de médicos especialistas en cosas que se pegan bajo el amparo del Instituto de Salud Carlos III (el Instituto Carlos III alberga también al Centro Nacional de Epidemiología, lo que vendría siendo nuestro CDC castizo, o al menos parte de él). Al finalizar el encuentro, los señores doctores y señoras doctoras allí reunidos han emitido un comunicado de prensa donde inciden en un asunto que ya viene circulando tiempo ha:

La situación es que España es uno de los países con tasa de resistencia a antibióticos más alta de Europa, en concreto en E. coli. El problema radica fundamentalmente en que, en los últimos años, han empezado a aparecer unas cepas de este agente, que tienen un mecanismo de multirresistencia muy importante. Tanto es así, que las infecciones provocadas por E. coli han pasado a constituir un importante problema, tanto en el ambiente hospitalario como en la comunidad, ya que han desarrollado mecanismos de resistencia a muchos antibióticos a la vez, y son pocas las alternativas terapéuticas de las que disponemos para su tratamiento.

El E. coli, como nos recuerda el Dr. Álvaro Pascual del Hospital Virgen de la Macarena de Sevilla, es “un microorganismo que produce una gran cantidad de infecciones, y que reside en nuestra propia flora intestinal, por lo que produce infecciones endógenas. Es causante de infecciones urinarias, de sangre, invasivas, neumonías y abdominales, entre otras”.

No es el único microorganismo con resistencia a los antibióticos que preocupa a las autoridades sanitarias internacionales. Entre estos se encuentran diversos tipos de estreptococos y enterococos, la muy común pseudomonas aeruginosa, el clostridium difficile o la acitenobacter baumanii. Recientemente, uno de estos bacilos provocó cierta preocupación entre las familias de España: el neumococo resistente, que causa neumonía pero también otro gran número de infecciones como otitis, sinusitis, artritis séptica, osteomielitis e incluso meningitis y distintas afecciones cardíacas.

La razón fundamental de que hayan surgido estos superbacilos multirresistentes durante las últimas décadas no radica en oscuros experimentos, como creen los más conspis. Ni mucho menos en la inmigración, que ha venido a ocupar el lugar de las brujas o los judíos en la misma clase de mentes que antes echaban la culpa de todo a las brujas o los judíos (en su día, a los inmigrantes les echaron también la culpa de la polio). La razón es más sencilla, y a la vez más incómoda y de solución más difícil: nos hemos pasado setenta pueblos con los antibióticos. Durante décadas, en los países desarrollados y también en los que no lo están tanto le hemos estado echando antibióticos a todo lo que se movía bajo un microscopio. El comunicado de la REIPI indica:

  • El tratamiento de los pacientes afectados por infecciones bacterianas se complica por la aparición de clones multirresistentes, que se diseminan rápidamente y pueden ocasionar verdaderas epidemias.
  • Las resistencias bacterianas a los antibióticos han pasado a constituir un importante problema para los sistemas de salud de nuestro país. El uso adecuado de los antibióticos disponibles ya no es una recomendación, sino una urgencia.
Colonia de E. coli

Colonia de E. coli, un bacilo habitualmente presente en el intestino de los animales, incluyendo a los humanos. Algunas cepas pueden ocasionar enfermedades graves. La resistencia del E. coli a los antibióticos se ha multiplicado preocupantemente en los últimos años.

La preocupación es generalizada en el mundo entero. Los mencionados CDC estadounidenses ya advierten, en unas respuestas divulgativas para el público en general:

La resistencia a los antibióticos se ha denominado como uno de los problemas de salud pública más acuciantes del mundo. Casi todos los tipos de bacterias se han vuelto más fuertes y menos sensibles al tratamiento con antibióticos cuando éste resulta realmente necesario. Estas bacterias resistentes a los antibióticos pueden diseminarse rápidamente a otros miembros de la familia y los compañeros de clase y trabajo, amenazando a la comunidad con nuevas cepas de enfermedades infecciosas más difíciles de curar y más caras de tratar. Por esta razón, la resistencia a los antibióticos se encuentra entre las preocupaciones principales de los CDC.

La resistencia a los antibióticos puede ocasionar un peligro significativo y sufrimientos para niños y adultos con infecciones comunes, que antes se trataban fácilmente usando antibióticos. Los microbios pueden desarrollar resistencia a medicinas específicas. Un error común es que el cuerpo de las personas se vuelve resistente a estos fármacos. Pero son los microbios, no la gente, quienes se vuelven resistentes a estos fármacos.

Si un microbio es resistente a muchos fármacos, el tratamiento de las infecciones que provoca puede ser difícil e incluso imposible. Una persona con una infección que es resistente a un cierto medicamento puede pasar esa infección resistente a otra persona. De esta manera, una enfermedad difícil de tratar puede contagiarse de persona a persona. En algunos casos, estas enfermedades pueden causar discapacidades importantes e incluso la muerte.

El uso de antibióticos promueve el desarrollo de bacterias resistentes a los antibióticos. Cada vez que una persona toma antibióticos, las bacterias más sensibles mueren, pero los gérmenes más resistentes pueden sobrevivir para crecer y reproducirse. Los usos repetidos e inadecuados de antibióticos son causas primarias del incremento de las bacterias resistentes a los medicamentos.

¿Cuál es, entonces, el problema con los antibióticos? Bueno, con los antibióticos, ninguno en particular; ellos hacen lo que tienen que hacer, matar microbios, cada día de manera más selectiva. El problema radica en el abuso y mal uso que hemos hecho de ellos, olvidando en el proceso un pequeño detalle: el mecanismo transformador más poderoso de este universo, la evolución. Eso que los creacionistas quisieran ocultar u oscurecer, a pelo o bajo tapaderas como el llamado diseño inteligente. Para su desgracia y fortuna de todos –hasta la de ellos–, la evolución ocurre constantemente, persistentemente, en cada rincón de la realidad; y seguirá haciéndolo hasta que el cosmos entero se apague por lo menos, porque está indisolublemente vinculada a la entropía y la fluctuación.

Evolución y supervivencia.

Clostridium difficile

El Clostridium difficile, un viejo conocido de los hospitales. Es naturalmente resistente a la mayor parte de los antibióticos; cuando la flora intestinal del paciente resulta eliminada por las terapias basadas en estas sustancias, el Clostridium difficile se apodera del colon con facilidad, causando diarreas e incluso la muerte.

Todo en este universo está sujeto a evolución constante. De manera muy particular, los seres vivos están –estamos– sometidos a un tipo especial de evolución extremadamente sofisticado que llamamos evolución biológica. En toda población de seres vivos, hay unos más frágiles y otros más resistentes a una determinada amenaza. Pongamos el ejemplo tradicional de la gacela y el león. Por motivos obvios, las gacelas que corren más y reaccionan más rápidamente ante la presencia de depredadores tienden a incrementar sus probabilidades de supervivencia cuando aparece el león. Eso significa que vivirán más tiempo y tendrán más oportunidades de reproducirse, con lo que el carácter genético “correr más – reaccionar más deprisa” tiende a perpetuarse. Si hay muchos leones acosando a las gacelas –es decir, si hay mucha presión evolutiva–, las gacelas lentas desaparecerán pronto y se verán sustituidas por nuevas generaciones más veloces y despabiladas. Esto es la selección natural.

No hay mucho que una gacela pueda hacer por superarse a sí misma o evolucionar personalmente, rollo libro de autoayuda. En la naturaleza, estas características favorables o desfavorables son de índole genética: la gacela que nació con la capacidad de correr más corre más, la que nació con la capacidad de correr menos corre menos. Esto no se puede trasladar a las sociedades humanas, porque las sociedades humanas dependen enteramente de factores que no tienen más que un tenue origen genético, cuando lo tienen; la historia de la civilización es la historia de cómo aprendimos a ir contra natura. Pero en la natura, en la naturaleza, esto va así: la resistencia de un ser vivo frente a una amenaza le viene dada de manera fundamentalmente genética. Quedó determinada en el instante de la gestación, fruto de una organización específica del ADN de papá gacela y mamá gacela a través de sus óvulos y espermatozoides, más las mutaciones que se producen en el proceso. Por decirlo de alguna manera, la gacela está predestinada a correr más o correr menos cuando llega el león y no puede hacer gran cosa para cambiarlo. Así, en las gacelas, los genes y mutaciones que favorecen la rapidez tienden a prevalecer frente a los que favorecen la lentitud.

Cuando la presión evolutiva se incrementa –y con ella la selección natural– las gacelas portadoras de genes o mutaciones lentas tienden a extinguirse muy deprisa, mientras que las dotadas con genes o mutaciones rápidos tienden a sobrevivir y multiplicarse. Al final, sólo quedan gacelas veloces que producen gacelas más raudas todavía, y así una y otra vez, a lo largo de millones de años.

La evolución en marcha: Biston betularia

La evolución en marcha: las mariposas del abedul (biston betularia) han cambiado su color desde inicios de la Revolución Industrial. Su camuflaje original (arriba) se volvió inútil cuando la contaminación oscureció las cortezas de los árboles donde se posaba. Las variedades más oscuras resultaron favorecidas por este fenómeno y así, en pocas décadas, la mutación y la selección evolutiva convirtieron a la biston betularia en una mariposa de color... carbón.

Sin embargo, cuando la amenaza es distinta, la velocidad puede resultar contraproducente. Si, por ejemplo, no hay muchos leones pero sí mucha sequía y hambruna, los metabolismos rápidos tienden a consumir sus recursos más rápidamente y perecer antes. Por otra parte, si el problema es una epidemia, tenderán a sobrevivir las gacelas más resistentes a esa enfermedad en particular. No existe una única característica de supervivencia que valga para todos los casos; dependiendo del momento y las circunstancias, que son variables en el tiempo y en el espacio, pervivirán y se multiplicarán unas u otras. Así se produce la radiación evolutiva, ocupando los distintos nichos ecológicos disponibles a lo largo de los eones.

Los microbios evolucionan muy deprisa; a veces, en cuestión de horas. A lo largo de miles de millones de años, bacilos y bacterias medraron y evolucionaron sin tener que enfrentarse a una amenaza significativa procedente de los antibióticos clínicos, que surgieron en fecha tan tardía como 1927. Por eso, durante las primeras décadas, los microorganismos carecían de defensas significativas frente a estas sustancias y resultaban muy eficaces. Se parece al problema que tuvieron las poblaciones nativas americanas con la viruela cuando se la pegó el conquistador.

Sin embargo, siempre hay algún organismo más resistente a una determinada amenaza que sus congéneres (y si no lo hay o no resulta lo bastante resistente, entonces la especie se extingue). Los microorganismos, que se reproducen y mutan con velocidad asombrosa, tienen la capacidad de aprovechar el resquicio más improbable para permitir la supervivencia de algunos individuos más resistentes a esa amenaza. Y a continuación se reproducen, con lo que ya tenemos una cepa resistente. Cuando este proceso se repite una y otra vez, se van destilando cepas de altísima resistencia, hasta que la amenaza deja de ser amenazadora por completo.

En la naturaleza, las amenazas evolucionan constantemente junto a sus víctimas. Cuando las gacelas se vuelven más rápidas y ágiles, los leones más lentos mueren de hambre; eso significa que sólo los leones más rápidos sobreviven y se reproducen, y así sucesivamente, en una carrera evolutiva sin fin. Sin embargo, los antibióticos fabricados por el ser humano evolucionan artificialmente mucho más despacio de lo que los fulgurantes microorganismos pueden mutar por vías naturales. Si un tratamiento con antibióticos no extermina por completo a toda la población microbiana, algunos de ellos sobrevivirán (¡obvio!) y serán los más resistentes al antibiótico quienes tiendan a hacerlo en mayor medida. Y, por tanto, los que se reproducirán para formar nuevas cepas. Tras unas décadas de evolución (o unos meses de evolución acelerada en un laboratorio de guerra biológica, ejem, no he dicho nada…), no quedarán cepas sensibles al antibiótico y se habrán visto todas reemplazadas por cepas resistentes al antibiótico. Y así una y otra vez. Veámoslo con un ejemplo.

El día del flemón.

Hace unos meses, me levanté una mañana de muy mal café. Tenía el lado derecho de la cara como un pan de payés, con un estupendo flemón originado en una caries que me había pasado inadvertida bajo una muela. Sobre el mediodía interrumpí lo que estaba haciendo, pues ya rabiaba de dolor, y llamé al dentista para decirle que iba para allá. La conversación fue más o menos como sigue:

–Doc, tengo un flemón como una naranja, dame hora para ya y prepara las tenazas o lo que sea porque no aguanto esto.
–¿Pretendes que te saque una muela con la encía inflamada, gilip*llas?
–Uh… pues… eso es lo que hacéis los sacamuelas, ¿no?
–Pues hombre, no si podemos evitarlo. Anda, tómate una caja de Augmentine y llámame cuando te haya bajado un poco la inflamación.

Cápsulas de amoxicilina

Cápsulas de amoxicilina en una presentación norteamericana.

Claro. Cómo no. Idiota de mí, suena lógico, ¿no? Primero se reduce la inflamación y luego se saca la muela o lo que sea; ¡menuda carnicería, si no! Así que, como yo ya sé que andan por ahí los muy histéricos esos de la salud pública tratando de coartar la libertad de comprar antibióticos a los buenos ciudadanos que pagamos impuestos y respetamos la ley, o eso decimos, me voy a la farmacia de confianza. Puesto que soy grandote y peludo y cuando ando rabiando de dolor tengo poca paciencia, pido a la farmacéutica artillería pesada:

–Hola. ¿Tienes algo más gordo que el Augmentine 875?
–Pues… el de 1.000 –responde ella, no muy convencida.
–Coj*nudo. Dame una caja de eso.
–Pero…
–Venga, ¿qué no ves cómo llevo la boca o qué? Dame una caja de eso y ya lo arreglo yo luego con la jefa. ¿Qué se debe?

Así, salgo de la farmacia armado con mis veinticuatro obuses de amoxicilina calibre mil y en el mismo bar de enfrente me arreo el primero ayudado por una Coca-cola. La amoxicilina es un potente antibiótico, derivado de la penicilina, que Glaxo vende en España y otros países combinado con metralla extra de nombre ácido clavulánico bajo la marca comercial Augmentine. Mano de santo, oiga: al día siguiente, el flemón se ha rebajado de manera significativa. A los dos días, ya casi no molesta nada. Al tercer día, ha desaparecido por completo.

que hay que tomarse la caja hasta el final. Lo sé. He leído las recomendaciones, salió por la tele, he atendido a las campañas de los histéricos de la salud pública. Al cuarto día, vuelvo a llamar a mi dentista, con menos humos:

–Hola, doc. Mira, que soy yo, que a ver si me puedes dar hora para arreglarme la muela esta.
–¿Ya se te ha bajado la inflamación?
–Sí. Me estoy tomando el Augmentine, como dijiste.
–Muy bien. Pues vente mañana a las cinco y así me das tiempo para preparar las tenazas.
–Eh, que eso era… uh… una forma de hablar, jejeje… un pour parler como si dijéramos… que yo creo que con un empastito bastará, ¿no?
–Gallina. Oye, ya sabes que te tienes que tomar el antibiótico hasta que se acabe la caja, ¿no?
–¡Claro, hombre! ¿Por quién me tomas?

Una tira de antibiótico inhibe el crecimiento de las bacterias en un cultivo.

Una tira de antibiótico inhibe el crecimiento de las bacterias en un cultivo.

Estoy mirando ahora mismo la caja, olvidada en un cajón. De los veinticuatro comprimidos, quedan quince. Ni siquiera recuerdo cuándo dejé de tomármelo exactamente; supongo que algún día en que andaba muy liado y se me pasó. ¡Como ya no me molestaba…! Así, he contribuido a la Humanidad con otra potencial cepa de microorganismos infecciosos resistentes a los antibióticos, que podrían afectarme a mí o a cualquier persona a la que se los pase. Con un beso, por ejemplo.

¿Por qué? Pues porque al no completar el tratamiento, seguramente sobrevivieron algunos bacilos. Típicamente, los más resistentes a la amoxicilina. Esos son los microorganismos que conservo por ahí dentro y, por tanto, los que se reproducirían para tomar el control si se produjera un nuevo acceso inflamatorio. Durante unos días, me convertí a mí mismo en un reactor biológico que aplicó una enorme presión evolutiva sobre mis bacilos bucales, eliminando a los más sensibles a la amoxicilina y permitiendo la supervivencia y multiplicación de los más resistentes. Eso significa que mi próximo flemón puede ser mucho más intratable, y los de las personas a las que se los pegue, también. Pero no sólo eso: he contribuido también (y sobre todo) a que en cualquier otra parte del organismo (por ejemplo, el intestino, donde se encuentra el E. coli) este proceso evolutivo se produzca igualmente; esto es especialmente cierto de los antibióticos de amplio espectro.

Como no soy el único idiota que hace cosas así, los microorganismos permanecen sometidos a constante presión evolutiva en millones de estos reactores biológicos con ojos repartidos por todo el mundo. Con el mal uso y el abuso de antibióticos, provocamos constantemente la evolución de cepas resistentes dentro de nuestros propios cuerpos. En los países subdesarrollados o en vías de desarrollo, esto sucede también porque la calidad de los antibióticos que consumen es desconocida y muchas veces no pueden permitirse completar el tratamiento; en los países desarrollados, lo hacemos nosotros solitos por pura desidia, cabezonería y estupidez.

Solomillo de estreptococos con foie reducido al antibiótico. Luego, fregamos con bactericida.

El mal uso y abuso de antibióticos en humanos no constituye la única posibilidad de que aparezcan cepas bacterianas resistentes. Durante muchísimas décadas, la industria cárnica ha usado antibióticos masivamente para prevenir la aparición de enfermedades en el ganado y para favorecer su crecimiento. Es decir: no sólo le daban antibióticos al ganado cuando caía enfermo, sino también cuando estaba sano.

Esto tuvo varios resultados positivos, entre ellos la mejora de la seguridad alimentaria; la carne ya no nos liquida como chinches, cosa frecuente en el pasado. Otro efecto positivo, pero sólo desde el punto de vista de los ganaderos y las industrias cárnicas, es que los animales tratados con ciertos antibióticos crecen más y por tanto aportan más beneficio a peso. Ya en los años ’40 se descubrió que si se alimentaba al ganado con micelios secos de streptomyces aureofaciens –una fuente de antibióticos tetracíclicos– éste engordaba más debido a ciertas interacciones intestinales. Así quedó abierta la veda del antibiótico en la ganadería, que sólo en tiempos recientes ha empezado a cerrarse.

Vamos, que todos los carnívoros nos hemos tirado años y más años atiborrándonos de antibióticos sin apenas control veterinario y fomentando la aparición de cepas bacteriológicas extremadamente resistentes por todas las cabañas ganaderas del mundo. En realidad, seguimos haciéndolo (sobre todo en la carne de ave). Ya decía yo que mi amiga vegeta tenía que llevar algo de razón en lo suyo. El SARM, el campylobacter y el propio E. coli, todas ellas multirresistentes a estas alturas, campan por sus respetos.

También ha despertado preocupación el surgimiento durante los últimos años de diversos detergentes bactericidas como novedad comercial de venta al público. Aunque aún no se ha podido establecer todavía una relación directa entre estos limpiadores y la proliferación de bacilos resistentes, parece una consecuencia lógica. En general, la FDA norteamericana desaconseja su utilización por inútiles para prevenir ninguna clase de infección, a pesar de lo que digan o den a entender en los anuncios.

¿Y ahora qué hacemos?

Esta es otra de las cosas del planeta Tierra que los seres humanos hemos estropeado ya irreversiblemente. Después de décadas cultivándolos tan cuidadosamente, no podían fallarnos: los microorganismos resistentes a los antibióticos han llegado para quedarse. La pregunta es: ¿y ahora qué hacemos?

A estas alturas, existe un arsenal farmacológico para tratar muchas de estas infecciones con otro tipo de medicamentos. El problema es que estos fármacos son menos eficaces, más caros, más tóxicos y con mayores efectos secundarios, algunos de ellos graves. Por tanto, se refuerza la importancia de la prevención y especialmente de las vacunas: una correcta vacunación evita las enfermedades infecciosas, incluso si éstas se originan en cepas resistentes a los antibióticos. Sin embargo, ni hay vacunas contra todo ni parece juicioso vacunarnos contra todo.

Estructura de un bacteriófago.

Estructura de un bacteriófago. Estos virus infectan a las bacterias y algunos de ellos las destruyen.

Una alternativa prometedora a los antibióticos parece ser la terapia basada en bacteriófagos, extensivamente desarrollada en la Unión Soviética a partir de los años ’20 del siglo pasado pero poco conocida en Occidente debido a las barreras de la Guerra Fría y al hecho simple de que los antibióticos resultaban mucho más eficaces –cuando aún eran eficaces, claro–. Como su nombre indica, los bacteriófagos son parásitos naturales de las bacterias: generalmente se trata de virus muy específicos, que sólo atacan a una cepa bacteriana determinada y que se pueden cultivar sobre la marcha según las necesidades específicas. Algunos de ellos son capaces de destruirlas, por lo que tienen utilidad como tratamiento alternativo.

Lo que no ayuda en absoluto es seguir abusando de los antibióticos como si no pasara nada, pues hace el problema aún mayor y evoluciona cepas aún más resistentes. Por ejemplo: sólo el 10-15% de las bronquitis están ocasionadas por bacterias; el resto son virales, y a los virus los antibióticos no les dicen ni buenos días. Tomar antibióticos para la bronquitis, a menos que haya sido diagnosticada como bronquitis bacteriana, es mal uso. Lo mismo ocurre con la irritación de garganta y algunos casos de otitis. Y no digamos con la gripe y el resfriado común, causados por dos estupendos virus que pasan de los antibióticos como si no estuvieran ahí; salvo que haya infecciones bacterianas coadyuvantes, cosa que debe determinar un médico, tomarse antibióticos para el catarro es como tomarse aspirinas para el cáncer. Lo que pasa es que si nos los tomamos, su uso se solapa con la evolución natural de la enfermedad y parece que nos han curado. En realidad, lo único que hacen en la mayoría de estos casos es molestar al organismo.

En muchos países se considera que algunos médicos no son lo bastante cuidadosos a la hora de recetar antibióticos, en general cuando les presionan los pacientes. Y todos, todos y todas deberíamos renunciar a la carne que haya sido criada con antibióticos como factor de engorde. Esa no es una práctica correcta. Sí resulta admisible, en cambio, su uso veterinario para tratar enfermedades diagnosticadas del ganado… cuando aún sirven de algo. Todo esto no es ninguna cosilla de poco más o menos: una de las más poderosas herramientas que la ciencia nos proporcionó contra la enfermedad está volviéndose cada día más inútil por abusar de ella, y eso es algo de lo que nos arrepentiremos muy, muy profundamente. No lo empeoremos más.

La resistencia a los antibióticos en un video elaborado por la FDA, EE.UU. (En inglés)

Ver también: Antibióticos para la vida

76 Comentarios Trackbacks / Pingbacks (7)
¡Qué malo!Pschá.No está mal.Es bueno.¡¡¡Magnífico!!! (63 votos, media: 4,75 de 5)
Loading...Loading...
Be Sociable, Share!

« Entradas anteriores Página siguiente » Página siguiente »