Archivo de Abril, 2014

Cuando Suiza quiso su bomba atómica y tuvo un siniestro nuclear

«Una instalación como la Central Nuclear de Lucens no estalla, porque no puede estallar.»
Hans Streuli, ex-Presidente de la Confederación Helvética y de la
Sociedad Nacional para la Promoción de la Energía Atómica, 1962. (NGA GVP 26/06/1962, pág. 7)

Antigua central nuclear experimental de Lucens, siniestrada el 21/01/1969.

Cuarenta y dos años después del siniestro que obligó a su cierre, los niveles de contaminación radiactiva en el agua de drenaje de la antigua central nuclear experimental de Lucens (Suiza) aumentaron inesperadamente de 15 Bq/l a 230 Bq/l durante el invierno de 2011 a 2012. Aunque muy por debajo del nivel considerado seguro por las autoridades helvéticas (12.000 Bq/l), el hecho de que ocurriera pocos meses después de los accidentes nucleares múltiples de Fukushima, su proximidad a la fuente de las aguas minerales Henniez-Nestlé y el peligro para la riqueza agropecuaria y vitivinícola local despertaron no poca inquietud en la zona. El agente contaminante era, en su mayor parte, tritio radiactivo. Los niveles volvieron a la normalidad durante la primavera de 2012 sin causar mayores problemas. Por el momento no se han establecido públicamente las razones de esta incidencia. Datos: Oficina Federal de Salud Pública de la Confederación Helvética. Foto: J. P. Guinnard.

A finales de 2011, una persona se me acercó con unas hojas impresas de un foro de Internet para decirme:

–Eh, Yuri, mira esto. Está llegando a Suiza la radiación de Fukushima. Se han multiplicado por quince los niveles de radiactividad en el agua.
–¿Sí? –contesté con no poca displicencia, pues ya llevaba escuchadas unas cuantas de esas.
–No pongas esa cara, hombre. Son mediciones oficiales, míralo tú mismo.
–¿Pero cómo se va a multiplicar por quince la radiación a diez mil kilómetros de distancia? A ver, déjame ver. ¿La Broye? ¿Dónde c*** está esto?
–Aquí pone que entre el cantón de Vaud y el de Friburgo.
–¿El cantón de Vaud…? –recordé, vagamente– Ah, no, entonces esto no viene de Fukushima. Será todavía por aquel accidente nuclear que tuvieron.

Mi interlocutor se sorprendió:

–¿Un accidente nuclear? ¿En Suiza? ¿Cuándo?
–Allá por 1969, en Lucens. Bueno, en realidad nunca ha quedado claro si fue un accidente o un incidente muy grave. Pero se les fue un reactor como su p*** madre. Así que yo lo llamo “el siniestro nuclear de Lucens“. Por suerte estaba metido dentro de una caverna, que si no…
–Vaya, no me lo imaginaba de los suizos. ¿Y cómo fue eso?
–Verás, el caso es que querían hacer bombas atómicas y…
–¡¿Que Suiza quería hacer bombas atómicas?!
–Pues… eh…

Suiza atómica.

Paul Scherrer

El profesor Paul Scherrer (1890-1969) del ETH-Zúrich fue el “padre” de la energía atómica en Suiza. Foto: © Association suisse pour l’énergie atomique / Schweizerische Vereinigung für Atomenergie.

Ya antes de la Segunda Guerra Mundial Suiza realizó sus propias investigaciones sobre el átomo, fundamentalmente en Lausana, Ginebra y sobre todo en el Instituto Tecnológico Federal de Zúrich (ETH). Entre 1935 y 1940 construyeron tres aceleradores de partículas, incluyendo un ciclotrón en el ETH dirigido por el físico Paul Scherrer, con fondos que aportó la industria privada. El profesor Scherrer mantenía contactos con Lise Meitner (descubridora de la fisión nuclear), Otto Hahn (codescubridor), Werner Heisenberg (el científico más destacado del programa atómico nazi, que ya tratamos en este blog) e incluso con el director del Proyecto Manhattan, el general Leslie Groves. Groves le invitó a visitar los Estados Unidos durante el verano de 1945 y en las propias palabras de Scherrer, le enseñó “muchas cosas”, incluyendo los reactores de producción de plutonio de Hanford. Regresó a Suiza diciendo que “¡todo es muy fácil!”

Apenas tres meses después de que los Estados Unidos dieran a conocer al mundo el poder del núcleo atómico mediante los bombardeos contra las ciudades de Hiroshima y Nagasaki, el profesor Scherrer publicó un artículo divulgativo en la edición vespertina del periódico Neue Zürcher Zeitung de 28 de noviembre de 1945 con el título “Fundamentos físicos y técnicos de la energía atómica.” Le siguieron varios más, que cautivaron el interés del público, incluyendo a los políticos y los militares; quienes, como buena parte del mundo por aquel entonces –visto lo visto en Hiroshima y Nagasaki–, tampoco necesitaban una persuasión extrema para convencerse de que no sería mala idea echar un vistazo a eso de la energía atómica, tanto en su vertiente civil como en la militar.

El 8 de junio de 1946, el Consejo Federal funda la Comisión de Estudios para la Energía Atómica (más conocida por su acrónimo en alemán SKA, de Studienkomission für Atomenergie). Fue presidida, naturalmente, por el profesor Paul Scherrer de Zúrich. El propósito anunciado al público (y al Parlamento) de esta SKA era la investigación nuclear más o menos genérica. Pero el Presidente Confederal Karl Kobelt les encarga en secreto otra tarea, que de hecho estaba ya sobreentendida: la “creación de una bomba de uranio militar o un medio de guerra equivalente basado en los principios de la energía atómica.” En 1947, el Parlamento aprueba una ley para financiar a la SKA con 18 millones de francos suizos sin que nadie informe a los diputados de su dimensión militar.(Fuente)

Al principio, el progreso es lento. Puede que la energía nuclear sea “fácil”, como opinaba el profesor Scherrer, pero sin duda sale muy cara y requiere abundantes medios científicos y tecnológicos que exigen desarrollar una notable pericia técnica. Además, Suiza no tiene uranio. Bueno, ni uranio ni casi nada. El país será muy rico, pero también extremadamente pobre en recursos naturales. Apenas hay minería. Deben importar del extranjero todos los minerales especiales que necesita un programa nuclear, sin que se note que hay gato encerrado. Y esto resulta mucho más complicado de lo que parece, pese a las excelentes relaciones comerciales de Suiza con el mundo entero. Importarlos no, importarlos es sencillo. Lo que resulta endiabladamente difícil es que nadie se percate de que tu programa atómico tiene bicho, sobre todo si tienes que pasarlos ante los ojos de potencias atómicas como los Estados Unidos o la entonces Unión Soviética, celosos defensores de la exclusividad del club nuclear. Y, ya puestos, por los morros del quisquilloso Parlamento suizo.

Reactor nuclear Saphir, Suiza.

El reactor nuclear “Saphir” de tipo piscina, el primero que tuvo Suiza, comprado directamente a los Estados Unidos tras la Primera Conferencia sobre los Usos Pacíficos de la Energía Atómica. Era un diseño del Laboratorio Nacional de Oak Ridge, concebido en origen para funcionar con uranio altamente enriquecido pero “rebajado” al 20% antes de su exposición en Ginebra, precisamente para que no se pudiera utilizar con el propósito de producir material militar. No obstante, permitió a Suiza realizar sus primeros estudios sobre el funcionamiento de un reactor nuclear, la producción de radioisótopos, otros aspectos de la química nuclear, la física de la radiación y los problemas de ingeniería asociados. Foto: Bildarchiv ETH-Bibliothek, Zúrich. (Clic para ampliar)

El caso es que, entre unas cosas y otras, ni siquiera logran iniciar la construcción de un reactor. Hubo que esperar hasta agosto de 1955 para que los Estados Unidos llevasen a Ginebra uno experimental de demostración, llamado Saphir, para la Primera Conferencia sobre los Usos Pacíficos de la Energía Atómica. Fue el primer reactor nuclear que se mostró al público, del tipo piscina, con uranio enriquecido al 20%, moderado y refrigerado por agua ligera (agua común), capaz de entregar unos diez megavatios térmicos de potencia. No era, ni con mucho, el mejor diseño posible para un programa que quería ser militar. De hecho, era uno de los peores (por eso los amerikantsy lo presentaron en una conferencia de usos pacíficos…). Pero, a falta de otras alternativas, un consorcio mixto compuesto por el gobierno suizo y diversas empresas del mismo país que se hizo llamar Reaktor AG se lo compró al finalizar el encuentro. Lo instalaron en Würenlingen, a orillas del río Aar, donde hoy en día se encuentra la sede del Instituto Paul Scherrer.

Bien, pues Suiza ya tenía su primer reactor nuclear. Como te digo, resultaba una muy mala opción para un programa con bicho militar. Para conseguir el combustible enriquecido al 20%, tenían que comprárselo a los Estados Unidos en persona. No tenían medios para aumentar el enriquecimiento del uranio y llevarlo al grado militar. Los reactores de agua ligera son generalmente malos para producir plutonio de buena calidad. Y además, la instalación se encontraba bajo estricto control estadounidense. Mil cosas. Pero les sirvió para aprender.

Tanto fue así, que en 1957 comenzaron a verse capaces de tirar por su propio camino. Ese fue el año en que iniciaron la construcción de un segundo reactor al lado del primero, llamado Diorit, con tecnología mayormente nacional. Diorit era un animal completamente distinto: estaba moderado con agua pesada, utilizaba uranio natural (sin enriquecer, mucho más fácil de conseguir en el mercado internacional) y generaba unos 20 megavatios térmicos. Y servía para producir plutonio. Plutonio de grado militar.

Reactor nuclear Diorit, Suiza.

El reactor suizo Diorit durante una actualización, en 1971. Alimentado con uranio natural y moderado con agua pesada, tenía la capacidad para generar plutonio de grado militar, aunque los controles establecidos por sus proveedores impedían que se pudiera producir en la práctica. Suiza necesitaba más tecnología y más desarrollo propio para crear una auténtica industria nuclear militar independiente. Foto: Archivo de la ETH-Zúrich, ARK-NA-Zü 1.2. (Clic para ampliar)

Compraron el uranio para alimentarlo a AMF Atomics de Canadá. Pero el agua pesada hubo que importarla otra vez de Estados Unidos, bajo el compromiso (y bastantes controles) de que el reactor sólo se utilizaría para investigación civil. La pura verdad es que con esos controles resultaba muy difícil desviar cantidades significativas de plutonio para un todavía hipotético programa militar. No obstante, quienes deseaban que Suiza tuviese armas nucleares se excitaron. A malas, ahora ya disponían de la tecnología y la posibilidad (un poco como pronto haría Israel con Dimona). Sólo necesitaban “independizarse” de sus proveedores.

Al mismo tiempo, la reciente creación del Pacto de Varsovia (1955) en respuesta a la formación de la OTAN (1949), los aún más recientes sucesos de Hungría (1956) y la aparición de los misiles balísticos de alcance medio con grandes cabezas atómicas (precursores de los misiles balísticos intercontinentales, que llegarían inmediatamente después) calentaban la Guerra Fría en Europa a toda velocidad, empujándola hacia su periodo más crítico. Casi en medio, un país riquísimo que –aunque netamente situado en el campo occidental– hace de la neutralidad su bandera, y que muchos creen imposible de derrotar pero sus militares saben que no lo es tanto desde que se inventaron los aviones, las fuerzas aerotransportadas y los misiles de largo alcance: sí, Suiza.

Es en ese contexto, el 27 de marzo de 1957, cuando el jefe del Estado Mayor suizo Louis de Montmollin crea en el más absoluto secreto una cierta comisión de estudio para la posible adquisición de armas nucleares propias, vinculada al “lado militar” de la SKA. No es una cosa que De Montmollin se saque de la manga porque le parece bien, al hombre:  están en el ajo otros cuatro oficiales de alto rango, el jefe de los servicios legales del Ministerio de Asuntos Exteriores, dos miembros destacados del Comité de Trabajo para Asuntos Nucleares del Consejo Federal y el director de la compañía Reaktor AG (algunas de estas personas se hallaban muy próximas al después llamado Projekt-26, la rama suiza de la Operación Gladio.) En realidad, la fundación de esta comisión fue una iniciativa secreta del Consejo Federal.

En junio de 1958, de manera probablemente casual, un grupo pacifista comenzó a recoger firmas para convocar un referéndum que habría prohibido la “importación, fabricación, tránsito, almacenamiento y uso de armas nucleares de todas clases” en territorio suizo. La recogida de firmas les fue bastante bien y el Consejo Federal empezó a ponerse nervioso, porque les metía directamente el dedo en el ojo de un programa secreto que podía provocar un escándalo internacional. Quizá por eso, durante el mes de julio hicieron finalmente pública una denominada declaración de principios donde afirmaban:

“De acuerdo con nuestra centenaria tradición de valentía, este Consejo Federal considera que las Fuerzas Armadas deben recibir el armamento más efectivo para preservar nuestra independencia y proteger nuestra neutralidad, incluyendo las armas nucleares.”

–Declaración de Principios del Consejo Federal de la Confederación Helvética, 11 de julio de 1958.(Fuente)

Pero el asunto estaba ya ocasionando problemas políticos, los costes se disparaban y las dificultades tecnológicas también. Crear una industria nuclear nacional de verdad no era tan fácil como anticipó el profesor Scherrer. Impaciente, el nuevo jefe del estado mayor Jakob Annasohn se dirigió al Ministerio de Defensa el 14 de marzo de 1960 para que considerasen la posibilidad de adquirir armas nucleares completas en Estados Unidos, el Reino Unido e incluso la Unión Soviética; o, al menos, una cooperación con Francia y Suecia (que también tenía su propio programa militar). El Consejo Federal de Ministros le miró muy raro y le vinieron a responder de lo más cortésmente que si estaba loco o qué. Así quedó el tema por el momento.

Sin embargo, el 10 de octubre de 1960, el reactor Diorit alcanzó la primera criticidad y comenzó a funcionar. Trabajosamente, a un coste monumental, Suiza estaba cada vez más cerca de desarrollar su propia industria nuclear. Y sus propias armas atómicas.

El escándalo de los Mirage.

Hawker Hunter Mk.58 de la Fuerza Aérea Suiza.

El mejor avión de combate con que contaba la Fuerza Aérea Suiza mientras se planteaba hacer bombas atómicas era el Hawker Hunter Mk.58 (en la foto, durante una exhibición reciente), un caza táctico subsónico de limitada autonomía totalmente inadecuado para operaciones de bombardeo profundo. Estuvo en servicio desde 1958 hasta 1994. Imagen: Wikimedia Commons. (Clic para ampliar)

Como ya te he contado alguna vez en este blog, si quieres una fuerza nuclear, crear tus propias armas atómicas es sólo una parte del problema. Otra parte consiste en encontrar una manera de llevarlas hasta su blanco de manera más o menos efectiva. Eso, en la práctica, añade dos dificultades nuevas. La primera es que no te vale un petardo cualquiera: tienes que miniaturizarlas para que quepan en una bomba de aviación o en la cabeza de un misil, lo que requiere un grado significativo de sofisticación tecnológica. La segunda es conseguir el avión o el misil de marras.

Fabricar un misil de medio o largo alcance con capacidad nuclear estaba (y sigue estando) totalmente fuera de las capacidades de Suiza y quienes tienen no ponen los buenos a la venta. El desarrollo de esta clase de misiles exige, básicamente, un programa espacial o algo muy parecido. En cuanto a su aviación, también estaba (y, por cierto, sigue estando) totalmente obsoleta, además de ser minúscula. En África hay fuerzas aéreas notablemente más poderosas. Cosas de los impuestos bajitos y tal.

En fin, que lo del misil era imposible por completo y a principios de los ’60 la Fuerza Aérea Suiza no sólo estaba anticuada: era ridícula. De hecho, ni siquiera existía como tal. Era una sección del Ejército de Tierra. Mientras las potencias estrenaban sus F-4 Phantom, sus MiG-21 y sus Mirage III, todos ellos capaces de volar al doble de la velocidad del sonido o más –entre muchas otras cosas–, los suizos se apañaban con cosas británicas de posguerra como los de Havilland Vampire / Venom y los Hawker Hunter, que ni siquiera eran supersónicos. Es que tenían también aspiraciones aeronáuticas nacionales, ¿sabes?, con prototipos como el N-20 y el P-16, obsoletos incluso antes de terminarlos. De todos ellos, el único que valía para algo en esas fechas era el Hunter, un caza subsónico ligero con capacidades de ataque táctico más o menos equivalente al Super Sabre americano o al MiG-17 soviético. Pero para misiones de penetración y bombardeo nuclear profundo, no pasaba de chatarra.

Así que decidieron actualizarse. Y, con el proyecto de fabricar armas atómicas ya en mente, querían un avión supersónico de altas prestaciones que fuese capaz de transportarlas “hasta Moscú” (¡cómo no…!) Para ser exactos, cien de ellos. Probaron el Saab 35 Draken sueco, los Lockheed F-104 Starfighter y Grumman F-11 Tiger estadounidenses, el Fiat G.91 italiano y el Dassault Mirage III francés. De todos ellos, el que más les gustó fue el Mirage. Además, se los dejaron muy bien: 871 millones de francos suizos por las cien unidades, con electrónica estadounidense y nuevos sistemas de radar, guerra electrónica y ayuda a la penetración. Encima, la célula y los motores se construirían en Suiza bajo licencia, dando así un empujón a la atrasada industria aeronáutica helvética. Un buen negocio. En 1961 el Consejo Federal asignó el presupuesto y se pusieron a ello.

Pasó lo de costumbre con los productos Dassault: los costes reales se dispararon. Además, la industria aeronáutica suiza estaba efectivamente tan obsoleta que no era capaz de producir ni las células ni los motores con la rapidez y calidad necesarias. Apenas tres años después, en 1964, el Consejo Federal tuvo que pedir al Parlamento un crédito adicional de 576 millones de francos, sumando un total de 1.447 millones. Eso era una fortuna en aquella época y el Parlamento dijo que ni hablar. Al final lo zanjaron con 1.021 millones… pero por sólo 57 aviones en vez de los cien originales.

Dassault Mirage III de la Fuerza Aérea Suiza.

El Dassault Mirage III con el que tuvieron que quedarse al final. De los cien previstos, sólo pudieron completar 57, y parte de ellos con problemas de calidad (que fueron subsanados posteriormente.) Esta “fuerza mínima” resultaba insuficiente para operaciones de bombardeo profundo contra la URSS y de hecho se dudaba si bastaría para defender el propio espacio aéreo suizo. Foto: Wikimedia Commons. (Clic para ampliar)

Como Suiza no dejaba de ser un país serio, en el proceso dimitió mucha gente, desde el ex-Presidente, Miembro del Consejo Federal y Ministro de Defensa Paul Chaudet hasta el jefe del Estado Mayor Jakob Annasohn que te mencioné más arriba (sí, el que quería comprar armas nucleares por ahí.) Crearon una comisión de investigación parlamentaria (una de verdad, que en los países serios es una cosa muy seria), reorganizaron el Ministerio de Defensa de arriba abajo, multiplicando los controles, y se replantearon la política de defensa en su conjunto. Fue tan gordo para los estándares de allí que se le llamó el escándalo de los Mirage. Aquí ya sabemos que habría sido alguna cosilla de esas por las que no pasa nada, no dimite nadie y además vuelven a sacar mayoría absoluta en las siguientes elecciones. Por no mencionar el chiste de la comisión parlamentaria.

El caso es que al final se quedaron con 57 aviones en vez de 100, parte de los cuales presentaban problemas de calidad en la producción. Esa era una fuerza muy justa, muy por debajo y más cara de lo previsto, ya no para atacar Moscú, sino para simplemente defender el espacio aéreo suizo en caso de guerra.

Pese a ello, algunos seguían hablando de bombas atómicas y ataques estratégicos profundos. El 4 de mayo de 1964, en pleno escándalo de los Mirage, un documento (entonces) secreto de la comisión de estudio para la posible adquisición de armas nucleares propias mencionada más arriba proponía 50 bombas de aviación, con una potencia entre 60 y 100 kilotones cada una. También desarrollaron planes para realizar pruebas nucleares subterráneas en grutas alpinas. Sin embargo, los costes se multiplicaban: otro documento confidencial hablaba de 720 millones de francos suizos a lo largo de 35 años si las hacían de uranio altamente enriquecido y hasta 2.100 millones en 27 años si optaban por el plutonio, que permite construir armas más ligeras, potentes y sofisticadas.

Pero, ¿de dónde iban a sacarlas, si sólo contaban con dos reactores primitivos bajo control de potencias extranjeras nada favorables a la idea de ampliar el club nuclear? Bueno, es que para entonces ya contaban con un tercero. Uno mucho más avanzado, de fabricación exclusivamente nacional, metido en una caverna entre los Alpes y el Jura: la central nuclear experimental de Lucens.

La central nuclear experimental de Lucens.

La central de Lucens surgió de tres proyectos distintos para la producción de energía eléctrica civil. El primero se remonta a 1956, cuando un profesor del Instituto Federal de Tecnología de Zúrich sugirió sustituir la anticuada planta de calefacción urbana de la ciudad por una nueva, nuclear, que suministrara tanto agua caliente como electricidad. Este proyecto fue avalado por “el Consorcio”, una agrupación empresarial privada constituida en torno a la importante firma industrial Sulzer de Winthertur. Sin embargo, este “Consorcio” carecía por sí solo de la capacidad científica para emprender una obra así.

Lucens, Suiza.

Lucens, Cantón de Vaud (distrito de La Broye-Vully), Suiza. La central se instaló en una caverna a apenas dos kilómetros de la localidad, según se baja por la carretera 1 en dirección a Lausana. Foto: Wikimedia Commons. (Clic para ampliar)

La segunda idea, planteada aproximadamente al mismo tiempo, fue propuesta por las compañías eléctricas Atel, FMB, NOK y EOS. Constituyeron la sociedad Suisatom AG para promover una central nuclear que produjera energía eléctrica puramente, en el río Aar, cerca de Villigen, o sea justo al lado de los reactores Saphir y Diorit. Pero pensaban comprar el reactor a la compañía estadounidense General Electric, con lo que no habría sido un proyecto estrictamente nacional.

Y la tercera, también de las mismas fechas, se originó en un grupo romando llamado Enusa (Énergie nucléaire SA, sin ninguna relación con la ENUSA española.) Enusa tenía un proyecto más definido, realista y alcanzable desde el punto de vista tecnológico: construir una central nuclear experimental en una caverna del cantón de Vaud que tenía buenas características geológicas, con planos estadounidenses pero de fabricación nacional, que sentara las bases para luego desarrollar centrales mayores y mejores. No obstante, a Enusa le faltaba el dinero y parte de la tecnología para embarcarse por cuenta propia.

En 1961, el gobierno federal suizo sugirió a estas tres sociedades que aunaran sus esfuerzos en torno al proyecto más factible (y menos susceptible de “injerencias extranjeras”): el de Enusa en Lucens (Vaud). Pero en vez de usar planos americanos, sería totalmente de diseño y construcción suiza. A los tres grupos les pareció buena idea y en julio del mismo año fundaban la Sociedad Nacional para la Promoción de la Técnica Atómica Industrial (SNA), presidida por el ex-Presidente de la Confederación Hans Streuli. El propósito era crear una central nuclear de características tecnológicas avanzadas que constituyera el penúltimo paso para alcanzar la tan ansiada industria nuclear nacional. Hasta donde yo sé, ninguna de esas empresas era totalmente consciente de que tras ese proyecto se ocultaba un afán de investigación militar (aunque también habrían tenido que hacerse un poco los idiotas para alegar completa inconsciencia.)

Optaron por un diseño con combustible de uranio muy ligeramente enriquecido (al 0,96% en vez del 0,7% natural), moderado con agua pesada y refrigerado por dióxido de carbono: lo que viene siendo un HWGCR. Sus 73 elementos de combustible se parecían mucho a los de las centrales Magnox británicas y UNGG francesas (como Vandellós-1), moderadas con grafito pero también refrigeradas por gas (GCR). Esta es una tecnología especialmente apta para producir plutonio militar en cantidad (de ahí salió el que usaron en las primeras armas nucleares de ambos países.) Generaría 30 megavatios térmicos, de los que se obtendrían 8,3 megavatios eléctricos. La disposición de la central era como sigue:

Esquema de la central nuclear experimental de Lucens, Suiza.

Esquema de la central nuclear experimental de Lucens. Leyenda: 1.- Caverna del reactor. 2.- Caverna de maquinaria. 3.- Galería de acceso. 4.- Sistema de aire acondicionado. 5.- Edificio de explotación. 6.- Estación de ventilación superior. 7.- Chimenea de ventilación. Imagen: Inspección Federal para la Seguridad Nuclear, Suiza. (Clic para ampliar)

Construcción de la central nuclear experimental de Lucens, Suiza.

Dos etapas de la construcción de la central nuclear experimental de Lucens. Fue excavada “de dentro afuera” y ensamblada entre 1962 y 1965, pero los distintos problemas que surgieron extendieron el proceso hasta principios de 1969. Imágenes: Inspección Federal para la Seguridad Nuclear, Suiza.

Las obras se iniciaron el 1 de julio de 1962, excavando la galería de cien metros para penetrar en la montaña. Cuando la gente de la zona se enteró de lo que le había tocado en suerte, hubo bastante oposición. Fue entonces cuando el ex Presidente de la Confederación metido ahora a presidente de la SNA quiso tranquilizarles con esa frase tan molona que encabeza el artículo, y que ha quedado para la posteridad: “Una instalación como la Central Nuclear de Lucens no estalla, porque no puede estallar.”

La buena idea, que al final resultaría ser salvífica, fue meterla dentro de una caverna. La mala, todo lo demás. Suiza se había quedado muy atrás en materia nuclear a esas alturas. Mientras ellos excavaban y construían laboriosamente su centralita experimental de 8 megavatios eléctricos (MWe), las superpotencias atómicas estrenaban sus prototipos de reactores de segunda generación con capacidades superiores a los 200: General Electric de los Estados Unidos había inaugurado el BWR-1 en Dresden, Illinois (1960, 210 MWe)  y la URSS daba los últimos retoques al VVER-210 (1964, Novovoronezh, 210 MWe). El Reino Unido, Canadá y Francia les pisaban los talones con tecnologías muy prometedoras y grandes inversiones. Hasta Suecia, que aún se mantenía en la carrera por la bomba (si bien ya resoplando…), completaba el R-3 de Ågesta con 12 MWe: un 50% más.

La construcción no fue mal: Lucens quedó terminada en mayo de 1965, menos de tres años después. Pero durante el proceso se hizo evidente que necesitaría un largo periodo de prueba y ajuste antes de ponerla en servicio. Entonces, la compañía eléctrica NOK se dejó ya de mandangas nacionales y encargó un reactor nuclear PWR a Westinghouse de los Estados Unidos, con 380 MWe de potencia. Poco después, les pidió otro. Así nació la central de Beznau, la primera que produjo verdaderamente energía eléctrica en Suiza y la más antigua del mundo que sigue actualmente en servicio.

Los historiadores siguen discutiendo hasta qué punto la instalación de Lucens estaba concebida para uso civil o militar. Lo más probable es que fuera un reactor de investigación de doble uso. Según las opiniones más extendidas, el plutonio militar se habría producido en Diorit (es un proceso relativamente sencillo) y la investigación puntera se realizaría en Lucens, mucho más sofisticada. La tecnología de Diorit daba para pergeñar primitivas bombas atómicas, del tipo de Nagasaki o poco más. Por el contrario, la ciencia a desarrollar en Lucens permitiría el desarrollo de verdaderas armas nucleares avanzadas para su tiempo, a un nivel similar al de Israel. Es opinión de este que te escribe que Diorit era la fábrica y Lucens el laboratorio para crear una verdadera industria nuclear. En todo caso, los reactores de Diorit y Lucens eran las claves para que Suiza pudiese tener un programa atómico totalmente nacional, fuera para uso civil o militar.

Elemento de combustible nuclear Magnox

Elemento de combustible nuclear Magnox, muy similar a los utilizados en la central experimental de Lucens. Imagen: Wikimedia Commons. (Clic para ampliar)

El siniestro.

El 16 de noviembre de 1966 tuvieron el primer susto. Mientras probaban un elemento de combustible para Lucens en el reactor Diorit de Würenlingen, se les fundió el uranio y parte de la funda de magnesio, provocando una parada de emergencia. La investigación determinó que se había debido a un aumento de potencia demasiado rápido y recomendaron que en Lucens se variase la potencia más despacito. El informe también sugería que esas barras de combustible tipo Magnox no eran muy de fiar porque presentaban problemas de corrosión y peligro de incendio. Pero a esas alturas, con la central terminada, ya no podían echarse atrás.

La central nuclear de Lucens alcanzó su primera criticidad el 29 de diciembre de 1966. Entonces se encontraron con numerosos fallos, sobre todo en el circuito de refrigeración por dióxido de carbono (gas), que exigieron otros diecisiete meses de cambios y ajustes. En particular, los dos ventiladores que debían asegurar la circulación del dióxido de carbono resultaron extremadamente problemáticos. Estaban lubricados por agua y, aunque en los bancos de pruebas habían funcionado bien, en condiciones reales el agua se infiltraba al circuito de gas refrigerante. No fue hasta mayo de 1968 que lograron mantenerla funcionando durante diez horas a dos terceras partes de la potencia nominal. Entonces, la autoridad nuclear suiza transfirió la explotación a la compañía eléctrica EOS para que comenzaran a operar.

No hubo forma. En el mes de octubre, durante las pruebas finales, volvió a infiltrarse agua en el circuito de refrigeración. Durante el siguiente mes y medio cambiaron los ventiladores y EOS obtuvo el permiso definitivo de explotación el 23 de diciembre.  No obstante, la autoridad de seguridad nuclear suiza insistía en que las barras de combustible tipo Magnox eran muy delicadas, y que debían operar la central de 8 míseros MWe en el régimen más suave posible. Mientras, las superpotencias nucleares andaban ya peleándose con la barrera de los 500 MWe por reactor. Por su parte, Suecia se rendía ya: firmaron el Tratado de No-Proliferación, nunca acabaron su reactor R4 con el que pensaban producir plutonio militar y encargaron un reactor BWR puramente civil para la central de Oskarhamn.

Pero los suizos siguieron intentándolo, si bien para entonces la idea de producir armas nucleares iba quedando reducida a poco más que un sueño –o una pesadilla–. Estados Unidos y la Unión Soviética iban ya por los misiles balísticos intercontinentales de segunda generación con cabezas termonucleares en el rango del megatón, como el Minuteman II o el UR-100. Simplemente, se habían quedado fuera de juego. Aún así, cuando el nuevo ministro de Defensa Nello Celio quiso finiquitar el asunto, se encontró con fuerte oposición por parte del Estado Mayor y los sectores más patrioteros y halcones. Tan tarde como en ese mismo año de 1968, un nuevo plan hablaba de asignar entre 100 y 175 millones de francos suizos para un programa que produciría 400 cabezas nucleares de uranio quince años después. El mismo día en que se abría a la firma el Tratado de No-Proliferación Nuclear (1 de julio de 1968) en Londres, Washington y Moscú, Celio se pasó al Ministerio de Finanzas. Como si dijese “yo no quiero tener nada que ver con esta chaladura.”

El arranque definitivo de la central nuclear de Lucens fue programado para el 21 de enero de 1969, en torno a la medianoche. Muy, muy despacito, para no dañar esas barras de combustible Magnox tan delicadas. La primera criticidad se alcanzó a las 04:23 de la madrugada. Poquito a poquito, siguieron aumentando la potencia, con el propósito de alcanzar el 100% y conectar por fin los generadores a la red eléctrica en algún momento del día siguiente. Sobre el mediodía, superaron el 25% de la potencia térmica. Poco antes de las cinco y cuarto de la tarde pasaban del 40%, sin que los problemas que les habían plagado durante todos esos años se presentasen a molestar.

De pronto, a las 17:20, la central entró automáticamente en parada de emergencia y cerró las válvulas de ventilación exterior sin que los operadores de la sala de control supiesen por qué. A los pocos segundos se produjo el primer estampido, muy violento. Los operadores, que estudiaban los instrumentos con desconcierto y miedo, perdieron súbitamente todas las indicaciones del núcleo del reactor. Pero no las de radiactividad en la caverna, que superó los 100 roentgen/hora (aprox. 1 Sv/h) mientras se escuchaba una segunda explosión aún más fuerte y luego otras más pequeñas junto a un inquietante silbido durante otros quince minutos más, conforme la presión del circuito primario caía de 50 atmósferas a 1,2. Sólo los miles de toneladas de roca que envolvían la instalación y el sellado automático de las válvulas de emergencia evitaron que la radiación saliese de ahí.

Sala de control de la central nuclear experimental de Lucens, Suiza.

Sala de control de la central nuclear experimental de Lucens, Suiza, durante la fase de pruebas. Estaba severamente infrainstrumentada, lo que impidió al personal comprender lo que sucedía hasta que ya fue demasiado tarde. Foto: Biblioteca de la EPF-Zúrich. (Clic para ampliar)

Pero para entonces ya quedaban pocas dudas de que el reactor nuclear de Lucens, la última esperanza de Suiza para crear su propio programa atómico nacional, se les acababa de ir. A las 17:58, los operadores encendieron el sistema de ventilación de emergencia, provisto con filtros de yodo, para reducir los niveles de radiación en la caverna. A las 18:15, comenzaron a ponerse los trajes y máscaras de protección. A las 18:20, cerraron toda la ventilación, sellando así efectivamente el reactor o lo que quedaba de él. Por fortuna, apenas escapó radiación al exterior y los trabajadores tampoco resultaron significativamente afectados. Sólo se fugó una cantidad minúscula de tritio, que es un isótopo del hidrógeno y tiende a colarse por todas partes. O eso dicen. Por lo demás, la piedra impidió la catástrofe.

La investigación.

La investigación posterior –que, por cierto, se tomó más de diez años– puso en evidencia numerosos fallos de concepto, diseño, implementación y operación de la central. De todos ellos, el más grave fue el que permitía las infiltraciones de agua lubricante al interior del circuito primario de refrigeración por dióxido de carbono hasta el extremo de humedecer las barras de combustible nuclear tipo Magnox, extremadamente sensibles a la corrosión.

Pese a todos los intentos que hicieron para corregirlo, este problema empeoró a partir de la infiltración y los arreglos del mes de octubre de 1968. Al parecer, tales reparaciones se realizaron con bastante humedad en el circuito y el combustible cargado, afectando gravemente a varios elementos de combustible que ya estaban “tocados” por las infiltraciones precedentes. En particular, las fundas de magnesio del elemento nº 59 se habían oxidado casi por completo; pero al menos ocho de los 73 lo estaban en mayor o menor grado, con los productos resultantes de la corrosión acumulándose al fondo de los canales de combustible en forma de orín hasta bloquear numerosos conductos del gas refrigerante.

Esquemas del reactor de la central nuclear de Lucens, Suiza.

De arriba abajo – Esquema simplificado del reactor: A.- Maquinaria de desconexión de los tubos de presión. B .- Entrada del circuito primario de refrigeración por dióxido de carbono (gas). C.- Salida del circuito primario. D.- Núcleo del reactor. E.- Maquinaria de descarga del combustible. | Distribución del reactor: 1.- Elemento de combustible. 2.- Elemento de combustible destruido (nº 59). 3.- Elemento de combustible con corrosión. 4.- Barra de control. 5.- Barra de seguridad. 6.- Barra de control de reserva. 7.- Portillo de observación. | Estructura de los elementos de combustible: A.- Columna de grafito. B.- Guía de zircaloy. C.- Tubo de presión (zircaloy). D.- Tubo exterior (aluminio.) E.- Moderador (agua pesada). F.- Refrigerante (dióxido de carbono). G.- Funda de magnesio. H.- Barra de uranio. Imágenes: Wikimedia Commons. (Clic para ampliar)

La situación se agravó aún más durante una prueba realizada el 11 de diciembre, al infiltrarse “varios litros” de agua que permanecieron en el interior del circuito primario hasta el 17 de enero, pocos días antes del arranque definitivo. A pesar de todos los problemas, o quizá precisamente por eso, nadie ordenó un repaso general del reactor durante esos últimos meses. En palabras de la Inspección Federal para la Seguridad Nuclear, cuando decidieron la puesta en marcha de la central, sus operadores “no eran conscientes de que se encontraban ya con un reactor fuertemente dañado.”

Las barras de combustible no estaban provistas con termómetros independientes para medir la temperatura del uranio en su interior. Por tanto, los operadores de la sala de control ignoraban el comportamiento térmico de cada elemento; sólo podían saber el del conjunto del reactor. Si una barra de combustible se iba, como ya había pasado durante las pruebas de noviembre de 1966 en Diorit, no tenían manera alguna de saberlo.

Así pues, cuando comenzó la puesta en marcha del 21 de enero de 1969, el reactor nuclear de Lucens tenía ocho elementos de combustible oxidados, varios canales de refrigeración se habían obturado con orín y sus operadores sólo contaban con una instrumentación bastante básica. Conforme la potencia aumentaba y con ella la temperatura, estos elementos de combustible mal refrigerados empezaron a deteriorarse y deslizarse hacia lo que a todos los efectos era un LOCA (loss-of-coolant accident, accidente por pérdida de refrigerante). Probablemente los daños graves comenzaron a producirse durante la mañana o al mediodía, cuando pasaron del 20 – 25% de potencia térmica, pero los operadores de la sala de control no podían saberlo porque carecían de la instrumentación necesaria.

Sólo el lentísimo arranque impuesto por la autoridad de seguridad nuclear impidió que reventasen mucho antes. Así aguantaron hasta las 17:20, poco después de superar el 40% de potencia térmica. Entonces, el elemento nº 59 alcanzó los 600ºC y falló por fin. Primero se derritió la funda de magnesio de las barras de combustible e inmediatamente a continuación el uranio metálico que contenían. Las columnas de uranio y magnesio fundidos empezaron a chorrear. Pero entonces el metal se inflamó, provocando un súbito incendio radiactivo dentro del reactor que saturó el dióxido de carbono refrigerante con gran cantidad de productos de la fisión altamente radiactivos. Fue este incremento brutal de la temperatura y la radiación en el circuito primario lo que provocó la parada automática de emergencia del reactor, mientras los operadores miraban a sus lacónicos instrumentos sin entender nada de nada. Un instante antes todo parecía ir bien y ahora, de pronto, estaban en SCRAM.

Sin embargo, el siniestro apenas acababa de comenzar. Por suerte dio tiempo a que se insertaran las barras de control, deteniendo así la reacción en cadena. No obstante, a los pocos segundos la mezcla de uranio y magnesio fundidos entró en contacto con el conducto de refrigeración, presurizado a casi cincuenta atmósferas. Éste estaba también ya deteriorado y, a 700-800ºC, explotó violentamente. Esta explosión hizo saltar uno de los cinco discos de ruptura del depósito de agua pesada utilizada como moderador. Al instante, 1.100 kg de agua pesada, magnesio, uranio, dióxido de carbono y productos de la fisión muy radiactivos escaparon del reactor por el boquete, contaminando por completo la caverna donde se encontraba. En la sala de control, los operadores sintieron la explosión y se asustaron al ver que la radiación en la caverna aumentaba rápidamente hacia los 100 roentgens/hora. Únicamente entonces comprendieron que el reactor estaba ahora abierto. En lenguaje de a pie, que había reventado.

La cosa no acabó ahí. Un segundo después se produjo una violenta reacción química entre el agua pesada y los metales fundiéndose a alta temperatura, lo que causó la segunda explosión, más potente que la anterior. Los cuatro discos restantes del depósito de agua pesada fallaron definitivamente y el reactor quedó destapado por completo, proyectando aún más sustancias radiactivas a la caverna. Los conductos de las barras de control se deformaron y bloquearon, pero afortunadamente éstas ya estaban insertadas gracias a la parada automática de pocos segundos antes (en caso contrario se habría producido una pérdida total de control del reactor, que ahora se quedaba completamente sin refrigeración, al despresurizarse el circuito primario de dióxido de carbono).

Las reacciones entre el agua pesada y los metales en fundición provocaron varias explosiones más durante el siguiente cuarto de hora, terminando de contaminar la caverna y de destrozar el reactor. Sólo se detuvieron cuando el circuito primario quedó despresurizado por completo, anulando totalmente la refrigeración. Sin embargo, el sistema de refrigeración de emergencia estuvo al quite. Logró mantener bajo control las barras de combustible y hasta ahí llegó la cosa.

En aquella época aún no se usaba la escala INES, que data de 1990, para catalogar la gravedad de los siniestros nucleares. Diversos estudios posteriores lo consideran a mitad camino entre un INES 3 (incidente grave) y un INES 5 (accidente de gravedad media). Tal como se relatan los hechos convencionalmente, en mi opinión estaría entre un 2 (incidente medio) en “afectación de las personas o el medio ambiente” y un 4-5 en “pérdida de control y barreras radiológicas.” La Oficina Federal de Salud Pública de Suiza cree que “el accidente de Lucens sería clasificado hoy en día al nivel 4 o 5 de la escala INES”, lo que lo sitúa en la “lista corta” de los peores accidentes nucleares de la historia.

Elemento de combustible nº 59 de la central nuclear de Lucens.

El elemento de combustible nº 59, tal como quedó después de la explosión. Imagen: Inspección Federal para la Seguridad Nuclear, Suiza. (Clic para ampliar)

Por comparación, yo tiendo a considerarlo subjetivamente un INES-4: a todas luces más grave que Vandellós-1 (1989) o la planta THORP de Sellafield (2005), considerados “treses”, pero no tanto como sólidos “cincos” del tipo del incendio radiactivo de Windscale/Sellafield (1957), el accidente de Isla Tres Millas (1979) o por supuesto el escalofriante accidente de Goiânia (1987). A mi modo de ver se parece más a Saint Laurent (Francia, 1969) o Jaslovské Bohunice (Checoslovaquia, otro HWGCR, 1979), que son “cuatros” de manual.

El informe original de la autoridad de seguridad nuclear suiza, publicado en 1979, era llamativamente “suavito” en sus conclusiones. Tanto, que despertó bastantes críticas, y no sólo entre los ecologistas y demás. En todo momento, el informe consideraba lo sucedido en Lucens una “avería” o un “incidente” sucedido por una diversidad de causas “difíciles de prever” que en ningún momento había puesto en peligro la seguridad pública porque “todos los sistemas de seguridad funcionaron como debían”. Durante las décadas siguientes, diversos análisis fueron incrementando su gravedad, aunque todos ellos coinciden en que la caverna impidió que la radiactividad escapase al exterior en cantidades significativas. Finalmente, en 2009, el Ministro de Energía y después Presidente de la Confederación Moritz Leuenberger hizo las siguientes declaraciones, él sabrá por qué:

“En 1969, Suiza escapó por poco de una catástrofe (…). La actitud oficial de aquella época se conformó con evocar un «incidente». El informe de la investigación publicado diez años después llegó a la conclusión de que «la población no estuvo amenazada en absoluto.» Pero hoy vemos que Lucens aparece en la lista de las veinte peores averías en reactores del mundo. La dimensión real de la avería fue disimulada y eludida sin comentarios.”

Las tareas de limpieza duraron más de un cuarto de siglo. Las barras de combustible fueron a parar a Eurochemic de Mol (Bélgica) y el agua pesada que se pudo recuperar, una vez descontaminada y purificada, se vendió en el mercado internacional. Seis grandes contenedores de residuos altamente radiactivos se almacenaron en la instalación junto a otros 230 con residuos de media y baja actividad. Entre 1991 y 1993 se rellenó con hormigón la caverna del reactor, y se instaló un sistema de drenaje. En 1995 declararon la instalación definitivamente descontaminada. Poco después se estableció allí un archivo del cantón. Sin embargo, los contenedores de residuos no se trasladaron al almacén temporal de Würenlingen hasta 2003. Y a finales de 2011 y principios de 2012, como te conté al principio del post, hubo una contaminación por tritio en el sistema de drenaje, aún no sé por qué.

El fin del sueño (o la pesadilla…)

Liquidador de la central nuclear de Lucens, Suiza.

Un liquidador se dispone a entrar en el área contaminada después del siniestro. Imagen: Inspección Federal para la Seguridad Nuclear, Suiza. (Clic para ampliar)

El programa nuclear suizo nunca se repuso del siniestro de Lucens. La pérdida total del reactor y los obvios problemas que ya había presentado con anterioridad les obligaban a comenzar otra vez desde cero, la idea de fabricar armas atómicas se evidenciaba cada vez más insensata y cara, y para la producción de energía eléctrica civil podían simplemente comprar centrales mucho más avanzadas donde les diese la gana (como de hecho hicieron). Se habían quedado atrás, muchos peldaños por debajo de lo necesario para convertirse en una potencia atómica incluso de segundo o tercer orden. En el mismo año de 1969, Suiza firmó el Tratado de No-Proliferación Nuclear, con sus correspondientes inspecciones y controles.

Aún así, el proyecto militar se resistió a morir. El comité vinculado al Estado Mayor siguió reuniéndose en secreto, 27 veces, hasta 1988. No obstante, fueron virando poco a poco hacia posiciones defensivas, como la protección civil en caso de ataque nuclear o con armas de pulso electromagnético. Pero mantuvieron el afán de ser una “potencia nuclear en el umbral”, es decir, un país que podría construir la bomba atómica si se pusiera a ello. En 1979, el Jefe del Estado Mayor Hans Senn aún emitió una instrucción diciendo que “en el caso de que los desarrollos políticos y tecnológicos condujeran a una evaluación totalmente nueva de la situación, [el comité] debería solicitar que se adoptaran las medidas [necesarias].”

Los desarrollos políticos y tecnológicos no fueron por ahí. El 12 de agosto de 1981, el Consejo Federal de Ministros levantaba el secreto sobre las reservas de uranio que poseía el país para ponerlas bajo el control del Tratado de No-Proliferación, transfiriendo el control sobre las investigaciones nucleares al Ministerio de Energía. En 1985, la Conferencia de Ginebra entre Reagan y Gorbachov iniciaba la congelación de la Guerra Fría. Sin embargo, todavía hubo algunas charlas privadas con alemanes y británicos, y el 31 de diciembre de 1986 el presidente del comité militar Gérard de Loes escribió una carta al Consejo de Ministros para que declarasen oficialmente que Suiza aún tenía la intención de ser una potencia nuclear en el umbral. No lo hicieron. En diciembre de 1987, Reagan y Gorbachov firmaban en Washington DC el Tratado para la Eliminación de las Fuerzas Nucleares de Alcance Intermedio. Estas armas constituyeron uno de los mayores factores de riesgo para la escalada rápida de una guerra atómica en Europa y su eliminación suavizaba bastante las cosas.

Casi sin presupuesto, sin medios, sin perspectivas realistas y sin apoyo político efectivo, ya fuera de la historia como quien dice, el comité militar acabó por solicitar su autodisolución. El 1 de noviembre de 1988, el Ministro de Defensa Arnold Koller echó discretamente la firma. Tras más de cuarenta años, el anhelo suizo de crear una fuerza nuclear moría así por fin.

Hoy en día, Suiza produce el 40% de su energía eléctrica en cuatro centrales nucleares civiles con reactores de tecnología extranjera (General Electric, Westinghouse y Areva) y tienen un reactor universitario de potencia cero, el CROCUS, en la Escuela Politécnica Federal de Lausana; todo ello, monitorizado por la Agencia Internacional para la Energía Atómica. En 2011, tras los accidentes de Fukushima, los distintos estamentos del gobierno helvético (Consejo Federal, Consejo Nacional y Consejo de los Estados) decidieron salirse de la energía nuclear por el procedimiento de no autorizar la construcción de nuevas centrales, si bien las que están actualmente en servicio continuarán haciéndolo hasta el final de su vida útil (con el primer cierre previsto en 2019.) No son pocos quienes piensan que esta nueva política está más vinculada a los fabulosos costes de construcción de las centrales nucleares de nueva generación que a ningún problema de seguridad específico (ver también aquí). Si el mercado nunca creyó en la energía nuclear, la más subvencionada de la historia junto al petróleo y el gas, ahora aún menos. La iniciativa privada no construye actualmente ningún reactor nuclear en el mundo, a menos que tenga acceso al talonario del dinero público. En realidad, el 89% de los que se están haciendo pertenecen a empresas estatales o paraestatales monopolísticas.

Instalación de ojivas MIRV mod. MK21 con cabeza termonuclear W87 en un ICBM Peacekeeper, USA, 1983.

Instalación de ojivas múltiples MIRV del modelo Mk21, con cabeza termonuclear minuaturizada W87, en el bus de un misil balístico intercontinental LGM-118 Peacekeeper de la Fuerza Aérea de los Estados Unidos. Foto tomada en la Base Aérea de Vandenberg, 1983. Casi cualquiera puede pergeñar una bomba atómica, pero para plantearse en serio la guerra nuclear hay que trabajar a este otro nivel… y esta foto tiene ya más de treinta años. Imagínate lo que se mueve hoy en día. Imagen: Departamento de Energía de los Estados Unidos. (Clic para ampliar)

En cuanto a las armas atómicas, el club nuclear se ha ampliado poco desde 1969 hasta aquí. Las dos adiciones más notables son India y Pakistán, sumergidas en sus propias dinámicas de enfrentamiento, más los casos particulares de Israel (que seguramente produjo la primera en torno a 1967) y Corea del Norte. Como es sabido se sospecha también de las intenciones de Irán y, como es menos sabido, de las de Arabia Saudita. Por su parte, Sudáfrica se deshizo de las suyas y de los cuatro estados herederos de la URSS que las tenían en su territorio, sólo Rusia las conservó. Junto a Estados Unidos, Francia, el Reino Unido y China, estos son los únicos países que mantienen el afán nuclear militar. De los demás que quisieron, incluyendo a España, todos han abandonado.

Es que es muy caro, puede acarrearte muchos problemas políticos (según tu situación en el orden internacional) y mucho más difícil de lo que parece. Construir la bomba, no. Construir la bomba, como dijo el profesor Paul Scherrer de Zúrich, es relativamente fácil (aunque no tanto si quieres hacerlo sin que nadie se percate, además de trabajoso). Pero, después de tanto esfuerzo, sólo tienes una bomba gorda y contaminante. Lo diabólicamente caro y difícil es todo lo demás: la infraestructura, los vectores de lanzamiento, los sistemas de alerta temprana y defensa nuclear (porque tener armas nucleares te convierte en un objetivo nuclear ipso facto), mantenerte al día frente a oponentes tan poderosos que avanzan sin parar… a la mayoría de países normales no les sale a cuenta. Sin salirse de lo militar, con lo que te cuesta una fuerza atómica mínimamente creíble, puedes montarte un ejército convencional que dé miedo sólo de verlo. Y si hablamos de hospitales, escuelas, defensa social y demás, qué te voy a contar.


Bibliografía:

Puede que también te interese, en este mismo blog:

85 Comentarios Trackbacks / Pingbacks (23)
¡Qué malo!Pschá.No está mal.Es bueno.¡¡¡Magnífico!!! (33 votos, media: 5,00 de 5)
Loading...
Be Sociable, Share!

« Entradas anteriores Página siguiente » Página siguiente »