Archivo de agosto, 2015

Tina en el bosque de Charnia, la vida que no podía existir

El enigma del Bosque de Charnwood.

Soto de Swithland, Bosque de Charnwood (Leicestershire, UK.)

El soto de Swithland, parte del bosque de Charnwood (Leicestershire, Reino Unido.) Fue en una cantera situada en este bosque donde primero Tina Negus y luego Roger Mason, ambos de 15 años, se encontraron con algo que según el mundo entero no podía existir. Imagen: Wikimedia Commons.

Cuando era niña, Tina Negus (Reino Unido, 1941) le tomó gusto a eso de los fósiles. Es que en aquella época no había videojuegos, ni móviles, y ni siquiera muchas teles. Así que los críos salían a la calle a jugar y hacían sus travesuras, como meterse en sitios que a sus padres no les gustaban. Según sus propias palabras, Tina se aficionó jugando “ilícitamente” (vamos, que si en casa se llegan a enterar, seguramente se habría llevado una buena azotaina como era corriente por aquella época) en una cantera abandonada próxima a su domicilio en Gratham, Lincolnshire. Ahí había un montón de fósiles de amonites, belemnites y cosas así fijados a sus calizas azules del entonces llamado Liásico Superior, que desde chiquitaja cautivaron su imaginación.

Tina Negus buscando fósiles, cuando era adolescente.

Una Tina Negus adolescente buscando fósiles cerca de su casa allá por la primera mitad de los años ’50 del pasado siglo. Foto: Propiedad de Tina Negus vía trowelblazers.com

Puesto que también faltaba bastante para que inventasen Internet, y Tina era muy curiosa, su afición le llevó a la biblioteca pública local. Ahí leyó un montón de cosas sobre geología, biología, paleontología y esos rollos de científicos. El caso es que conforme se adentraba en la adolescencia, acabó bastante enterada de estos temas. Y a principios del verano de sus quince años, Tina pidió a sus padres que la llevaran al cercano Bosque de Charnwood. Ya habían estado varias veces, pero esta vez Tina no deseaba simplemente hacer picnic en un lugar hermoso como ese. En la biblioteca había leído un ensayo sobre su geología y le llamó la atención que existiese una cantera con depósitos de ceniza volcánica surgida bajo el mar, cuando aquello fue un mar. Eso era algo que Tina nunca había visto y, como además conocía muchos de los lugares mencionados gracias a las excursiones anteriores, se motivó. Así que copió todos los mapas del ensayo a mano –tampoco había fotocopiadoras– y con la excusa de ir a recolectar arándanos, convenció a sus sufridos padres de que la llevasen otra vez en junio o principios de julio de 1956; no recuerda bien la fecha exacta. Pero tuvo que ser por ahí, porque los arándanos todavía no estaban maduros.

Y para el Bosque de Charnwood marcharon. En cuanto pudo, Tina se metió por el camino de cabras que conducía a la cantera en cuestión. Durante un buen rato, se quedó flipada con aquellas rocas de color gris oscuro y tono verdeazulado, como era su gusto. Entonces sus ojos cayeron sobre algo más: uno de sus amados fósiles. Parecía una especie de hoja de helecho fosilizada, sin nervio central, sino con sus foliolos dispuestos como en zigzag. Pero había un pequeño problema. Según sus mapas y notas copiados tan cuidadosamente, la piedra donde se hallaba el fósil era precámbrica. Y todos los libros gordos y los grandes sabios y sus profesores y el mundo entero afirmaban taxativamente que la vida compleja apareció en el Cámbrico, o sea después. Aquel fósil que tenía ante sus ojos no tenía el menor derecho a existir. Faltaría más. Una forma de vida compleja antes del Cámbrico, y encima con aspecto de planta terrestre, ¡menuda idiotez!

Fósil índice de Charnia Masoni en el New Walk Museum & Art Gallery de Leicester, UK.

El fósil índice de Charnia en su roca precámbrica que observó Tina, con unos 580 millones de años de antigüedad, actualmente expuesto en el New Walk Museum & Art Gallery de Leicester, Inglaterra. Cuando Tina reparó en él, todo el mundo daba por sentado que la vida pluricelular compleja se originó en el Cámbrico, decenas de millones de años después, y esto simplemente no podía existir. Imagen: Wikimedia Commons. (Clic para ampliar)

Sólo que aquella especie de fronda estaba allí, casi mirando desafiantemente a Tina desde la profundidad del tiempo. Mucho, mucho tiempo: bastante más de medio millar de millones de años. Cuando aquel ser estuvo vivo, los días sólo duraban 22 horas y los años tenían 400 días divididos en 13 meses. El Sol y la Tierra estaban en otro lugar de la galaxia y las estrellas nocturnas eran completamente distintas de las actuales. El oxígeno todavía estaba acumulándose en el aire. Aquel bosque y aquella cantera estaban muy cerquita del Polo Sur, en el fondo de un superocéano al que ahora llamamos Panthalassa, que bañaba las costas extrañas de un único supercontinente hoy denominado Pannotia. Y dijeran lo que dijesen los libros gordos, los grandes sabios, sus profes y el mundo entero, el fósil imposible de Tina llevaba ahí desde entonces.

Tina hizo lo que hacen los buenos científicos. Como faltaban muchas décadas para que una chavala de 15 años pudiera tener un móvil con su cámara de nosecuántos megapíxeles, primero se limitó a no tocar nada. Al día siguiente, en el colegio, se acercó a su profesora de geografía para contarle que había encontrado un fósil en una roca precámbrica. La profe contestó al instante: “No hay fósiles en las rocas precámbricas.” Tina le dijo que ya lo sabía, pero ella lo había visto con sus propios ojos. Sin ni siquiera mirarla, la profe replicó: “¡Pues entonces no será una roca precámbrica!” Tina insistió: ese fósil estaba en una roca precámbrica. Su profe repitió: “Ya te he dicho que no hay fósiles en las rocas precámbricas.” Y completado así el círculo, se marchó dejándola con la palabra en la boca.

Pero Tina, a fuer de curiosa, era cabezona. Pidió una vez más a sus padres que la llevaran de nuevo al lugar. Y esta vez, un poquito obcecada, no tuvo una idea tan buena: se llevó el martillo de minero de papá. Contaremos en su defensa que seguía teniendo quince años y necesitaba saber qué era aquella cosa. Y también que tuvo el buen juicio de no dar un solo golpe cerca del fósil. Lo que intentaba era sacar el trozo de roca entero, fósil incluido, pero intacto. Por fortuna, al poco rato descubrió que aquella piedra era demasiado dura y sus martillazos apenas tenían algún efecto. Ya a la desesperada, la buena científica volvió a su sesera adolescente. Ese día les acompañaba su abuelo, que siempre llevaba encima un bloc de notas con su correspondiente lapicero. Tina le pidió un par de hojas, el lápiz, y sacó un calco del fósil como los científicos verdaderos. Con él se fue al museo local, para intentar compararlo con las piezas que tenían allí, sin ningún éxito. Repasó todos los libros de geología y paleontología a los que pudo poner las manos encima. Nada. Finalmente se cansó y, desilusionada, guardó el calco en su carpeta.

Aún intentó un último viaje al Bosque de Charnwood hacia finales del año siguiente, 1957. Entonces descubrió, para su horror, que su fósil ya no estaba. Ni el fósil ni la roca. En su lugar había marcas de agujeros de perforación y las herramientas que habían usado para extraerla. Lo único que la consoló fue que, a juicio de sus familiares, parecía un trabajo profesional y no la barbarie de algún vándalo. Supusieron que el fósil de Tina habría pasado a formar parte de la colección de alguien. Así quedó la cosa.

Aunque Tina no se olvidó de él. En 1961 se graduó en zoología, botánica y geografía en la Universidad de Reading, especializándose en zoología. Luego estuvo dos años investigando la ecología de los mejillones de agua dulce. En ese periodo, la universidad organizó un viaje al famoso Museo de Historia Natural de Londres, con sus casi 80 millones de especímenes. Tina pensó que quizá ahí encontraría la respuesta a aquel misterio de su adolescencia. Se lo repasó entero, sala por sala y era geológica por era geológica, buscando alguna pieza que coincidiera con su fósil… sin encontrar nada. Cabezota, escribió a casa para que le mandaran aquellos calcos que tomó con el bloc y el lápiz del abuelo. En cuanto los recibió, se presentó en el Departamento de Geología de su universidad a preguntar si alguien tenía alguna idea de qué demonios podía ser aquello. Al principio la miraron raro, pero entonces alguien recordó algo y le mostró un paper recién publicado por un cierto doctor Trevor Ford, de la Universidad de Leicester.

El título era, ni más ni menos, Fósiles precámbricos del bosque de Charnwood. ¡Y allí estaba el suyo! Se trataba de un descubrimiento revolucionario: ni más ni menos que uno de los dos primeros ejemplares confirmados de la biota ediacárica, formas de vida complejas decenas de millones de años más antiguas que lo asegurado por los libros gordos, los grandes sabios, los profesores y el mundo en general hasta entonces. Tina siempre tuvo razón: su fósil era un ser complejo anterior al Cámbrico y ahora se llamaba Charnia masoni, con unos 580 millones de años de antigüedad.

Molde e impresión artística de Charnia masoni.

Arriba: Molde del holotipo de Charnia masoni. Abajo: Impresión artística de cómo pudo ser cuando vivía fijada a los fondos del superocéano Panthalassa precámbrico. Imágenes: Wikimedia Commons / Andy Kerr (Clic para ampliar)

Roger Mason, descubridor oficial de Charnia masoni, a los 15 años.

Roger Mason, también de 15 años, con el primitivo equipo de escalada que usaba cuando observó a Charnia en la cantera del Bosque de Charnwood. A diferencia de la familia de Tina, su padre conocía al Dr. Trevor D. Ford del Departamento de Geología de la Universidad de Leicester y llamó su atención sobre el descubrimiento. A partir de ahí se confirmó que lo imposible era posible. Foto: © Leicester Mercury, 1957. (Clic para ampliar)

Lo de masoni era por otro chaval de 15 años, Roger Mason, igualmente aficionado a los fósiles. Un año después de que Tina lo observara por primera vez, Roger fue a practicar escalada con sus colegas a la cantera en cuestión y reparó en su extrañeza igual que Tina. Pero a diferencia de Tina, la familia de Roger tenía vinculación con el mundo académico y así su redescubrimiento llegó rápidamente a oídos del Dr. Trevor D. Ford.

El Dr. Ford se mostró escéptico al principio, pero accedió a ir a echar un vistazo y quedó atónito. E inmediatamente pasó a la acción. Así pues, el fósil no había sido retirado de la cantera por ningún coleccionista, sino por un equipo de la Universidad de Leicester dirigido por el Dr. Ford. De ahí que el trabajo fuese tan profesional. Y además del Charnia masoni también habían extraído otro fósil precámbrico, el Charniodiscus concentricus, con una forma circular que también había llamado la atención de Tina pero no le dio mayor importancia. Actualmente se encuentran en el New Walk Museum & Art Gallery de Leicester como los primeros especímenes confirmados de que la vida compleja fue posible antes de que fuese posible la vida compleja. Tina y Roger acababan de descubrir –o demostrar, como ahora veremos– un ámbito completo de la vida que existió durante decenas de millones de años, llamado la biota ediacárica.  Moraleja: mientras sigas el método científico –y eso vale para todo o casi todo en esta vida, no sólo para las “cosas científicas”– nunca te fíes excesivamente de los libros gordos, los grandes sabios, los profesores, el mundo en general y los adultos en particular. Ser más viejos no nos hace ni más inteligentes ni necesariamente más sabios y a veces somos unos cretinos bastante soberbios. Unos idiotas, vamos.

La biota ediacárica.

Charnia masoni y Charniodiscus concentricus sólo son dos ejemplos de una vasta vida marina compuesta por seres pluricelulares complejos que aparecieron poco después de la descongelación del periodo Criogénico (sobre todo a partir de la llamada explosión de Avalon) y comenzaron a difuminarse poco antes de principios del Cámbrico; es decir, coincidiendo a grandes rasgos con el periodo ediacárico (hace entre 635 y 542 millones de años.) Con alguna excepción que luego veremos, fueron los primeros seres complejos que aparecieron y perduraron largo tiempo sobre la faz de este planeta. Algún autor objeta al uso de la expresión biota ediacárica como si fuesen seres aparte del proceso evolutivo global de la vida terrestre y prefiere restringir el término a la mera datación estratigráfica. Sea como fuere, muchos de estos seres presentan características que los distinguen de la vida que seguimos adelante a partir de la explosión cámbrica.

Hay que reseñar que Tina, Roger y el Dr. Ford no fueron los primeros en darse cuenta de que algo raro pasaba con la supuestamente imposible vida compleja precámbrica. De hecho, el Ediacárico toma su nombre de las colinas de Ediacara, al Sur de Australia. Ahí fue donde en 1946 el geólogo Reg Sprigg encontró unas ciertas “medusas” en un yacimiento que parecía muy anterior al Cámbrico. Tampoco él había sido el primero. Ya en 1868, el escocés Alexander Murray había hallado fósiles de Aspidella terranovica en eso, Terranova, por debajo del entonces denominado “estrato primordial.” En 1933, el alemán Georg Gürich se topó con fósiles de Rangea schneiderhoehoni en la Formación Nama de la actual Namibia, donde también han aparecido restos de Ausia fenestrata. Pero como la creencia en que la vida compleja surgió a partir del Cámbrico estaba tan firmemente establecida, estos hallazgos se disputaron por todas las vías: que si la datación de los estratos no estaba clara, que si había habido contaminación de las muestras, que si en realidad no eran fósiles sino formaciones minerales curiosas, etcétera. Lo habitual en estos casos.

Fondo marino de Ediacara en el Precámbrico.

Impresión artística del fondo marino precámbrico que hoy en día son las colinas de Ediacara, Australia, que dan nombre al periodo ediacárico. Imagen: Wikimedia Commons. (Clic para ampliar)

La importancia del descubrimiento de Tina, Roger y el Dr. Ford radica en que fue un auténtico manotazo que tiró todas estas objeciones por la borda. La geología de las Midlands británicas está extremadamente bien documentada y datada, el fósil permanecía prístino en su roca precámbrica y claramente Charnia masoni fue alguna clase de ser vivo, se ponga como se ponga quien se ponga. Qué clase de ser vivo es cuestión aparte. La biota ediacárica es tan distinta de lo habitualmente conocido y tan diversa –se han encontrado muchísimos seres más, a cuál más peculiar– que se sigue discutiendo qué son exactamente. Para ser más rigurosos, cuál es su clasificación taxonómica. Distintos especialistas han intentado encuadrarla prácticamente en todas las categorías, desde los cnidarios (o sea, animales) y los metazoos basales hasta las algas, los hongos, los líquenes, los protistas gigantes (al estilo de los Xenophyophorea), los organismos coloniales e incluso en su propio filo o reino aparte. Actualmente se tiende a pensar que fueron alguna clase de metazoos, o sea animales, pero sumamente difíciles de emparentar con quienes vinimos después.

Dendrogramma enigmatica.

Dendrogramma enigmatica. La muestra fue recogida en 1986 a entre 400 y 1.000 metros de profundidad en el talud continental del Estrecho de Bass que separa Australia de Tasmania. En 2014 fue identificada, o más bien “no-identificada”, como una especie animal sin relación taxonómica aparente alguna con ninguna otra conocida pero presentando similitudes con algunos medusoides ediacáricos. (Just, J.; Kristensen, R. M.; Olesen, J.: “Dendrogramma, New Genus, with Two New Non-Bilaterian Species from the Marine Bathyal of Southeastern Australia (Animalia, Metazoa incertae sedis) – with Similarities to Some Medusoids from the Precambrian Ediacara.” PLoS One, 3 de septiembre de 2014; 9(9):e102976. doi: 10.1371/journal.pone.0102976. eCollection 2014.) (Clic para ampliar.)

En suma, que ni puñetera idea. Para acabar de arreglarlo, en 2014 se identificaron unos bichitos marinos en forma de seta llamados Dendrogramma que parecen compartir algunas características con seres ediacáricos como Albumares brunsae, Anfesta stankovskii y Rugoconites. Aunque se les ha ubicado en el reino animal, tampoco saben muy bien dónde más colocarlos en el “árbol de la vida.” El nombre se les puso por la disposición de sus canales digestivos, que recuerdan a un dendrograma… y punto. Así que por el momento son los únicos miembros de la familia… eso, Dendrogrammatidae. Para todo lo demás, son incertae sedis, o sea que quién sabe. Van a intentar secuenciarles el ADN, a ver si nos enteramos de algo más. Encuentro de lo más acertado el “apellido” que le han adjudicado a uno de ellos: Dendrogramma enigmatica, porque representan un auténtico enigma. Y eso que estamos hablando de seres perfectamente existentes hoy en día y que podemos estudiar (y están estudiando) con todo detalle. Ahora imagínate la pesadilla de catalogar a unos seres todavía más enigmáticos, quizá emparentados con estos o quizá no, que desaparecieron hace como medio millar de millones de años dejándonos sólo un puñado de fósiles.

Como te decía, la biota ediacárica parece presentar una serie de características distintivas comunes, o eso nos parece con el material que ha quedado para trabajar. Para empezar, fueron todos seres marinos, entre otras cosas porque –con permiso de estas personas– en la tierra y el aire no había aún ningún ser vivo complejo. Pero no, no es sólo por eso: todos los fósiles han aparecido en estratos que permanecieron sumergidos durante el Ediacárico, aunque exista alguna opinión divergente. Y además bastante sumergidos, por debajo de la zona fótica (o sea, la capa del mar que puede atravesar la luz solar), así que no pudieron usar la fotosíntesis. Pueden presentar casi cualquier clase de simetría, incluyendo simetría bilateral como nosotros, o ninguna.

Algunos como Funisia dorothea pudieron reproducirse sexualmente. Dado que en su época los depredadores macroscópicos aún no existían, la respetable agencia Reuters calificó su existencia como muy agradable, imaginando que hubiesen dispuesto de un sistema nervioso capaz de apreciarlo: ningún depredador, mucho sexo. Pero creemos que la mayor parte eran asexuados; a cambio, algunos de estos últimos se reproducían de maneras francamente sofisticadas. También se ganaban la vida con gran facilidad: en su mayor parte debían ser seres sésiles, o sea que se fijaban al fondo para alimentarse del tapete microbiano subyacente o, mediante filtración, de cualquier cosa alimenticia que les pasara a través. Un lugar tranquilo para vivir, esos mares precámbricos. No obstante, Guy Narbonne opina que diversas características propias de los animales modernos fueron apareciendo en esta biota a lo largo del Ediacárico, como la movilidad (hace más de 555 millones de años), la calcificación (550 millones de años) y finalmente el comportamiento depredador (hace menos de 549 millones de años, ya aproximándose al Cámbrico.)

Cloudina carinata, fósil ediacárico terminal hallado en Extremadura.

Cloudina carinata del Ediacárico terminal (hace unos 540 millones de años) con exoesqueleto mineralizado, hallada en las dolomías del anticlinal del Ibor-Guadalupe, Extremadura. Foto: Geoparque Villuercas-Ibores-Jara.

La misma extinción de la biota ediacárica es objeto de debate. No estamos seguros de cuándo y como se marcharon estos seres exactamente. Parece que aunque la inmensa mayoría ya se habían esfumado antes de que comenzara el Cámbrico, algunas comunidades pudieron pervivir hasta el Cámbrico Medio. Y no tenemos claro si fue una extinción rápida por sus propias razones, una sustitución al ser desplazados por los seres cámbricos o lo que llaman un modelo del gato de Cheshire, en el que la progresiva desaparición de los tapices microbianos del fondo marino precámbrico los habría ido haciendo desaparecer hasta que finalmente no quedó ninguno. Se discute también hasta qué punto constituyeron un verdadero ecosistema en el sentido moderno del término; es decir, si interactuaban más o menos entre sí o cada uno estaba ahí fijado a su trocito de tapiz microbiano cual percebe a la roca ignorando por completo lo que hubiera a su alrededor. Si como dice Narbonne desarrollaron comportamientos como el movimiento y la depredación, algo de ecosistema tuvieron que tener.

Por cierto que estos seres no han aparecido únicamente en esos países donde hablan raro. Cerca de Villarta de los Montes (Badajoz)  científicos de la Facultad de Ciencias de la Universidad de Extremadura han hallado una estupenda colección de fósiles ediacáricos terminales que incluyen Cloudinas –el primer metazoo conocido con un esqueleto externo–, Sinotubulites, Namacalathus y algo que se parece a las Protolagena. Si te interesa el tema, puedes preguntar en el Geoparque de Villuercas – Ibores – Jara. Por su parte, Rusia, Ucrania, Canadá y China están plagadas. Esa vida que no podía existir estuvo repartida por todas partes durante millones de años, ahora ya sólo esperando a que un par de quinceañeros curiosos con la mirada limpia y la cabeza despejada se fijasen bien.

Cada vez más vida, cada vez más pronto.

Y es que como creo que ya te he contado varias veces, cuanto más sabemos, vemos que antes apareció la vida en la Tierra. Y la vida pluricelular también, como apunté en este otro excelente sitio.

Fósil francevillense

Uno de los fósiles francevillenses con 2.100 millones de años de antigüedad. Literalmente, no sabemos lo que fue. Pero fue. Imagen: Wikimedia Commons. (Clic para ampliar)

Pero es que incluso todo esto comienza a quedarse algo obsoleto. Ahora mismo vamos teniendo dudas de que la biota ediacárica represente la primera vez que surgieron seres complejos en este planeta. Hoy tengo el gusto de presentarte también a la biota francevillense, con… ¡2.100 millones de años de antigüedad! A ver si nos entendemos tú y yo, compi: dos mil cien millones de años es más de la séptima parte de la edad del universo. Hace 2.100 megas de años, el Sol brillaba casi un 20% menos que ahora, los años tenían 465 días divididos en 14 meses y medio y apenas comenzaba a haber oxígeno libre. El maldito uranio todavía era lo bastante rico como para encender un reactor nuclear natural con agua corriente 400 millones de años después (los materiales radiactivos van decayendo con el paso del tiempo.) Y de hecho lo hizo muy cerca de ahí, en Oklo (Gabón), a pocos kilómetros de Franceville. Por eso a la biota francevillense también se le llama gaboniontes: tanto Oklo como Franceville están en Gabón. Francia extrae uranio para sus reactores nucleares en el sector.

Sabemos todavía muy, muy poco de estos gaboniontes. Pero, al igual que pasó con Charnia, ahí están: fósiles circulares y elipsoidales de hasta doce centímetros, muy probablemente pluricelulares. En realidad, la vida pluricelular ha evolucionado al menos 25 veces independientemente en la historia de la Tierra, desapareciendo a continuación en la mayoría de las ocasiones. Lo que ya no es tan normal es que evolucione hasta crear seres macroscópicos tridimensionales de 12 centímetros. Y sin embargo, en el delta de un olvidado río paleoproterozoico, seguramente bajo una columna de agua con algo de oxígeno disuelto, estos bichos –no hay ninguna otra condenada manera de clasificarlos hoy por hoy– medraron durante una larga temporada antes de dejarnos sus fósiles en la pirita del lugar. Así que la biota ediacárica pudo no ser la primera vez que aparecieron seres complejos macroscópicos en este planeta. La biota francevillense, aunque seguramente mucho más simple, pudo adelantárseles en un millar y medio de millones de años o así.

Tina Negus y Roger Mason

Tina Negus y Roger Mason en la actualidad. Ahora ya no son ningunos quinceañeros, pero siguen haciendo lo que siempre amaron: Tina fotografiando aves y Roger con un yacimiento precámbrico a la espalda. Fotos: Birdnote Team / The Thought Stash

¿Y qué pasó al final con los protas humanos de esta historia? Bueno, pues como ya sabemos Tina se hizo zoóloga, y además poetisa, fotógrafa y pintora; ahora, ya jubilada, sigue dedicándose a esto último. Roger, el otro quinceañero que redescubrió definitivamente a Charnia, acabó siendo profesor universitario de geología y aunque jubilado también, continúa colaborando con la Universidad China de Geociencias en Wuhan.  El Dr. Trevor D. Ford, nombrado miembro de la Orden del Imperio Británico y esas cosas de los isleños, está jubiladísimo pero hace poco aún seguía organizando charlas y seminarios sobre estos temas en su Leicester natal. En 2007, Roger y el Dr. Ford invitaron a Tina a participar en uno de estos seminarios como predescubridora de ese fósil que demostró la existencia de la vida que no podía existir.

El otro protagonista, la ciencia, salió ganando como hace siempre. Los científicos, como humanos que son, pueden resultar a veces más duros de mollera. :-P Pero el poder y la grandeza de la ciencia radica precisamente en que siempre es capaz de cambiarse a sí misma y corregir sus propios errores, siguiendo el método científico, para perfeccionarse cada vez más y más y así darnos todo lo que nos ha dado, y nos dará. Y en la misma raíz de la ciencia está la curiosidad, ese observar algo que quizá muchos hayan visto pero nadie había observado antes –como seguramente muchos habrían visto el fósil del Bosque de Charnwood, empezando por quienes trabajaron en la cantera durante muchos años, pero nadie lo había observado–, pensar aquello de “¡qué curioso!” y no parar hasta descubrir lo que es y cómo funciona. La misma curiosidad que nos ha llevado a lo largo de los milenios desde preguntarnos qué demonios serían aquellas lucecitas que brillan en el cielo por la noche hasta pasear nuestras naves-robot por las proximidades de Plutón. Desde preguntarnos por qué la gente caía enferma hasta tener la mayor esperanza de vida y las menores tasas de mortalidad infantil de toda la historia de la humanidad. Desde preguntarnos qué sería el rayo y esas chispitas de las prendas de lana hasta construir los dispositivos electrónicos que estamos usando ahora mismo tú y yo. La misma curiosidad que, si no cometemos ninguna estupidez monumental por el camino, nos llevará adonde ahora mismo ni siquiera podemos imaginar.

Bibliografía:

861 Comentarios Trackbacks / Pingbacks (31)
¡Qué malo!Pschá.No está mal.Es bueno.¡¡¡Magnífico!!! (20 votos, media: 5,00 de 5)
Loading...
Be Sociable, Share!

Las ciudades que se salvaron y las gentes que no

Hace hoy 70 años, Hiroshima fue aniquilada.
El día 9, le tocó a Nagasaki.
Y para el 15, había otra bomba en camino.

Portada del memorando secreto de la 2ª reunión del Comité de Objetivos para la bomba atómica, 10-11/05/1945

Para esta entrada contamos con los documentos secretos originales del Comité de Objetivos y otra información de la época desclasificada décadas después. Imagen: Archivos de Seguridad Nacional de los Estados Unidos de América.

Nagasaki antes y después del ataque atómico

Fotografías aéreas del valle de Urakami, Nagasaki, antes y después del bombardeo atómico del 9 de agosto de 1945. Imágenes: Archivos Nacionales de los Estados Unidos. (Clic para ampliar)

Los historiadores siguen discutiendo si Japón se rindió por los bombazos atómicos de Hiroshima y Nagasaki, por la declaración de guerra soviética acordada en Yalta con los EEUU y el Reino Unido, o por una combinación de estos y otros factores. No obstante, lo que quedaría nítidamente impreso en la memoria humana para las generaciones futuras fue el abrumador poder del núcleo atómico liberado sobre esas dos ciudades hace 70 años. Pero es menos sabido que cuando Japón capituló, el día 15, había una tercera bomba en camino para lanzarla “no más tarde de mediados o finales de agosto”, dependiendo de la meteorología. Bueno, en realidad lo que estaba en camino era el núcleo de plutonio, porque el resto de componentes para ensamblar varias bombas más ya estaban esperando en la Base Aérea de Tinian (Islas Marianas), desde donde operaba el Grupo Combinado 509 de la USAAF, encargado de los ataques atómicos.

Decidiendo qué ciudades aniquilamos.

Es preciso detenerse primero en la peculiar manera como el llamado Comité de Objetivos (Target Committee) decidió los blancos para esta nueva arma. Hasta bien entrada la primavera de 1945, con la guerra en Europa ya terminando y el Proyecto Manhattan para construir la bomba atómica muy avanzado, los Estados Unidos no tenían muy claro dónde y cómo iban a utilizarla si es que todo aquel invento funcionaba. Uno de sus problemas fundamentales radicaba en que los blancos más jugosos ya estaban reducidos a cenizas por los grandes bombardeos incendiarios de los meses anteriores. Media Tokio, por ejemplo, había desaparecido. Hasta 67 ciudades japonesas estaban destruidas en mayor o menor grado, junto a un enorme número de otros objetivos. Remover ruinas con un petardazo fenomenal no tendría el mismo impacto psicológico, ni causaría el mismo daño, que desintegrar una ciudad intacta con toda su población. Además, los investigadores estadounidenses querían estudiar los efectos de un arma nuclear sobre un blanco real previamente virgen o casi. En palabras del asesor de Defensa John J. McCloy (un cargo parecido a lo que ahora sería el consejero de Seguridad Nacional), “no nos quedaban más ciudades que bombardear, más portaaviones que hundir o más acorazados que cañonear; teníamos problemas para encontrar objetivos.”

Así pues, el 27 de abril de 1945, tres días antes de que Hitler se suicidase en su búnker berlinés, este Comité de Objetivos se reunió por primera vez en el Pentágono. Presidía el general Leslie Groves, director del Proyecto Manhattan, aunque la voz cantante la llevó su asistente Thomas Farrell. Estaban también el general de brigada Lauris Norstad de la USAAF (predecesora de la actual Fuerza Aérea de los Estados Unidos) y científicos nucleares como John von Neumann o William Penney. Curiosamente, Robert Oppenheimer –director científico del Proyecto– no fue invitado y menos curiosamente, tampoco Leó Szilárd –el inventor original de la bomba atómica y otras cosas muy destructivas, pero totalmente contrario a su uso contra zonas habitadas–. En la práctica, esta reunión inicial se limitó a definir unos criterios generales y una lista provisional de objetivos, donde ya aparece Hiroshima como primera opción y Nagasaki entre las alternativas:

Lista inicial de blancos del Comité de Objetivos de los EEUU para la bomba atómica

Fragmento del memorando original de la primera reunión del Comité de Objetivos, tomado por el general de brigada Lauris Norstad de la USAAF (antecesora de la actual USAF) el 28 de abril de 1945, con la lista inicial de objetivos. Puede observarse que ya aparece Hiroshima con un “1” manuscrito al lado y Nagasaki como posible alternativa. Nótese que hay varias erratas, como “Kamasaki” por Kawasaki, “Yokahama” por Yokohama, “Osake” por Osaka o posiblemente “Shimosenka”, que no he logrado identificar. Imagen: Archivos Nacionales de los Estados Unidos.

Los criterios son todavía más interesantes, pues revelan claramente la política de selección de blancos:

  1. Deben tomarse en consideración las grandes áreas urbanas, con no menos de 3 millas de diámetro, en las zonas más pobladas.
  2. Los objetivos deben estar entre las ciudades japonesas de Tokio y Nagasaki.
  3. El objetivo debe tener un alto valor estratégico.
  4. Se considera apropiado estudiar las siguientes áreas: Bahía de Tokio, Kawasaki, Yokohama, Nagoya, Osaka, Kobe, Kioto, Hiroshima, Kure, Yawata, Kokura, Shimosenka [?], Yamaguchi, Kumamoto, Fukuoka, Nagasaki, Sasebo.
  5. El Grupo de Objetivos conjunto de la Armada y la Fuerza Aérea descartará cualquiera de estas 17 áreas que ya hayan sido destruidas.

–De las notas de la reunión inicial del Comité de Objetivos,
Archivo de Seguridad Nacional de los EEUU.

Alcance de un B-29 cargado con una bomba atómica (1.500 millas náuticas) desde la base aérea de Tinian-Norte

Alcance de un B-29 cargado con una bomba atómica (1.500 millas náuticas) desde la base aérea de Tinian-Norte, según las Notas de la reunión inicial del Comité de Blancos de 27 de abril de 1945 celebrada en el Pentágono, Washington DC (pág. 1.) La posición de Hiroshima y Nagasaki está indicada con puntos rojos. Este alcance dejaba a los bombarderos cierto margen de combustible para localizar el objetivo, realizar varios intentos o, en su caso, dirigirse al blanco alternativo. Mapa base: © Google Maps / Mapping and Distance Tools.

Es decir, desde el principio iban a por grandes áreas urbanas con mucha población, situadas entre Tokio y Nagasaki (por el alcance de los bombarderos B-29, añadiendo cierto margen), que no hubiesen sido ya abrasadas. Lo del “alto valor estratégico” es un poco más discutible; evidentemente, en tiempos de guerra, toda ciudad grande y muy poblada va a tener algo con valor estratégico (industria, un puerto, un nudo de comunicaciones, cualquier cosa), lo que a todos los efectos convierte a este tercer punto en una carta blanca para atacar cualquier localidad de buen tamaño. El hecho de que el punto de mira fuese en todos los casos el centro urbano en vez de las áreas donde pudieran estar esas instalaciones de alto valor estratégico y que buscaran el máximo impacto psicológico, como veremos más adelante, refuerza esta idea (en Hiroshima le dieron casi de lleno, en Nagasaki se les desvió debido a la nubosidad.)

La segunda reunión del Comité de Objetivos, mucho más decisiva, se celebró dos semanas escasas después, con la guerra en Europa recién terminada: el 10 y 11 de mayo de 1945. Esta vez Oppenheimer sí estaba presente; tanto, que la hicieron en su despacho de Los Álamos (el “sitio Y.”) Con él se encontraban el general Farrell (el asistente del director Groves), el coronel Seeman, el capitán Parsons, el mayor Derry y varios científicos e ingenieros, incluyendo de nuevo a Von Neumann y Penney. En el memorando de esta reunión, donde se contemplan numerosos aspectos técnicos y operacionales, ya queda claro que buscan el máximo efecto psicológico tanto en Japón como en el mundo entero y que no desean apuntar a un objetivo militar aislado:

7. Factores psicológicos en la selección del objetivo.

A. Hubo acuerdo en que los factores psicológicos de la selección del objetivo son de gran importancia. Dos aspectos de esto son:

1. Conseguir el mayor efecto psicológico en Japón y
2. Hacer que el uso inicial sea lo bastante espectacular como para que la importancia del arma se reconozca internacionalmente cuando se le dé publicidad.

B. Con respecto a esto, Kioto tiene la ventaja de que su población es más inteligente y por tanto más capaz de apreciar el significado del arma. Hiroshima tiene la ventaja de que su tamaño y la posible focalización [ocasionada por] las montañas cercanas [favorecerán que] una gran parte de la ciudad resulte destruida. El Palacio del Emperador en Tokio tiene una fama mayor pero es de menor valor estratégico.

8. Uso contra objetivos “militares.”

A. Hubo acuerdo en que para el uso inicial del arma cualquier objetivo pequeño y estrictamente militar debe hallarse en un área mucho mayor sujeta a daños [ocasionados por] la explosión, para evitar el riesgo de que el arma se pierda debido a [un mal lanzamiento.]

–Del memorando de la segunda reunión del Comité de Objetivos,
Archivo de Seguridad Nacional de los EEUU.

Fragmento de las notas de la 2ª reunión del Comité de Blancos (pág. 6), especificando que se desea el máximo impacto psicológico, que no se deben atacar pequeños blancos militares a menos que se encuentren en "un área más extensa" donde los efectos de la bomba se evidencien, y que los bombarderos deben hallarse al menos a 2,5 millas náuticas de la explosión para reducir los efectos de la radiactividad.

Fragmento del memorando de la 2ª reunión del Comité de Blancos (pág. 6), especificando que se desea el máximo impacto psicológico, que no se deben atacar pequeños blancos militares a menos que se encuentren en “un área más extensa” donde los efectos de la bomba se evidencien, y que los bombarderos deben alejarse al menos 2,5 millas náuticas de la explosión para reducir los efectos de la radiactividad. Imagen: “The atomic bomb and the end of World War II: a collection of primary sources. National Security Archive electronic Briefing Book,” nº 162 (2005-2007). Universidad George Washington, Washington D.C (Clic para ampliar)

También se evidencia que conocen sobradamente los efectos perniciosos de la radiactividad:

9. Efecto radiológico.

A. El Dr. Oppenheimer presentó un memorándum que había preparado sobre los efectos radiológicos del dispositivo. Este memorándum no se reproducirá en este resumen pero se le envía al general Groves como un documento separado. Sus recomendaciones básicas son:

1. Por razones radiológicas, ninguna aeronave debe hallarse a menos de 2,5 millas del punto de detonación (por la explosión, esta distancia debería ser mayor) y
2. Las aeronaves deben evitar la nube de materiales radiactivos. Si otras aeronaves realizan misiones poco después de la detonación, un avión de monitorización debería determinar las áreas a evitar.

10. Operaciones aéreas coordinadas.

A. Se discutió la posibilidad de proseguir el ataque con una misión de bombardeo incendiario. Esto presenta la gran ventaja de que la capacidad de lucha contra incendios del enemigo habrá sido probablemente paralizada por el dispositivo, de tal modo que podría producirse una conflagración muy severa. No obstante, hasta que se sepa más sobre los fenómenos asociados a la detonación del dispositivo, como hasta qué punto habrá nubes radiactivas, debe evitarse ninguna misión de bombardeo incendiario inmediatamente [posterior.] (…)

–Del memorando de la segunda reunión del Comité de Objetivos,
Archivo de Seguridad Nacional de los EEUU.

Finalmente, en este segundo encuentro la anterior lista de 17 objetivos queda reducida al estudio de 6, de los que al final recomiendan 4:

6. Estado de los objetivos.

El Dr. Stearns describe el trabajo que ha realizado sobre la selección de objetivos. Ha estudiado posibles blancos con las siguientes características: (1) Son objetivos importantes en una gran área urbana con más de 3 millas de diámetro; (2) Pueden ser dañados efectivamente por una detonación; y (3), es improbable que sean atacados antes del proximo agosto. El Dr. Stearns tenía una lista de 5 blancos que la Fuerza Aérea podría reservar para nuestro uso a menos que aparezcan circunstancias imprevistas. Son los siguientes:

  1. Kioto – Este objetivo es un área urbana industrial con un millón de habitantes. Es la antigua capital de Japón y mucha gente e industrias se están trasladando ahí ahora tras la destrucción de otras áreas. Desde el punto de vista psicológico tiene la ventaja de que Kioto es un centro intelectual de Japón y su población es más capaz de apreciar el significado de un arma como el dispositivo. (Calificado como objetivo AA.)
  2. Hiroshima – Este es un importante almacén del ejército con un puerto de embarque en medio de un área urbana industrial. Constituye un buen objetivo por radar y tiene unas dimensiones que podrían hacer que una gran parte de la ciudad resulte extensamente dañada. Hay unas colinas adyacentes que probablemente producirán un efecto de focalización que puede incrementar de modo significativo los daños causados por la explosión. Debido a sus ríos no es un buen objetivo incendiario. (Calificado como un objetivo AA.)
  3. Yokohama – Este objetivo es una importante área urbana industrial que hasta ahora no ha sido atacada. Sus actividades industriales incluyen la fabricación de aviones, máquinas herramienta, puertos, equipo eléctrico y refinerías de petróleo. Conforme los daños a Tokio han aumentado, más industrias se han mudado a Yokohama. Tiene la desventaja de que las áreas más importantes están separadas por una gran extensión de agua y ahí se encuentra la mayor concentración de fuerzas antiaéreas de Japón. Para nosotros tiene ventajas como un blanco alternativo para uso en caso de mal tiempo, dado que se encuentra bastante lejos de los otros objetivos considerados. (Calificado como un objetivo A.)
  4. Arsenal de Kokura – Este es uno de los mayores arsenales de Japón y está rodeado por estructuras urbanas industriales. El arsenal es importante por [contener] artillería ligera, armamento antiaéreo y materiales defensivos para cabezas de playa. Sus dimensiones son 4.100 x 2.000 pies [1.250 x 610 metros.] Debido a sus dimensiones, si la bomba fuese correctamente lanzada se obtendría la máxima ventaja de las altas presiones inmediatamente debajo para destruir las estructuras más sólidas y al mismo tiempo habría daños considerables a las estructuras más débiles situadas a mayor distancia. (Clasificado como un objetivo A.)
  5. Niigata – Este es un puerto de embarque en la costa Noroeste de Honshu. Su importancia está creciendo conforme otros puertos resultan dañados. Cuenta con industria de máquinas herramienta y es un centro potencial de dispersión industrial. Tiene refinerías de petróleo y almacenes. (Calificado como un objetivo B.)
  6. Se debatió la posibilidad de bombardear el Palacio Imperial. Hubo acuerdo en que no debíamos recomendarlo, sino que cualquier acción para este bombardeo debe proceder de las autoridades que hacen la política militar. Acordamos que deberíamos obtener información para determinar la efectividad de nuestra arma contra este objetivo.

B. Los presentes en la reunión recomendaron que la primera elección de objetivos para nuestra arma debería ser la siguiente:

a. Kioto.
b. Hiroshima.
c. Yokohama.
d. Arsenal de Kokura.

–Del memorando de la segunda reunión del Comité de Objetivos,
Archivo de Seguridad Nacional de los EEUU.

Blancos primarios iniciales para la bomba atómica establecidos por la 2ª reunión del Comité de Objetivos.

Blancos primarios iniciales establecidos por la 2ª reunión del Comité de Objetivos (pág. 5 del acta.) De izquierda a derecha: arsenal de Kokura, en la periferia Este de Kitakyushu (calificado “A”); Hiroshima (“AA”); Kioto (“AA”) y Yokohama (“A”). Puede observarse la posición de Tokio en el extremo superior derecho. Otras 67 ciudades, incluyendo Tokio, habían quedado excluidas porque ya estaban demasiado arrasadas por los grandes bombardeos incendiarios de los meses anteriores. Mapa base: © Google Maps. (Clic para ampliar)

Podemos observar así que Nagasaki ha salido de la lista primaria de blancos y ahora está encabezada por Kioto, seguida de Hiroshima (ambas con la máxima calificación: “AA.”) Un enorme punto de mira acababa de aparecer sobre la milenaria capital imperial construida en el año 793 CE, con su millón de habitantes, su centralidad cultural y su relevancia simbólica y religiosa en el sistema tradicional de creencias japonesas. Un punto de mira situado exactamente sobre su playa ferroviaria principal, justo encima de donde hoy en día se encuentra el Museo de Locomotoras de Vapor. Durante las siguientes semanas, esta fue la zona cero para el primer ataque nuclear de la historia de la humanidad:

La "zona cero" del ataque nuclear contra Kioto que nunca llegó a producirse, según un mapa de la USAAF de junio de 1945.

La “zona cero” del ataque nuclear contra Kioto que nunca llegó a producirse, según un mapa de la USAAF de junio de 1945. Puede observarse que en este caso no apuntaban directamente al centro urbano como sucedería con Hiroshima y Nagasaki, sino al nudo ferroviario principal situado en los barrios del Sur. No obstante, gran parte de la ciudad habría resultado incendiada y destruida. En todo caso, a partir de la tercera reunión se decidió abandonar esta política de apuntar a zonas específicas para dirigir el ataque directamente contra el centro urbano, con lo que las áreas históricas y de importancia religiosa y cultural de Kioto habrían sido muy probablemente aniquiladas. Imagen: Archivo de Seguridad Nacional de los EEUU. (Clic para ampliar.)

Salvando a Kioto, condenando a Hiroshima.

Henry L. Stimson

El Secretario (Ministro) de la Guerra Henry L. Stimson (1867-1950), que se emperró en que Kioto no fuese bombardeada, condenando así a Hiroshima. Imagen: Wikimedia Commons.

Entonces ocurrió algo singular: el Secretario (Ministro) de la Guerra Henry L. Stimson dijo que ni en broma. Que Kioto tenía que salir de la lista del Comité de Objetivos. Sus razones nunca han quedado claras. Suele contarse que cuando era embajador en las Filipinas, se casó y pasó la luna de miel en esta ciudad, con lo que le tenía un cariño especial; a veces la historia se escribe con letra pequeña. Obviamente sus argumentos, con los que presionó al presidente Truman una y otra vez, no fueron esos. Afirmó que un ataque nuclear contra la emblemática Kioto, en vez de empujar a los japoneses a la rendición, los electrizaría para seguir peleando hasta el fin o al menos buscar una paz separada con los soviéticos. Que en realidad no constituía un blanco estratégico tan importante. Y de hecho, llegó a convencer a Truman de que constituía un blanco “civil” por oposición a Hiroshima, que le vendió como un blanco “militar.” Incluso se negó a que entrara en la lista para los bombardeos convencionales. Puede que también pesara el precedente de Dresde, pues ya en aquellos tiempos había levantado publicidad negativa para la causa aliada como una atrocidad sin sentido. El caso es que se abrió una batalla interna entre el general Groves, partidario de mantener a Kioto como objetivo nº 1, y Stimson, decidido a sacarla por completo de la lista.

Como hemos visto en la imagen de más arriba, Kioto seguía siendo un objetivo durante el mes de junio, con los militares determinando el mejor punto para arrojarle la bomba atómica. Aunque éste quedara establecido sobre las playas ferroviarias de los distritos industriales del Sur, probablemente la ciudad entera habría quedado arrasada por una tormenta ígnea debido a los materiales de construcción típicos en el Japón del período, la cercanía de varias fábricas con abundantes materiales inflamables y los extensos parques y bosquecillos que la caracterizan (como ocurriría en amplias zonas de Hiroshima.) No obstante, el acta de la tercera reunión del Comité de Objetivos (30 de mayo) se centra en Kioto, Hiroshima y Niigata como objetivos primarios, y recomendaba un punto de mira menos selectivo:

  1. No especificar lugares [precisos] para hacer puntería; esto se determinará posteriormente en la base [de los bombarderos] cuando se conozcan las condiciones meteorológicas.
  2. Ignorar la ubicación de las áreas industriales como un blanco preciso, dado que en estos tres objetivos tales áreas son pequeñas, extendidas por los límites de las ciudades y bastante dispersas.
  3. Intentar ubicar el primer dispositivo en el centro de la ciudad seleccionada; esto es, que no sea necesario [utilizar] los siguientes 1 o 2 dispositivos para destruirla completamente. (…)

–Del memorando de la tercera reunión del Comité de Objetivos (pág. 3),
Archivo de Seguridad Nacional de los EEUU.

Fragmento del memorando de la 3ª reunión del Comité de Objetivos para la bomba atómica, donde ya se recomienda apuntar directamente a los centros urbanos.

Fragmento del memorando de la 3ª reunión del Comité de Objetivos (pág. 3), donde ya se recomienda ignorar blancos precisos de interés industrial o militar y apuntar directamente a los centros urbanos. Imagen: “The atomic bomb and the end of World War II: a collection of primary sources. National Security Archive electronic Briefing Book,” nº 162 (2005-2007). Universidad George Washington, Washington D.C.

Observamos así que, como te conté al principio, la idea de lanzar las armas nucleares contra objetivos militares o estratégicos exactos (típicamente situados en áreas más periféricas) va perdiendo fuerza en favor de aniquilar la ciudad entera atacando directamente el centro urbano; como al final se hizo en Hiroshima y se intentó en Nagasaki. En este caso, Kioto no habría recibido el bombazo en los barrios industriales y ferroviarios del Sur, sino sobre el área del antiguo palacio imperial, con el grueso de la población de un millón de habitantes concentrada alrededor. El 27 de junio, todavía aparece en la lista de ciudades que no deben ser bombardeadas por medios convencionales para que estén prístinas cuando llegue la bomba nuclear y poder así estudiar sus efectos con todo detalle.

La prueba Trinity, 16 milisegundos después de la detonación.

La prueba Trinity, 16 milisegundos después de la detonación. En ese instante, la “cúpula” tiene unos 200 metros de altura. Esta bomba, muy parecida a la utilizada después en Nagasaki, estalló a las 05:29:21 hora local del 16 de julio de 1945 en el Desierto Jornada del Muerto de Nuevo México (EEUU), con una potencia de unos 20 kilotones. Fue la primera explosión nuclear producida por el ser humano y su éxito abrió paso inmediatamente a los bombardeos atómicos contra Japón. Imagen: Gobierno de los EEUU / Wikimedia Commons. (Clic para ampliar)

Pero al final se impuso el criterio de Stimson, un político poderoso y bastante próximo al presidente Truman: Kioto salió de la lista, tanto para bombardeos nucleares como convencionales. El nombre de la antigua capital imperial va desapareciendo a lo largo de los siguientes documentos para no volver a mencionarse desde mediados de julio. Así, Kioto fue la primera ciudad que se salvó. Pero, automáticamente, el otro objetivo clasificado como “AA” pasó a ocupar la pole position para la aniquilación nuclear: Hiroshima. Población: 350.000 personas, parecida a la de las actuales Bilbao o Alicante, y civiles en su inmensa mayoría. Sobre todo, en torno al centro urbano. Y Nagasaki, con su cuarto de millón de habitantes (como Coruña o Vitoria), regresó a la lista extendida de blancos alternativos para el caso de que la meteorología impidiese bombardear los objetivos ahora primarios: Hiroshima, Kokura, Niigata.

La siguiente parte de la historia es bastante conocida, al menos a grandes rasgos, así que no nos extenderemos demasiado. Mientras Leó Szilárd y otros científicos atómicos intentan desesperadamente que la nueva arma no se use contra lugares habitados(1, 2, 3, 4, 5, 6, 7…), la dirigencia política y militar de los Estados Unidos, junto a otro buen número de científicos e ingenieros atómicos, deciden que conviene emplearla en cuanto esté disponible del modo más destructivo posible, causando así el máximo impacto sobre Japón y el mundo entero. De hecho ya un mes antes, el 15 de junio, una carta firmada por Oppenheimer, Fermi, Compton y Lawrence recomendaba su “empleo inmediato”, afirmando que “no podían proponer ninguna demostración técnica que pudiera terminar la guerra y no veían ninguna alternativa a su uso militar directo.” El impresionante éxito de la Prueba Trinity del 16 de julio –la primera detonación nuclear de la historia de la humanidad– probablemente terminó de firmar la sentencia de muerte para los blancos del Comité de Objetivos.

Iósif Stalin, Harry Truman y Winston Churchill en la Conferencia de Potsdam, 17 de julio de 1945.

Iósif Stalin, Harry Truman y Winston Churchill al inicio de la Conferencia de Potsdam, 17 de julio de 1945. Fue ahí donde el día 24 Truman comunicó a Stalin, de modo algo ambiguo, que los EEUU habían desarrollado “una nueva arma con una potencia destructiva inusual.” Stalin no mostró ninguna reacción en particular y tan solo contestó que “esperaba que hicieran buen uso de ella contra los japoneses.” Resultó que estaba totalmente al tanto del Proyecto Manhattan desde sus orígenes gracias a su extensa red de espionaje y la URSS ya había comenzado su propio programa nuclear en 1943, tras la filtración del Informe MAUD británico al NKVD. Foto: United States Army Signal Corps, Harry S. Truman Library & Museum, Administración Nacional de Archivos y Registros de los EEUU. (Clic para ampliar)

El día 24, en Potsdam, Truman comunica oblicuamente a Stalin que los Estados Unidos disponen ahora de “una nueva arma con una potencia destructiva inusual.” Según el propio Truman, Stalin no se muestra ni impresionado (ni intimidado) en absoluto, y sólo contesta que “espera que hagan buen uso de ella contra los japoneses.” En aquel momento Churchill, Truman y otros presentes se limitaron a pensar que Stalin ignoraba el verdadero poder de esa nueva arma. El hecho es que Stalin estaba perfectamente al tanto del Proyecto Manhattan, por duplicado, o más. Mucho más. Su nombre en clave para los servicios de inteligencia soviéticos fue ENORMOZ (ЭНОРМОЗ, “enorme”) desde al menos finales de 1941 o principios de 1942, cuando todavía era un estudio británico. El programa soviético para hacer su propia bomba atómica se había originado en 1940 y arrancó como muy tarde en 1943, tras obtener una copia del Informe MAUD, al amparo del laboratorio nº2 de la Academia de Ciencias de la URSS (ahora conocido como el Instituto Kurchátov). Sólo había quedado ralentizado por las brutales exigencias de la guerra en Europa y sobre todo por la ausencia de minas de uranio conocidas en la Unión Soviética (luego, cuando se pusieron a ello, encontraron un montón.) Y para cuando Truman le contó el secretito a Stalin, muy posiblemente la inteligencia soviética ya tenía en su poder los planos básicos de la bomba por implosión de plutonio utilizada en Trinity y Nagasaki, así como de los reactores para producir plutonio en Hanford y la tecnología de enriquecimiento del uranio por difusión gaseosa empleada en Oak Ridge, junto a incontables detalles científico-técnicos más.

El Proyecto Manhattan y sus trabajos precedentes estuvieron plagados de espías soviéticos desde el primer momento; incluso se cree que algunos de ellos jamás fueron descubiertos y, a estas alturas, seguramente permanecerán en la oscuridad para los restos. Así que Stalin, sus servicios secretos y sus científicos atómicos no tenían ningún motivo para impresionarse. De hecho, estaban ya construyendo lo suyo y en cuanto Stalin comentó el asunto con sus asistentes en privado, el Ministro de Asuntos Exteriores soviético Mólotov (según Zhukov) propuso: “Dejémosles. Pero hay que hablar con Kurchátov y decirle que acelere las cosas.”

El coronel Paul W. Tibbets saluda desde su bombardero B-29 "Enola Gay"  poco antes de despegar de Tinian-Norte con la bomba atómica "Little Boy" hacia Hiroshima.

El entonces coronel Paul W. Tibbets (1915-2007) saluda desde su bombardero B-29 “Enola Gay” (llamado así por el nombre de su madre), poco antes de despegar de Tinian-Norte con la bomba por disparo de uranio “Little Boy” en dirección a Hiroshima. Foto: Gobierno de los EEUU / Wikimedia Commons. (Clic para ampliar)

El caso es que los Estados Unidos, tal como sugería la carta de Oppenheimer, Fermi, Compton y Lawrence mencionada antes, no tardaron ni tres semanas en emplear esta nueva arma. Inmediatamente tras la Prueba Trinity, los componentes para montar las dos primeras bombas salieron hacia la Base Aérea de Tinian: una por disparo de uranio altamente enriquecido llamada Little Boy, y otra por implosión de plutonio que bautizaron como Fat Man, muy parecida a la de Trinity. Allí ya esperaban los técnicos, ingenieros y aviadores del Grupo Combinado 509º, comandado por el entonces coronel Paul W. Tibbets Jr., para ensamblarlas y cargarlas en los bombarderos B-29. Fue este mismo coronel Paul Tibbets quien despegó muy de madrugada el 6 de agosto de 1945 en su bombardero Enola Gay, con once tripulantes más y la bomba Little Boy a bordo en dirección a Hiroshima, según lo indicado en la orden operacional nº 35 del día anterior. Les acompañaban otros dos B-29, uno con instrumentación para tomar mediciones y otro con cámaras para grabar el ataque para la posteridad. Sus blancos alternativos eran Kokura y Nagasaki.

Pero salió una mañana muy buena y los tres aviones alcanzaron Hiroshima poco después de las ocho, tal como estaba previsto, con la ciudad perfectamente visible bajo el sol matutino. Unas condiciones ideales, porque debido a las limitaciones tecnológicas de la época preferían evitar el bombardeo por radar, optando por el visual. A sus pies, 350.000 personas terminaban de desayunar o se dirigían ya a sus escuelas y trabajos, si es que no habían llegado y se disponían a comenzar el lunes (luego veremos por qué los niños seguían yendo a clase durante las vacaciones veraniegas.) Sobre las 08:09, Tibbets inició el ataque y su especialista en bombardeo Thomas Ferebee lanzó a Little Boy a las 08:15, apuntando al Puente de Aioi, justo en el centro urbano y fácil de reconocer desde sus 9.470 metros de altitud. A continuación echaron a correr a toda velocidad, para alejarse tanto como fuera posible. Un suave viento cruzado desvió la bomba unos 240 metros hasta que estalló 44,4 segundos después, a 580 metros sobre el Hospital Shima. La potencia calculada fueron unos 15 o 16 kilotones.

El centro urbano de Hiroshima aniquilado tras el ataque nuclear.

El centro urbano de Hiroshima aniquilado tras el ataque nuclear. El “Enola Gay” apuntó al puente de Aioi con su característica forma de T (en el recuadro amarillo), pero el viento desvió la bomba atómica hasta la vertical del Hospital Shima (en la cruz central.) Cada círculo tiene un radio de 1.000 pies (aprox. 305 metros.) Foto: Gobierno del Japón / Wikimedia Commons.

Fuera de Hiroshima, el primero en darse cuenta de que algo malo pasaba fue el controlador en Tokio de la radio pública japonesa NHK al constatar que la conexión con esta ciudad se había cortado súbitamente. Intentó comunicar por otra línea, pero tampoco hubo manera: la central telefónica de Hiroshima estaba totalmente offline. Unos minutos después, los servicios telegráficos ferroviarios constataron igualmente que sus líneas se habían cortado en algún punto al Norte de la ciudad. Pero desde algunas estaciones y apeaderos situadas a más distancia comenzaron a llegar informes histéricos de que había ocurrido alguna clase de enorme explosión. Entonces el Ejército intentó ponerse en contacto con su cuartel en Hiroshima, sin obtener más que el silencio por respuesta. Esto les extrañó mucho, porque todavía no les constaba que se hubiese producido ningún bombardeo importante en el sector y tampoco había ninguna gran cantidad de explosivos almacenada en la ciudad o sus cercanías. Un buen rato después mandaron un avión de reconocimiento desde Tokio para ver qué había pasado, pensando todavía que se trataba de algún tipo de accidente envuelto en los rumores habituales de los tiempos de guerra.

Cuando el avión llegó a 160 km de Hiroshima, su piloto apenas pudo dar crédito a sus ojos. Desde esa distancia podía ver perfectamente la enorme nube de humo que se alzaba de la ciudad incinerada. Al acercarse más, observó que todo el centro urbano había resultado aniquilado y numerosas áreas periféricas ardían como teas. Los supervivientes se arrastraban como podían hacia las colinas circundantes, heridos, quemados y enfermos de síndrome radiactivo agudo, en busca de precaria ayuda; la mayoría de hospitales y personal médico se encontraban en el centro o cerca del centro y habían desaparecido igualmente con la explosión (más del 90% de los médicos y el 93% del personal de enfermería perecieron o sufrieron graves lesiones.) Luego se supo que entre 60.000 y 80.000 personas murieron al momento, y al menos otras tantas durante los siguientes meses debido a sus heridas y a las enfermedades asociadas a la radiación. La dificultad para establecer la cifra inicial de víctimas con mayor precisión es que muchas, incluyendo a familias enteras, simplemente desaparecieron y no quedó nadie para preguntar por ellas.

Dieciséis horas más tarde, sobre el mediodía hora de Washington D.C., el presidente Truman informaba a los Estados Unidos y al mundo de que “una bomba atómica” “con más potencia que 20.000 toneladas de TNT” había sido lanzada sobre Hiroshima, “destruyendo su utilidad para el enemigo.” Añadió: “es un uso de la fuerza básica del universo; la misma fuerza de la que el sol obtiene su poder ha sido liberada contra quienes empezaron la guerra” (en realidad no lo era; para eso habría que esperar a las armas termonucleares.) Advirtió que “estas bombas están ahora en producción y otras más poderosas, en desarrollo.” Y amenazó: “Si [la dirigencia japonesa] no acepta ahora nuestros términos, deben esperar una lluvia de ruina (rain of ruin) desde el aire como jamás ha visto esta Tierra.”

Korechika Anami

El Ministro de la Guerra japonés y general Korechika Anami (1887-1945) fue uno de los más firmes oponentes a la rendición incondicional exigida por los aliados de Potsdam, bloqueando así durante varios días la capitulación. Sólo la aceptó cuando el emperador se la ordenó formalmente; el mismo día 15, cometió suicidio mediante seppuku (“harakiri”.) Foto: Gobierno del Japón / Wikimedia Commons.

Sin embargo, desde Japón sólo contestaron con el silencio. La razón fundamental fue que ya desde algún tiempo atrás, había en el Gobierno una lucha más o menos abierta entre partidarios de buscar la paz en distintos términos y partidarios de seguir peleando hasta el final. La aniquilación de Hiroshima no hizo más que recrudecer esta pelea, provocando un bloqueo político, con el emperador Shōwa (Hirohito) inclinado hacia el bando de la paz pero de forma un tanto dubitativa, dado que una rendición incondicional podía suponer el final del kokutai (incluyendo a la dinastía imperial.) Los científicos atómicos japoneses, que no ignoraban la posibilidad de construir armas nucleares e incluso tuvieron algún pequeño proyecto, sabían de su enorme coste y dificultad hasta el punto de que algunos dijeron que los Estados Unidos no podían tener más bombas que la ya utilizada contra Hiroshima. Esto dio argumentos al almirante Soemo Toyoda, que se radicalizó junto al duro jefe del Estado Mayor Yoshijirō Umezu y el Ministro de Defensa Korechika Anami para rechazar la rendición exigida desde la Conferencia de Potsdam. Ni siquiera la notificación soviética de que la URSS se disponía a denunciar el Pacto de Neutralidad de 1941 y declararles la guerra, tal como se habían comprometido con Estados Unidos y el Reino Unido, les hizo cambiar de opinión.

Unos por otros, no lograron alcanzar ningún acuerdo y por tanto no pudieron emitir ningún comunicado. Mientras, en Tinian, el 509º Grupo Combinado terminaba de ensamblar una segunda bomba, esta vez por implosión de plutonio, similar a la de la Prueba Trinity. Por su forma regordeta, se llamaba Fat Man.

Fat Man despegó a las 03:47 del 9 de agosto de 1945 en el bombardero Bockscar comandado por el mayor Charles W. Sweeney con Kokura como blanco primario. Si recuerdas, Kokura ocupaba el tercer lugar en la lista de blancos del Comité de Objetivos, detrás de la excluida Kioto y la devastada Hiroshima. Pero a diferencia de lo ocurrido el lunes, este jueves la meteorología no acompañó. Cuando llegaron, se la encontraron cubierta de nubes y de humo procedente del bombardeo incendiario de Yawata, atacada la noche anterior por 224 B-29. Como ya te dije, no se fiaban mucho del bombardeo por radar y las condiciones en Kokura les impidieron localizar visualmente el área del blanco. Tras varias pasadas, con la defensa antiaérea japonesa activándose y empezando a hacer cortos de combustible, decidieron alejarse hacia el blanco secundario: Nagasaki. De este modo Kokura, que había sido blanco nuclear dos veces (como objetivo secundario en el ataque del 6 de agosto y primario en este del día 9) fue la segunda ciudad condenada en salvarse.

Nagasaki también estuvo a punto de salvarse, pero al final no tuvo tanta suerte. Al llegar los bombarderos, había igualmente mucha nubosidad, tanto que tuvieron que hacer la aproximación final orientados por radar. Estaban a punto de intentar también el bombardeo por radar, del que como te dije no se fiaban mucho, cuando el capitán Kermit K. Beahan divisó Nagasaki a través de un hueco en las nubes. Pero sin poder avistar los puntos característicos del centro urbano, lanzaron al bulto, en la dirección general de la ciudad, a las 10:58 AM. Así pues, la bomba estalló con 21 kilotones de potencia a unos 2,5 kilómetros del centro, sobre el valle y distrito industrial de Urakami, cerca de la mayor catedral católica de Asia Oriental, donde se realizaba una celebración multitudinaria en ese momento por la proximidad de la Virgen de Agosto. Murieron todos los presentes junto a otras 39.000 personas en el momento, en su mayoría obreros industriales con sus familias, y 40.000 más durante los siguientes meses. No obstante, las colinas que rodeaban el valle del Urakami desviaron una parte significativa de la energía de la explosión, con lo que “sólo” resultó destruido el 44% de la ciudad. Algunas zonas situadas “a espaldas” de las colinas salieron casi intactas pese a su proximidad a la vertical de la detonación. Eso sí, donde dio, no quedó mucho que ver:

Nagasaki a la mañana siguiente del bombardeo atómico

Nagasaki a la mañana siguiente del bombardeo atómico, aproximadamente a 800 metros de la vertical de la detonación. Pueden distinguirse cadáveres calcinados entre los restos de las casas. Foto: Yosuke Yamahata vía Universidad de California en Los Angeles.

El tercer objetivo.

Ofensiva soviética a través la Manchuria ocupada por los japoneses entre el 9 y el 20 de agosto de 1945

Ofensiva soviética a través la Manchuria ocupada por los japoneses entre el 9 y el 20 de agosto de 1945, tal como habían pactado con los Estados Unidos y el Reino Unido. En menos de 3 semanas, ocuparon un área mayor que Europa Occidental donde se concentraba la mayor parte de la industria japonesa que no estaba en el propio Japón, llegando a avanzar 150 km en algunos puntos durante el primer día. Se discute si la “puntilla final” para la rendición nipona fueron las bombas de Hiroshima y Nagasaki o este desastre militar que les dejaba definitivamente aislados internacionalmente y sin recursos exteriores. Imagen: Archivos de la Federación Rusa. (Clic para ampliar)

Para acabar de estropearle el día a los japoneses, esa misma madrugada, un minuto después de medianoche, la URSS había cumplido su promesa a Estados Unidos y el Reino Unido: cuando estalló la bomba de Nagasaki, el Ejército Rojo ya estaba atacando la Manchuria japonesa por tres frentes distintos (donde, por su parte, las fuerzas japonesas habían hecho una especie de maratón para cometer tantos crímenes de guerra y contra la humanidad como fuese posible.) Calentitos y bien entrenados y equipados como venían después de ganar la guerra en Europa, los soviéticos arrasaron velozmente a las fuerzas japonesas en el continente, llegando a avanzar hasta 150 km en un solo día. El antes prestigiosísimo Ejército de Kwantung, donde se habían labrado la carrera militares del calibre del general Tōjō, se derrumbaba por horas ante las 80 divisiones del mariscal Vasilevsky. Comenzaron a correr rumores (posiblemente falsos) de que la URSS incluso pretendía desembarcar en Japón por Hokkaido, adelantándose así a la planeada Operación Downfall de los aliados occidentales.

Todo esto comenzó a poner nerviosos a los estadounidenses: el avasallador éxito de las fuerzas soviéticas en el continente (que terminarían ocupando un territorio mayor que Europa Occidental entre el 9 y el 20 de agosto), el rumor sobre su posible desembarco en Hokkaido y el hecho de que el Gobierno japonés continuara sin decir ni mú a pesar de estas rápidas derrotas y los dos bombazos atómicos empezaba a sugerir un desenlace imprevisto para la Guerra en el Pacífico. Entonces el general Curtis LeMay llamó por teléfono al coronel Paul Tibbets, el comandante del 509º Grupo Combinado que había lanzado la bomba sobre Hiroshima, para preguntarle:

Curtis LeMay

El general Curtis LeMay (1906-1990), comandante de la campaña de bombardeos estratégicos sobre Japón, incluyendo Hiroshima y Nagasaki. Posteriormente, durante la Guerra Fría, dirigiría el Mando Aéreo Estratégico de los EEUU. Imagen: Fuerza Aérea de los EEUU / Wikimedia Commons.

–¿Tienen otra de esas malditas cosas?
–Sí, señor –contestó Tibbets.
–¿Dónde está?
–Ahí en Utah.
–Tráigala aquí. Usted y su tripulación van a lanzarla.
–Sí, señor.

En efecto, los Estados Unidos contaban ya con un tercer núcleo de plutonio para ensamblar otra bomba como la de Nagasaki con los componentes disponibles en Tinian. Bueno, lo cierto es que tenían la capacidad de producir 3 núcleos al mes con los reactores de Hanford, o incluso 4 si forzaban la máquina. Estados Unidos no había desarrollado un programita experimental de armas nucleares como el que manejó sin éxito la Alemania Nazi, sino un auténtico programa industrial-militar para producirlas en serie, análogo al que después montaría también la URSS. Durante una conversación secreta entre el general Hull y el coronel Seeman (asistente del director del Proyecto Manhattan Leslie Groves) del día 13 de agosto, este último dice a Hull que puede disponer de otras siete bombas para usarlas antes del 31 de octubre, y una cada 10 días a partir de noviembre. El arma nuclear había dejado de ser un experimento de científicos. Ahora ya era un producto industrial a gran escala.

Cumpliendo las órdenes del general LeMay, el coronel Tibbets viaja a Utah en avión para recoger el tercer núcleo ya listo. Pero cuando llega a California con él dispuesto a salir hacia Tinian, el día 15, Japón anuncia que ha decidido rendirse tras un intento de golpe de estado fallido por parte de los partidarios de seguir peleando hasta el final. Así, este tercer núcleo no llegó a abandonar los Estados Unidos y nunca ha quedado claro cuál era la siguiente ciudad en la lista. Unos dicen que habrían vuelto a intentarlo contra Kokura, o quizá Yokohama. Pero el historiador Richard B. Frank, en su reconocida obra Downfall: The end of the Imperial Japanese Empire (pág. 303), menciona que los blancos originales del Comité de Objetivos habían quedado ya desfasados y habla de una nueva lista elaborada bajo el mando del general Twining, dado que “los resultados habían superado las expectativas más optimistas”:

Los siguientes 6 blancos para los bombardeos atómicos entre mediados de agosto y finales de octubre de 1945 si Japón no se hubiese rendido

Los siguientes 6 blancos para los bombardeos atómicos entre mediados de agosto y finales de octubre de 1945 si Japón no se hubiese rendido, según Richard B. Frank (1999): “Downfall: The end of the Imperial Japanese Empire.” Hiroshima y Nagasaki, ya destruidas, están marcadas con una “X”. Mapa base: © Google Maps.

  1. Sapporo.
  2. Hakodate.
  3. Oyabu (?) [posiblemente en la Prefectura de Kagawa.]
  4. Yokosuka.
  5. Osaka.
  6. Nagoya.

Llaman la atención Sapporo y Hakodate, situadas en la isla norteña de Hokkaido, porque están fuera del alcance de 1.500 millas náuticas (2.778 km) establecido en documentos previos para que el B-29 pudiese ir cargando una bomba atómica y regresar con un margen de seguridad. O bien estaban ya tan confiados como para forzar un poco las cosas (son unas 200 millas más), o consideraban la posibilidad de que los aviones, después de lanzar la bomba (y por tanto sin nada especialmente secreto a bordo), aterrizasen a repostar en territorio soviético como hicieron durante la Operación Frantic de 1944. En todo caso estás seis ciudades, más quizás Kokura, fueron las que se salvaron de las siete bombas que los Estados Unidos habrían podido producir entre mediados de agosto y finales de octubre si la guerra no hubiese terminado y hubieran tenido que desembarcar en noviembre como estaba planeado. (Otra posibilidad que se contempló fue fabricar 20 y reservarlas para abrirse paso a lo largo de la invasión, como armas tácticas en vez de estratégicas, pero esto no pasó del nivel de conversaciones privadas.)

Efectos.

Una niña de Nagasaki que perdió el cabello a causa de la radiactividad.

Una niña de Nagasaki que perdió el cabello a causa de la radiactividad. Muchas personas enfermaron y murieron durante las dos décadas siguientes debido a la radiación; no obstante, estos males no pasaron a las siguientes generaciones como se temía. Esta foto estuvo censurada hasta 1952. Imagen: Gobierno del Japón.

Tan pronto como los Estados Unidos ocuparon Japón, empezaron a realizar esos estudios sobre los efectos de la nueva arma. Serían secretos durante muchos años, pero actualmente está casi todo desclasificado. Uno de los primeros hechos que pudieron observarse claramente tras los bombardeos de Hiroshima y Nagasaki fue la enorme eficacia de las armas nucleares para causar la máxima muerte y destrucción en áreas urbanas, comparadas con los bombardeos convencionales realizados hasta entonces. Por ejemplo, los grandes bombardeos convencionales de Dresde mataron a unas 25.000 personas de 350.000 habitantes más un número indeterminado de refugiados, que podrían elevar la cifra a medio millón de personas presentes en el área; es decir, un 5% – 7% de mortalidad. La Operación Gomorra que incineró Hamburgo exigió 3.000 aviones y 9.000 toneladas de bombas para matar a unas 43.000 personas de aproximadamente 1.700.000 habitantes (según el censo de 1939): poco más del 2,5% de mortalidad. Y los apoteósicos bombardeos incendiarios de Tokio mataron a entre 75.000 y 200.000 personas del millón y medio que se encontraban en las zonas afectadas: del 5% al 13% de mortalidad, una exageración.

Por el contrario, la única bomba de Hiroshima mató instantáneamente a 60.000 – 80.000 personas de 350.000: una mortalidad del 17% – 23% y pocos meses después habían fallecido unas 166.000, elevándola al 47%. En cuanto a Nagasaki, pese a marrar el centro urbano por dos kilómetros y medio y estallar entre las colinas de Urakami que protegieron al resto de la ciudad, murieron 39.000 personas de 250.000 habitantes totales en los primeros momentos (el 15,6%) y unas 80.000 para finales de año, sumando el 32%. Esto es: incluso aquellas bombas primitivas de potencia ridícula en comparación con lo que vendría después duplicaron e incluso triplicaron las tasas de mortalidad ocasionadas por los peores bombardeos convencionales urbanos de la historia de la humanidad.

Niña cegada en Hiroshima

Esta otra niña, de Hiroshima, llegó a ver “la luz que brilla como mil soles”… y después ya no volvió a ver nada más, nunca jamás. Imagen: Gobierno del Japón.

Uno de los estudios más escalofriantes que hicieron –lógico, pero escalofriante– analizó la mortalidad entre escolares en colegios a distintas distancias del punto de detonación. Aunque en principio estaban de vacaciones veraniegas, en tiempos de guerra, y con la miseria y rápida pérdida de recursos humanos a que se enfrentaba Japón, eso de las vacaciones era muy relativo. Numerosas escuelas permanecían abiertas. El alumnado de primaria o estaba en sus casas –típicamente próximas al cole– o acudía al centro para recuperar clases perdidas durante el año. El de secundaria, a partir de los 12 o 13 años, participaba en “tareas patrióticas” relacionadas con el esfuerzo de guerra (gakuto giyutai) como abrir cortafuegos (al aire libre) o trabajar en industrias (a cubierto), todo ello cerca de sus colegios o en lugares conocidos por los profesores y directivos de los centros, que lo llevaban muy controlado. Tras los bombardeos, muchos de los profesores y directivos que habían sobrevivido hicieron grandes esfuerzos por localizar a sus alumnos o al menos, sus familias. Así que existía un registro exhaustivo de la posición de toda esta chavalería cuando estallaron las bombas, y lo que les pasó.

Como consecuencia, el volumen 6 del informe de la Comisión Conjunta para el estudio de los efectos de la bomba atómica en Japón (“efectos médicos”), elaborado por el Ejército y la Comisión de Energía Atómica de los EEUU, dedica al menos 32 de sus 256 páginas a investigar el destino del alumnado de las escuelas de Hiroshima (donde, al estallar la bomba tan cerca del centro urbano, había muchas.)  En un radio de 900 metros alrededor del eje del ataque, sólo hay supervivientes entre quienes se hallaban fuera de ese radio de 900 metros dedicándose a estas “tareas patrióticas.” Por ejemplo, en el colegio de primaria Motokawa (a 500 metros), sus 192 alumnos “en la escuela o en casa” resultaron muertos. En la 1ª Escuela Prefectural para Niñas (a 800 metros), las 174 que había dentro perecieron también. Sin embargo, entre el 1º y 2º cursos del instituto de secundaria de Koamicho, que estaban abriendo cortafuegos a distancias de entre 800 y 1.100 metros de la explosión, sobrevivieron 174 de sus 497 alumnos (es de suponer que quienes estaban a mayor distancia y “a la sombra” de edificios resistentes.) Con estos y otros datos, el área de aniquilación para esta bomba primitiva de 15 kilotones escasos quedó establecida en un radio de un kilómetro alrededor del eje del ataque.

Fragmento del listado de los colegios de Hiroshima indicando la distancia a la vertical de la detonación, la ubicación de su alumnado y el número de víctimas.

Fragmento del listado de los colegios de Hiroshima indicando la distancia a la vertical de la detonación, la ubicación de su alumnado y el número de víctimas. Imagen: U.S. Army Institute of Pathology (6 de julio de 1951): “The Report of the Joint Commission for the Investigation of the Effects of the Atomic Bomb in Japan, vol. 6. – Medical effects of atomic bombs”, pág. 26. United States Atomic Energy Commission, Technical Information Service, Oak Ridge, Tennessee.

Los investigadores estadounidenses prestaron particular atención a las alumnas del instituto femenino privado de Yasuda, porque se encontraban repartidas entre el colegio (a 1.200 metros de la explosión) y distintas “tareas patrióticas” que se extendían desde abrir cortafuegos cerca del edificio prefectural (a 900 metros) hasta trabajar en varias fábricas situadas a una distancia de entre 1.400 y 2.000 metros. O sea, dispuestas a lo largo de las zonas límite. Entre las 300 alumnas que hacían cortafuegos a la intemperie a menos de 1 km de la detonación, sólo hubo 8 supervivientes confirmadas (5 heridas graves.) En el propio instituto (1,2 km) se salvaron 30 de 75 (con 14 de ellas gravemente heridas.) Pero de las 9 que había en el dormitorio (1,6 km), sobrevivieron todas (2 heridas graves.) Y en las fábricas (1,4 a 2 km y además protegidas por la estructura de los edificios) salieron con vida 515 de las 555 que trabajaban en ellas (con 30 heridas graves y 4 sufriendo radiotoxicidad.)

Gráfica general de bajas totales y mortalidad para Hiroshima, en función de la distancia a la vertical de la detonación.

Gráfica general de bajas totales y mortalidad para Hiroshima, en función de la distancia a la vertical de la detonación. Recordemos que se trataba de una bomba primitiva de escasamente 15 o 16 kilotones. Imagen: U.S. Army Institute of Pathology (6 de julio de 1951): “The Report of the Joint Commission for the Investigation of the Effects of the Atomic Bomb in Japan, vol. 6. – Medical effects of atomic bombs”, pág. 70. United States Atomic Energy Commission, Technical Information Service, Oak Ridge, Tennessee. (Clic para ampliar)

Lógicamente, la resistencia de los edificios y la situación de las personas dentro de los mismos jugó un papel relevante para la supervivencia. Hubo un puñado de supervivientes incluso bien dentro del área de aniquilación. El caso más extremo es el de Eizo Nomura, a apenas 170 metros de la vertical de la detonación. Eizo, de 47 años, trabajaba en la unidad de racionamiento de combustibles, situada en un edificio de hormigón armado; y él, personalmente, se encontraba en el sótano buscando unos documentos. Ni en el edificio ni en sus alrededores sobrevivió nadie, pero Eizo salió básicamente ileso. Las múltiples paredes y suelos de hormigón y la tierra a su alrededor le protegieron como si fuesen una especie de refugio antiatómico casual. En sus memorias relataba cómo al escapar del edificio entre las llamas, el humo y un paraje de absoluta devastación, pudo oír el llanto de un bebé que “calló poco después.” Eizo sufrió síndrome radiactivo agudo durante los días siguientes, pero se recuperó y vivió hasta los 84 años, muriendo en 1982.

Hablando de radiación, como ya te supondrás, ha habido un intenso debate sobre los efectos a medio y largo plazo de la radiactividad sobre las poblaciones afectadas. Hiroshima y Nagasaki son los casos en los que más gente quedó expuesta a mayores cantidades de irradiación directa, de forma incontrolada y brutal, a lo largo de toda la historia (en Chernóbil, por ejemplo, las personas que absorbieron grandes dosis fueron muchas menos y todas ellas en la central accidentada o sus inmediaciones más próximas; a cambio, la cantidad de deposición secundaria fue mayor.) Como consecuencia, se han hecho cientos de estudios sobre la salud de quienes sobrevivieron a las heridas y quemaduras ocasionadas por las bombas y a la radiotoxemia aguda subsiguiente.

Exceso de muertes por leucemia atribuíbles a las dosis de radiación recibidas para supervivientes de Hiroshima y Nagasaki con respecto a la población general, 1950-2002

Exceso de muertes por leucemia atribuibles a las dosis de radiación recibidas para supervivientes de Hiroshima y Nagasaki con respecto a la población general, 1950-2002 (indicado en tono violeta más claro.) Sin embargo, teniendo en cuenta que la cohorte total de individuos estudiados ascendió a 120.000 personas situadas en áreas próximas a las explosiones (y en otros estudios llega a 200.000 personas), puede observarse que el número de muertes por esta causa es relativamente bajo (219 fallecimientos.) Gráfica: Douple, Evan B. et al (2011): “Long-term radiation-related health effects in a unique human population: Lessons learned from the atomic bomb survivors of Hiroshima and Nagasaki.” Disaster Med Public Health Prep. Marzo 2011; 5(0 1): S122–S133. DOI: 10.1001/dmp.2011.21 (Clic para ampliar)

Los resultados, aunque relevantes, no son tan catastróficos como muchos temen. Hubo un claro incremento de los casos de leucemia unos 6-8 años después de los ataques, y de cataratas y tumores sólidos durante las dos a tres décadas siguientes (incluso entre quienes habían recibido dosis muy bajas), pero no tanto como para meterle una dentellada importante a la población. No se produjo un aumento de las malformaciones congénitas ni del riesgo de sufrir cánceres entre la descendencia de los supervivientes, salvo en el caso de las embarazadas de 8 a 15 semanas en el momento de los ataques que recibieron altas dosis de irradiación directa. Puede que influyera el hecho de que ambas explosiones fueran aéreas, para aumentar el área de destrucción, pero generando por tanto mucha menos contaminación secundaria que las detonaciones en superficie (las cuales proyectan grandes cantidades de material activado a la atmósfera.) Hoy en día Hiroshima y Nagasaki, lejos de ser eriales radiactivos, son dos ciudades perfectamente habitables donde los niveles de radiación apenas se distinguen de la radiactividad natural y sus habitantes presentan un estado de salud similar al del resto de Japón. Por fortuna, los peores temores no se cumplieron, al menos en el largo plazo.

Una coletilla poco conocida es que la Academia de Ciencias de la URSS desplegó un equipo en el área de Vladivostok, a unos mil kilómetros de distancia, para tomar mediciones radioisotópicas del aire que llegaba desde las ciudades japonesas bombardeadas. Aunque registraron unas cifras muy bajas, al analizar su composición, pudieron confirmar que las bombas reales coincidían con los datos de inteligencia que habían ido recibiendo durante todos esos años. Así, los bombardeos de Hiroshima y Nagasaki, en vez de intimidar a la URSS, terminaron de afianzarla en el camino para crear sus propias armas nucleares apenas cuatro años después. A insistencia de Lavrenti Beria, priorizaron una bomba que era prácticamente una copia de la de Nagasaki (llamada RDS-1) pese a que tenían en marcha diseños autóctonos más avanzados (RDS-2 y RDS-3); Beria quería confirmar que toda la información que habían recibido era correcta, que podían desarrollar una copia casi idéntica de la bomba americana (y estudiar sus efectos con todo detalle) y, de paso, lograrlo lo antes posible, convirtiendo así rápidamente a la URSS en la otra superpotencia nuclear.

La “maldición” del tercer núcleo (y del USS Indianapolis).

USS Indianapolis

El crucero pesado USS Indianapolis frente a Mare Island, California, el 10 de julio de 1945. A partir del día 16, sería utilizado para trasladar los componentes de la bomba de Hiroshima a la base de Tinian. Y el 30 de julio fue torpedeado por el submarino japonés I-58, con gran parte de su tripulación pereciendo de modo bastante atroz. Imagen: Armada de los Estados Unidos / Wikimedia Commons. (Clic para ampliar)

Tres incidentes casuales contribuyeron a incrementar el “aura maldita” que rodeó a todo este asunto de lo nuclear desde el principio (como si la aniquilación de dos ciudades en plan “presentación en sociedad” no fuese suficiente…) El primero fue lo sucedido al crucero pesado USS Indianapolis, encargado de transportar los componentes para ensamblar la bomba de Hiroshima en Tinian. Tras entregar el material, el día 26 de julio, se hizo de nuevo a la mar con rumbo a Leyte.

A las 00:14 del día 30, fue avistado y torpedeado por el submarino japonés I-58. El Indianapolis se hundió en apenas 12 minutos, dando la vuelta de campana por completo antes de sumergirse en unas aguas plagadas de tiburones y sin tiempo para agarrar muchos chalecos ni botes salvavidas. Trescientos de sus 1.196 tripulantes se fueron a fondo con el buque, pero la pesadilla sólo acababa de comenzar. Al Indianapolis no le había dado tiempo de transmitir nada antes de hundirse y el Alto Mando estadounidense no pensó que pasara nada de particular. Sólo cuando un avión de reconocimiento avistó casualmente a algunos náufragos tres días y medio después se percataron de lo sucedido. Para entonces sólo quedaban 321 supervivientes, de los que se salvaron 317. El resto habían muerto de sed, envenenados por beber agua del mar, comidos por los tiburones o simplemente ahogados. Fue la última pérdida de un gran buque de superficie estadounidense en la II Guerra Mundial y, como puede verse, de manera especialmente desagradable. (El último de todos fue el submarino USS Bullhead, hundido por aviones japoneses el mismo día del bombardeo de Hiroshima.)

Haroutune Krikor Daghlian, Jr.

El físico Harry K. Daghlian Jr. (1921-1945), primera persona muerta en un accidente de criticidad, mientras trabajaba con el “tercer núcleo” que estuvo a punto de ser utilizado contra Japón. Imagen: Wikimedia Commons.

Por su parte, el tercer núcleo también hizo de las suyas. Dos veces, hasta tal punto que llegaron a apodarlo el núcleo del demonio. Como te conté antes, al rendirse Japón, este núcleo se encontraba en California de camino a Tinian y no llegó a abandonar los Estados Unidos. En vez de eso, lo llevaron a Los Alamos para experimentar con él. Y el primer accidente ocurrió menos de una semana más tarde. El físico Harry Daghlian, de 24 años de edad, estaba trabajando en reflectores neutrónicos con el propósito de reducir la masa crítica necesaria para hacer una bomba atómica (una característica de todas las armas nucleares modernas.) Así pues, empezó a envolverlo con bloques de carburo de wolframio, uno de estos reflectores neutrónicos, para ir tomando medidas de criticidad. A mano, como se hacían las cosas en la época. Richard Feynman dijo de estos experimentos que eran como “hacerle cosquillas a la cola de un dragón dormido” por su extremo peligro, dado que cualquier error podía provocar un grave accidente de criticidad.

Cuando Daghlian iba a tapar el conjunto con el último bloque, los detectores neutrónicos le indicaron que aquello estaba a punto de tornarse supercrítico. Vamos, que iba a empezar la reacción en cadena. Fue a apartarlo… y se le resbaló de la mano, cayendo directamente sobre el núcleo. Al instante, éste se volvió casi-crítico, iniciando así un accidente de criticidad con fuerte emisión de radiación neutrónica. En vez de echar a correr, Daghlian intentó quitar el bloque de un manotazo, pero no pudo y se puso a desensamblar el montaje hasta que consiguió detener la reacción. Para entonces, había absorbido varios sieverts de radiación gamma y neutrónica, además de sufrir quemaduras beta. Murió el 15 de septiembre, 25 días después, víctima del síndrome radiactivo agudo. Un vigilante del laboratorio recibió también su dosis, mucho más baja, y pereció 33 años después (a los 62) de leucemia mieloide aguda. Esta es una enfermedad asociada a la radiación, que también sufrieron no pocos supervivientes de Hiroshima y Nagasaki; pero con 33 años por medio, vaya usted a saber si fue a consecuencia del accidente o porque le tocaba.

Accidente de Louis Slotin

A la izquierda, el físico Louis Slotin (1910-1946), segunda víctima de un accidente de criticidad trabajando con el “tercer núcleo.” A la derecha, reconstrucción de cómo “le hacía cosquillas a la cola del dragón dormido” cuando se le resbaló el destornillador y el dragón tosió. Imágenes: Gobierno de los EEUU / Wikimedia Commons. (Clic para ampliar)

Tras este suceso se establecieron numerosos protocolos de seguridad para trabajar con estos primitivos núcleos apenas subcríticos (tan solo “5 centavos” por debajo del punto de criticidad.) Sin embargo, había otro físico más conocido, llamado Louis Slotin, que era muy bueno en lo suyo pero tenía sus peculiaridades, el hombre. Por un lado parece ser que era pelín chulo y vacilón, con cierto gusto por epatar a quien se le pusiera por medio. Un poco notas, vamos. Por otro lado, una vez terminada la guerra, estaba hasta los mismísimos del Proyecto Manhattan (como muchos otros de sus científicos) y quería volverse a sus estudios en Biofísica. Según sus propias palabras, seguía en el tajo porque “soy uno de los pocos que quedan aquí con experiencia en ensamblar bombas.” Y lo cierto es que había ensamblado Trinity y se le conocía como “el Armero en Jefe de los Estados Unidos”; el tipo tenía su valía y su prestigio. Así que estaba enseñando a otros a montar las bombas atómicas antes de largarse, si bien, por lo visto, con una cierta actitud de “para lo que me queda en el convento…”

Y así estaban las cosas el 21 de mayo de 1946, cuando Slotin estaba explicando el tema a otros siete técnicos y científicos… utilizando el mismo núcleo del demonio que nunca llegó a salir hacia Japón pero ya había matado a un hombre. Y estaba también contándoles lo de la criticidad, ahora ya con dos semiesferas de berilio (que fue el reflector neutrónico definitivo para las siguientes generaciones de armas nucleares.) Sólo que Slotin, con ese carácter y esa actitud, les hizo la demo manteniendo separadas las semiesferas de berilio… a mano, con la punta de un destornillador de cabeza plana, en contra de las nuevas normativas de seguridad y de la sensatez en general. Según dicen, no era la primera vez que le hacía cosquillas a la cola del dragón con el destornillador de marras. Ya te digo que iba un poco de sobrado.

Tanto va el cántaro a la fuente que al final se rompe y aquel día a Slotin se le resbaló el destornillador, siendo las 15:20. Las dos semiesferas de berilio se unieron y el núcleo del demonio se volvió supercrítico instantáneamente por segunda vez. Hubo un fuerte destello de luz azul, seguramente debido a la ionización del aire al recibir el violento golpe neutrónico. Slotin notó un sabor agrio en la boca y una intensa quemazón en su mano izquierda. Aún así, de un tirón, lanzó al suelo la semiesfera superior de berilio, deteniendo la reacción casi al momento. Pero era demasiado tarde. En cuanto escaparon del edificio Slotin ya estaba comenzando a vomitar, puede que por los nervios o por el síndrome radiactivo agudo de los 12 grays de radiación gamma y neutrónica que acababa de comerse en seco. O las dos cosas.

Posición de las personas que se encontraban alrededor de Louis Slotin  cuando sufrió el accidente de criticidad.

Posición de las personas que se encontraban alrededor de Louis Slotin (marcado con el cuadrado amarillo) cuando sufrió el accidente de criticidad. Curiosamente, aunque Slotin murió a los pocos días de radiotoxemia aguda, el resto de los presentes vivieron muchos años y algunos llegaron a avanzada edad. Imagen: Gobierno de los EEUU / Wikimedia Commons. (Clic para ampliar)

Louis Slotin murió muy malamente 9 días después, el 30 de mayo de 1946. Sin embargo, el resto de los presentes (con tres de ellos a menos de 2,5 metros de distancia) no sufrió más que episodios de debilidad o ningún síntoma en absoluto. El único que murió joven fue el guardia al otro lado de la puerta… porque era un soldado y lo mataron en la Guerra de Corea, a los 27 años de edad. El siguiente falleció 19 años más tarde, de un infarto (los problemas coronarios han sido vinculados a la radiación, pero durante los 18 años anteriores esta persona había presentado una salud excelente, o sea que pudo deberse a ese o cualquier otro motivo.) En general, el resto de los presentes en el accidente Slotin fueron muriéndose un poco cuando les tocaba; sí, típicamente con enfermedades asociadas a la radiación, pero al menos un par de ellos con más de ochenta años de edad (entre ellos, uno de los que estaban más próximos al núcleo, detrás de Slotin; parece que su cuerpo le protegió.)

De estos y otros hechos por el estilo emana parte del interminable debate de los efectos de la radiactividad sobre la salud humana: está claro que si absorbes una dosis muy alta en un plazo breve va a “freírte” y te morirás de tu síndrome radiactivo agudo, o como mínimo sufrirás lesiones y posiblemente secuelas (los llamados efectos no-estocásticos); pero si absorbes dosis menores o en plazos más prolongados, las consecuencias son mucho más ambiguas y retardadas (los llamados efectos estocásticos.) Si te mueres de una leucemia borde 25 años después de sufrir un accidente radiactivo, ¿es a consecuencia del accidente radiactivo o simplemente porque te dio una leucemia borde como a cualquier otro hijo de vecina? En estos casos, donde la irradiación del personal procede de una emisión primaria con poca o nula contaminación secundaria (fallout) que pueda permanecer en el ambiente y el organismo, el asunto es más confuso todavía. El caso es que el tercer núcleo acabó matando gente. Ya no hicieron más experimentos con él y finalmente lo usaron en la prueba Able, cinco semanas después, donde desapareció liberando 21 kilotones de potencia.

Como comprenderás, me he tenido que saltar un montón de cosas para que esta entrada no se me alargase hasta el infinito… más aún. ;-) Pero a grandes rasgos, esta es la historia de las ciudades que se salvaron y las gentes que no durante la única campaña de bombardeos atómicos que ha presenciado la humanidad, comenzando hace justo ahora 70 años (día 6 de agosto a las 01:15 hora peninsular CEST, 08:15 hora de Japón.) Ojalá nunca volvamos a ver nada igual. O, más probablemente, si llegara a suceder, mucho peor.

Si te ha gustado esta entrada, puede que también te interese:

Bibliografía:

108 Comentarios Trackbacks / Pingbacks (28)
¡Qué malo!Pschá.No está mal.Es bueno.¡¡¡Magnífico!!! (47 votos, media: 4,91 de 5)
Loading...
Be Sociable, Share!