Archivo de Ciencia fundamental

La casi-máquina del tiempo del Dr. Krásnikov (con entrevista al Dr. Krásnikov)

Máquinas del espaciotiempo

Aspecto hipotético de un agujero de gusano conectado con otro universo o con otro punto de este universo, por el que una nave espacial podría transitar. Imagen: NASA. (Clic para ampliar)

Aspecto hipotético de un agujero de gusano conectado con otro universo o con otro punto de este universo, por el que una nave espacial podría transitar. Imagen: NASA. (Clic para ampliar)

¿Quién no ha soñado alguna vez con viajar en el tiempo o con atravesar un portal en dirección a mundos remotos? A los ojos de mucha gente, esto son sólo fantasías o argumentos para historias de ciencia-ficción. Y sin embargo existen algunas personas, en las fronteras más inhóspitas de la física teórica, que estudian estas cuestiones en serio. Así, se convierten en los pioneros de la humanidad futura. Cuando Pitágoras o algún primo suyo dedujo que la Tierra era redonda, o cuando Eratóstenes de Cirene calculó su circunferencia, tampoco parecía que estos conocimientos tuvieran muchas utilidades prácticas: imagina dónde estaríamos ahora sin tales descubrimientos. O si Euclides de Alejandría o Apolonio de Perga hubieran dejado de ser geómetras cuando les preguntaron para qué servían todos esos dibujitos. Y si Maxwell hubiera considerado que eso del electromagnetismo no servía para gran cosa, la electrónica y las telecomunicaciones no habrían surgido jamás. Así funcionan las cosas: primero surge la ciencia pura, después viene la aplicada y finalmente se desarrolla la tecnología. Superada la Edad Media, sin ciencia pura, no hay tecnología ni progreso digno de mención.

Todo lo que somos capaces de hacer ahora mismo se origina en las cosas que pensaron los teóricos de hace decenas, cientos e incluso miles de años. Todo lo que hagan las generaciones futuras se sustentará en las cosas que piensen los teóricos de hoy en día. Una sociedad, una especie que renunciase a la ciencia teórica y a la especulación científica quedaría estancada para siempre, incapaz de avanzar, de evolucionar. Esas personas que estudian las cosas que aparentemente no sirven para nada son, en cada momento de la historia, los pioneros de las gentes que vendrán. Caminamos sobre los hombros de gigantes, y todo eso.

Permíteme presentarte a uno de estos pioneros: Sergei Krásnikov. Sergei Krásnikov es doctor en Física y trabaja actualmente como investigador en el Observatorio Astronómico Central de Pulkovo. Es experto en relatividad general, teoría cuántica de campos en espaciotiempos curvos y astrofísica de partículas, ¡casi ná!

La cosa no acaba ahí. En 1995, causó un impacto notable sobre la comunidad científica al proponer el tubo o metro de Krásnikov, una especie de agujero de gusano cuyos extremos se encuentran desplazados en el espacio pero también en el tiempo. Este tubo es una distorsión espaciotemporal que podría crearse de manera intencionada para viajar en el tiempo y también por el espacio a velocidades (no-locales) superiores a la de la luz. Utilizando uno de estos tubos, tendrías que viajar a tu destino por medios convencionales, pero podrías regresar a casa poco después de tu partida. Por ejemplo: sales de la Tierra en el año 2100, llegas a otro sistema solar en el 2700, y sin embargo regresas a la Tierra siendo aún el 2120. Extraño, ¿eh? Además, el Dr. Krásnikov ha trabajado también en un modelo de agujeros de gusano que podrían sostenerse a sí mismos, obteniendo así algo muy parecido a las puertas estelares estables. Vamos, que don Sergei no pierde el tiempo, ese que estudia tan profundamente, con cosillas de tres al cuarto. ;-)

El doctor Sergei Krasnikov. Foto: Alexander Friedmann Laboratory for Theoretical Physics.

El doctor Sergei Krasnikov, investigador del Observatorio Central de Pulkovo, Rusia. Foto: Alexander Friedmann Laboratory for Theoretical Physics.

A pesar de todo ello, el doctor Krasnikov resulta ser una persona de lo más amable y accesible, que no ha puesto ningún inconveniente en contestar a algunas preguntas sobre su trabajo para la Pizarra de Yuri. Gracias a eso, puedo ofrecerte hoy la siguiente entrevista exclusiva con una de las personas que más saben del mundo en materia de viajes no convencionales por el espaciotiempo. Él nos lo va a contar mucho mejor de lo que jamás sabría hacerlo yo:

El metro espaciotemporal de Krásnikov.

Muchas gracias por su valioso tiempo. ¿Cómo es la vida cuando los extremos más exóticos del conocimiento y de la realidad constituyen su pan de cada día?

La respuesta corta: interesante. La respuesta larga daría para un libro: «De consolatione physicae».

Dr. Krásnikov… ¿qué es un tubo de Krásnikov? :-)

Toma el espaciotiempo de Minkowski y ponle un sistema de coordenadas (esto es necesario para dar sentido a las palabras “cerca” y “lejos”). A continuación, sustituye una región de este espaciotiempo plano por otra que sea curva. Esta región se llama tubo de Krásnikov si reúne las siguientes condiciones:

1. Se encuentra por completo en el futuro desde el origen de coordenadas O (o sea, se puede decir que aparece debido a algo que sucedió en O).

2. En el futuro de O hay un punto muy distante (desde O) al que llamaremos D, que se encuentra al mismo tiempo en el pasado de un punto P muy próximo a O (por tanto, lo que describo es una “casi-máquina del tiempo”).

Así pues, hay una curva de tipo tiempo (la línea de universo de una nave espacial) que comienza en O (por ejemplo, la Tierra en el año 2100), pasa por D (por ejemplo, Deneb en el 2700) y vuelve a casa en P (la Tierra en el 2120).

Representación en 2 dimensiones de un agujero de gusano (clic para ampliar).

Un agujero de gusano es una característica topológica hipotética del espaciotiempo permitida por la Relatividad General, que en esencia constituría un "atajo" a través del mismo (aunque también podría formar un "alargamiento" o un "callejón sin salida"). Se considera generalmente que los agujeros negros realmente atravesables requerirían materia exótica con densidad de energía negativa para estabilizarse. (Clic para ampliar).

¿Qué relación tiene con los agujeros de gusano?

Se podría hacer un truco similar –regresar de Deneb antes de llegar allí, según un reloj terrestre– utilizando un agujero de gusano. La diferencia crucial es que para construir un tubo de Krásnikov no necesitas cambiar la topología del espaciotiempo.

Entonces, usando un tubo de Krásnikov sería verdaderamente posible viajar en el tiempo además de por el espacio, ¿no?

Errrr… ¡depende de lo que entiendas por “viajar en el tiempo”!

¿Qué aspecto tendría un tubo de Krásnikov para un observador externo?

El tubo es un cilindro creciente. Uno de sus extremos estaría cerca de la Tierra y el otro seguiría a la nave espacial. El cilindro está vacío por dentro, pero sus paredes son MUY densas. Este cilindro es el pasadizo por donde el viajero regresa a casa.

Tengo entendido que hace falta viajar a velocidades próximas a las de la luz por dentro del tubo para que el efecto se produzca, ¿es así?

Simplemente, no tiene sentido utilizar este tubo para un viaje intergaláctico a menos que te muevas a velocidad relativista con respecto a la Tierra (en el ambiente del espacio de Minkowski). De lo contrario, el viaje requeriría una cantidad de tiempo prohibitivamente grande para el piloto.

¿Que se vería o se sentiría durante un viaje así? ¿Sería peligroso?

Tendrías que viajar a velocidad relativista a lo largo de un corredor MUY estrecho. Creo que es extremadamente peligroso.

Dr. Krásnikov, imagínese por un momento que fuera usted un escritor de ciencia-ficción. ¿Cómo describiría la ingeniería de un tubo de Krásnikov?

Me sentiría libre para escribir casi cualquier cosa. El tubo es sólo un ejemplo (tan simple como es posible) que ilustra el concepto de “viaje hiper-rápido” y su posibilidad. El método real para realizar viajes interestelares, si aparece algún día, seguramente será muy diferente.

Everett y Roman de la Universidad Tufts han dicho que dos tubos de Krásnikov dispuestos en sentidos opuestos crearían bucles temporales y violaciones de la causalidad. ¿Es esto correcto?

No mucho. Pasa lo mismo que con los agujeros de gusano. Si tienes dos tubos (o dos agujeros de gusano), puedes INTENTAR construir una máquina del tiempo con ellos. Tus posibilidades de tener éxito constituyen una pregunta abierta: habrá siempre un momento en que el universo “elija” entre dar lugar a una máquina del tiempo o a una “singularidad cuasi-regular”. Hoy por hoy no podemos ni influir en esta “decisión”, ni predecirla.

Leí en algún sitio que los tubos de Krásnikov podrían crear un Anillo Romano. ¿Qué es un Anillo Romano? ¿Qué implicaciones tiene para su metro espaciotemporal?

No, no veo ninguna relación obvia entre estos objetos. No sé a qué se referiría el autor. El Anillo Romano, según yo lo entiendo, es un sistema de agujeros negros que presumiblemente puede estabilizar el horizonte de Cauchy de una máquina del tiempo emergente.

El "portal" de la serie de ficción Stargate SG-1.

Los "portales" o "puertas estelares" habituales en la ficción (como este de la serie televisiva Stargate SG1) no están prohibidos por la Relatividad General y podrían ser realizables en la práctica. Pero, hoy en día, no sabemos cómo.

Las puertas estelares de Schwarzschild-Hawking.

Dr. Krásnikov, usted ha propuesto también algunas cosas muy interesantes sobre los agujeros de gusano en general. Se considera generalmente que para crear y estabilizar un agujero de gusano atravesable harían falta inmensas cantidades de materia-energía negativa. Sin embargo, según tengo entendido, usted ha sugerido que el propio fenómeno podría producir esta materia-energía negativa y por tanto se convertiría en un agujero de gusano atravesable autosostenido: algo muy parecido a una puerta estelar. ¿Es esto correcto? ¿Cómo sería posible?

La idea no es mía (según a mí me consta, es de Sergei Sushkov). Su esencia es muy simple: dado que el espaciotiempo en un agujero de gusano está curvado, el vacío siempre está “polarizado” ahí. En otras palabras: debido a los efectos cuánticos, un agujero de gusano nunca está vacío, sino lleno con alguna clase de “materia”. Las propiedades de esta materia no están limitadas por las condiciones clásicas (como la exigencia de que la densidad de energía sea positiva), y están determinadas (entre otras cosas) por la forma del agujero de gusano.

Por tanto, todo lo que necesitarías (si supieses cómo crear un agujero de gusano, en primer lugar) es encontrar una forma tal que la materia producida por estos efectos cuánticos sea exactamente la misma que haría falta para mantener el agujero de gusano. Durante un tiempo pensé que había descubierto la forma necesaria para un agujero de gusano autosostenido estático. Después, sin embargo, encontré un error en mis cálculos. Así que abandoné la exigencia de que el agujero de gusano tuviera que ser estático y busqué una forma que se limitara a permitir que fuera atravesable.

Resultó que el agujero de gusano más simple (que es inicialmente la solución de Schwarzschild) posee ya esta propiedad. La famosa radiación de Hawking impide que colapse durante tiempo suficiente como para permitir que un viajero lo atraviese.

Pero seguiría haciendo falta una cantidad inicial de materia-energía negativa, ¿no?

No. Estoy hablando de agujeros de gusano “naturales” que presumiblemente aparecieron en el universo temprano. Su entorno no fue determinado por una “civilización avanzada” que hubiera podido alimentarlos con materia a su albedrío.

¿Qué aspecto tendría uno de esos “agujeros de gusano autosostenidos de Krásnikov”? ¿Cómo sería el viaje? ¿Correrían peligro los viajeros?

Son más bien “agujeros de gusano autosostenidos de Schwarzschild-Hawking”. Tendrían el mismo aspecto que un agujero negro corriente salvo por el hecho de que un viajero, después de intersecar su “horizonte“, dispondría de algún tiempo para alcanzar el otro extremo y salir de él por su otra región asintóticamente plana. Por supuesto, este viaje sería peligroso: si el viajero no es lo bastante veloz, resultará aplastado por la singularidad.

Dr. Krásnikov… ¿qué es el tiempo?

¿Qué es la longitud? ¿Qué es la anchura?

¿Y el espacio?

De hecho, no hay nada tan misterioso en los conceptos de espacio y tiempo (al menos, mientras nos mantengamos dentro de la física clásica). Quizás sea difícil explicar rigurosamente estos conceptos a un niño de seis años, pero cualquier estudiante de segundo curso de carrera es capaz de comprenderlos. Describimos (con éxito) nuestro universo mediante ciertos objetos geométricos: es el espacio de Minkowski en la Relatividad Especial, o el espaciotiempo en la Relatividad General. En la física newtoniana es el producto de un espacio euclídeo tridimensional por una línea real. Y al aplicarlos a esos objetos, palabras como “espacio”, “tiempo” y demás tienen un significado claro y riguroso.

¿Y el espaciotiempo? ;-)

Pienso que es una variedad Hausdorff paracompacta, suavemente conectada, de cuatro dimensiones, provista con una métrica de Lorentz suave orientada en el tiempo.

¿Cómo demonios se puede deformar el espaciotiempo? La gente no entiende esto…

¡Esa es una buena pregunta! Sorprendentemente, conocemos una parte de la respuesta. Y la respuesta, llamada Relatividad General, es que CUALQUIER espaciotiempo no vacío está curvado. En cada punto, su curvatura está relacionada con las propiedades de la materia en ese punto, y específicamente con su presión y densidad de energía, a través de las ecuaciones de Einstein.

 

Albert Einstein, que desarrolló la Teoría de la Relatividad.

S. V. Krásnikov: "Es muy sencillo: todas las cuestiones sobre el tiempo, el espacio, el origen del universo, etc. son pura Relatividad General" desarrollada por Albert Einstein (en la imagen).

Si una persona joven que esté leyéndonos quisiera dedicarse a esto en el futuro, ¿qué debería estudiar?

Es muy sencillo: todas las cuestiones sobre el tiempo, el espacio, el origen del universo, etc. son pura Relatividad General.

Una última pregunta, Dr. Krásnikov. Como seguramente sabrá, no pocas personas piensan que esto son cosas destarifadas, una especie de pérdida de tiempo muy sofisticada, sobre todo teniendo en cuenta que aquí en la Tierra hay tantos problemas graves por solucionar. ¿Qué le gustaría decirle a estas personas?

Esta era una de las preguntas favoritas de los escritores de ciencia-ficción en los años ’60. No puedo añadir nada a lo que ya dijeron Asimov o Lem, así que me limitaré a hacer dos comentarios:

1. Por supuesto que responder a la pregunta de si se puede vencer la barrera de la velocidad de la luz no es la más urgente. Pero lo mismo puede decirse de CUALQUIER otro problema. ¿Como se atreven esas personas a pintar su casa, o a curar el reumatismo, cuando los niños están LITERALMENTE muriendo de hambre en África? ¡A miles!

2. Estas personas, ¿conocen alguna manera de resolver los problemas realmente importantes sin usar ordenadores, o teléfonos, o la electricidad en general? Pues tuvo que venir Faraday a perder su tiempo en problemas aparentemente inútiles para que todos esos televisores y refrigeradores que usan a diario pudieran llegar a existir.

Por cierto, ¿hay algo importante que no le haya preguntado?

¡Puedes apostar a que sí! Pero habrá que dejar algo para futuras entrevistas, ¿no?

Pues muchísimas gracias de nuevo, Dr. Krásnikov. Si hay algo en lo que yo pueda ayudarle, simplemente dígamelo…

Si lo que vas a escribir incita a un par de estudiantes brillantes para que hagan algo en este campo, me daré por totalmente recompensado.

Y yo también.  ;-)

Bibliografía:

  • Introducción a la Relatividad General e Introducción matemática a la Relatividad General, en la Wikipedia (en castellano).
  • Introducción al espacio, el tiempo, la materia y el vacío, y a la gravitación y los agujeros negros, disponibles en la web de la Universidad de Chile (en castellano).
  • Einstein, Albert (ed. 2008), Sobre la teoría de la relatividad especial y general. Alianza Editorial, Madrid, ISBN 978-84-206-6841-3 (en castellano).
  • Misner, C. W.; Thorne, K. S.; Wheeler, J. A. (1973), Gravitation. W. H. Freeman, San Francisco, ISBN 978-0-7167-0344-0 (en inglés).
  • Wald, R. M. (1984), General relativity. The University of Chicago Press, Chicago, ISBN 0-226-87033-2 (en inglés).
  • Thorne, K. (1995), Agujeros negros y tiempo curvo: el escandaloso legado de Einstein. Ed. Crítica, Barcelona, 978-84-7423-697-2 (en castellano).
  • Krásnikov, S. V. (1995), Hyperfast interstellar travel in General Relativity, disponible en arXiv:gr-qc/9511068v6 (en inglés).
  • Krásnikov, S. V. (2006), Сверхсветовые движения в (полу)классической ото [Movimiento superlumínico en Relatividad (semi)clásica], disponible en arXiv:gr-qc/0603060v1 (en ruso).
88 Comentarios Trackbacks / Pingbacks (10)
¡Qué malo!Pschá.No está mal.Es bueno.¡¡¡Magnífico!!! (72 votos, media: 4,88 de 5)
Loading ... Loading ...
Be Sociable, Share!

Magia naturalis

Las ciencias naturales se dividen convencionalmente en cinco disciplinas:
física, química, astronomía, geología y biología.
Vamos a ver de dónde viene esto, por qué es así,
qué es exactamente cada una de ellas y cuál es el papel de las matemáticas en todo esto.

Microscopio

El microscopio se ha convertido en uno de los símbolos más representativos de la ciencia moderna y su filosofía subyacente.

La antigua magia naturalis –o sea, lo que hoy en día llamamos las ciencias naturales o ciencias de la naturaleza– se ha constituido en la herramienta más poderosa de adquisición de conocimiento para la humanidad, capaz de aportar lo más parecido a la verdad que nuestra especie puede alcanzar en cada momento de su historia. Además, por el poder que confiere sobre el universo natural, constituye la clave esencial del progreso aplicado y tecnológico: superada la Edad Media, sin ciencia pura no hay ciencia aplicada, sin ciencia aplicada no hay tecnología. Y sin ciencias aplicadas y tecnologías –y las nuevas formas de pensamiento que las acompañaron– seguiríamos atascados en un pasado de mierda.

Ya apuntaba maneras desde el principio, pero al final de la carrera las ciencias naturales han venido a constituirse en la máxima expresión del materialismo positivo, bajo la forma del naturalismo metodológico empírico. Estos palabros filosóficos vienen a decir algo bastante sencillo, al menos a grandes rasgos y resumiéndolo mucho: el único universo real, o al menos el único que se puede estudiar y sobre el que se puede conocer a ciencia cierta, es el universo natural (por oposición al sobrenatural); y la única manera fiable de conseguirlo es a través del método científico.

No siempre fue así. Hubo un tiempo en que ciencia, filosofía, religión (y política) fueron indistinguibles. Tardamos bastante tiempo en aprender a separar unas de otras, con mayores y menores aciertos, pero al final fuimos capaces de separar el trigo de la paja y quedarnos con lo que funcionaba. Entre esas cosas que funcionan, la ciencia alcanzó pronto un lugar central. Hay quien discute la sabiduría de esta separación, pero lo cierto es que… bien, eso, funciona. Y funciona estupendamente bien.

Desde bien temprano, esta magia naturalis –la poderosa magia de la ciencia, esa que hace volar naves espaciales y salva a los niños de la viruela– se dividió a su vez en varias especialidades o disciplinas que trataban de estudiar algún aspecto específico de la realidad. Aunque al principio, esta diferenciación era muy pequeña e incluso indistinguible. Las expresiones más antiguas de la ciencia que se recuerdan son las tecnologías agropecuarias y, de manera inseparable, el estudio de los astros. Sin el estudio de los astros –el sol, la luna, las estrellas– no se puede elaborar un calendario; y sin un calendario, tus cosechas van a ser más bien chuchurrías. Los calendarios astronómicos nos acompañan desde los principios de la historia, y resulta bastante probable que algunas estructuras prehistóricas como el círculo de Goseck (4.900 aC), Mnajdra inferior (ca. 3.000 aC), el crómlech de Nabta Playa o el más conocido  Stonehenge (ca. 2.600 aC) desempeñaran al menos una función parcial en este sentido.

Durante un buen periodo de tiempo, la astronomía con sus predicciones y las técnicas de adivinación hoy genéricamente conocidas como astrología fueron la misma ciencia, estrechamente relacionada con las matemáticas. Porque las matemáticas son también muy antiguas. Bueno, de hecho son antiguas de narices: nos dimos cuenta muy pronto de que algunas cosas de la naturaleza parecían seguir unas reglas que se podían medir y contar. El indicio más antiguo de un objeto para uso matemático es el hueso de Lebombo, en la actual Suazilandia, que tiene algo así como 35.000 años y podría constituir un calendario lunar. Hay quien dice que este y otros objetos similares parecen singularmente aptos para calcular el ciclo menstrual femenino, con el propósito de adquirir alguna clase de control sobre su ciclo reproductivo y por tanto sobre la demografía de la población; si esto se demostrara cierto, sería un origen de lo más interesante para el primer calendario, las primeras matemáticas y la primera ciencia.

Hueso de Lebombo

El hueso de Lebombo, con unos 35.000 años de antigüedad, encontrado en la actual Suazilandia (cueva Border, cordillera Lebombo). Sus 29 marcas, similares a las encontradas en otros lugares más tardíos, podrían corresponderse con un calendario lunar. En ese caso, se trataría del artilugio científico más antiguo de la Humanidad. Uno de los pocos usos prácticos que una cultura prehistórica de interior podría encontrar para seguir un calendario lunar es el cálculo del ciclo menstrual femenino.

Contando cosas aquí y allá, en algún momento nos dimos cuenta de que parecían existir correlaciones entre esas cuentas: leyes o al menos reglas generales que se podían aplicar a distintos ámbitos de la realidad. La más fundamental de esas reglas es que todos los objetos materiales que nos rodean se pueden contar de la misma manera, sin importar su naturaleza. Podemos contar personas, cabezas de ganado, árboles, el número de rayos en una noche de tormenta, hasta los granos de arena de una playa con el suficiente tiempo y método. Por tanto, comenzamos a utilizar unas abstracciones universales aplicables al conjunto de la realidad natural, a las que cierto día decidimos llamar números.

Y también nos dimos cuenta de que las leyes que regían las relaciones entre esos números valían para todos los casos, para todo el cosmos. Dos más dos son cuatro, siempre son cuatro, y da igual que sean piedras, monedas, días o estrellas. El orden de los factores no altera el producto, sea lo que sea que estemos multiplicando: siempre es así. Cualquier número dividido por sí mismo da siempre uno, sin importar qué dividimos entre qué cosas: nunca falla. La geometría y el álgebra ayudaron no poco. Este descubrimiento es probablemente el avance más fundamental de toda la historia de la humanidad, y la clave esencial de la ciencia moderna: unas reglas universales que el ser humano puede conocer, aplicables a todos los ámbitos de la realidad natural sin excepción alguna. O sea, las matemáticas.

Sin matemáticas, estamos ciegos por completo. Sin matemáticas, el cosmos entero es un batiburrillo que no se puede entender, regido por fuerzas ignotas y temibles. Con las matemáticas, comenzamos a comprender, comenzamos a aprender. Eso viene a querer decir mathematiké en griego antiguo: aquellas cosas que no se pueden saber sin ser aprendidas. (Por oposición a musiké, o sea aquello que se puede entender de manera innata) Así, prácticamente toda la ciencia que vino después, casi todo lo que sabemos con seguridad sobre este mundo y este universo, es mathematiké.

Gráfico relacional de las distintas ciencias

Gráfico relacional de las distintas ciencias naturales y algunas aplicadas. Sobre un "fondo" matemático, existe un universo natural (estudiado globalmente por la física), con determinados ámbitos especializados que constituyen el campo de estudio de la astronomía, la química, la geología y la biología. Sobre este "sustrato de ciencias básicas", estrechamente interrelacionado, se desarrollan ciencias aplicadas como las ingenierías y tecnologías o la medicina; que a su vez aportan también nuevas herramientas y conocimientos adicionales al sustrato. Así, el conjunto se comporta como una "red neuronal" fuertemente inteconectada; por ello, a menudo, un avance significativo en un campo se traduce en avances en muchos de los demás (y cuanto más cerca del sustrato, más. Por ejemplo, no es raro que un avance importante en física influya todas las demás ciencias tanto naturales como aplicadas, mientras que es más raro que un avance importante en medicina alcance directamente a la geología o la astronomía).

Stonehenge

La astronomía fue la primera de todas las ciencias. Monumentos megalíticos como Stonehenge desempeñaban, con gran probabilidad, una función astronómica al menos parcial.

Ciencias básicas.

Sobre este sustrato mathematikós, a lo largo de nuestra historia han ido surgiendo distintas ciencias; normalmente las dividimos en ciencias básicas o fundamentales y ciencias aplicadas. Como su nombre indica, las ciencias básicas o fundamentales pretenden aprender de qué manera funciona el universo, en general y en cada campo específico; mientras que las ciencias aplicadas están orientadas a utilizar este conocimiento para seguir avanzando, comúnmente a través de la técnica y las tecnologías. La técnica y las tecnologías, por su parte, aportan nuevas herramientas y conociminentos al sustrato de ciencia básica; con lo que todo el conjunto es como un círculo que se retroalimenta a sí mismo una y otra vez. De este hecho se desprende algo que mucha gente (políticos y votantes) no entienden: la ciencia es un conjunto cuyos elementos están estrechamente inteconectados y cada uno depende de los demás para seguir progresando. Si una rama básica de la ciencia se estanca, todo el conjunto se estanca, con las conocidas consecuencias de atraso, ignorancia, miseria y sufrimiento para todo el mundo.

Cuanto más básica es una ciencia, más esencial resulta en este proceso. Pongamos un ejemplo. Si la ingeniería o la medicina sufren un periodo de estancamiento, es malo y tiende a retrasar todo el conjunto, pero la química o la física tardarán en verse afectadas (y normalmente aportarán soluciones cuando avancen lo suficiente). En cambio, si la física o la química sufren un periodo de estancamiento, entonces todo lo demás se retrasa sin remisión (incluyendo a la ingeniería o la medicina). Por eso las consideramos básicas o fundamentales. Estas ciencias básicas, además de las matemáticas (que se suele calificar como una ciencia exacta pura), son estas:

LHC

Actualmente, en instrumentos extraordinariamente sofisticados como el LHC seguimos descubriendo las "cosas que deben ser aprendidas" (mathematiké).

  • Astronomía, cuyo campo de estudio son los astros, su naturaleza y sus movimientos (incluyendo los del astro que llamamos Tierra). Como ya he mencionado, la astronomía fue la ciencia original, de la que emanaron fundamentalmente todas las demás y muy especialmente una parte significativa de nuestro sustrato físico-matemático. A partir del siglo XVII –con la revolución heliocéntrica– se separó de su antecesora, la astrología; y para el siglo XIX ya había tomado definitivamente su propio camino. Aunque la “astronomía clásica” ha perdido algo de su influencia central sobre el conjunto de las ciencias básicas, sigue realizando una aportación imprescindible a través de la astrofísica.
  • Física, cuyo campo de estudio es… todo. :-D La física escudriña la naturaleza y propiedades del tiempo, del espacio, de la materia, de la energía, de la información y las interacciones entre todo ello; que es decir el conjunto de la realidad natural, del universo físico. Por ello, muchos la consideran la ciencia central, totalmente inseparable de la matemática; matemática y física viajan juntas, son dos caras de la misma moneda, y cada una resulta incomprensible sin la otra. Sin embargo, su campo de estudio resulta tan amplio que es preciso desglosar algunas de sus especialidades en disciplinas separadas, como las siguientes:
  • Química, que se concentra en el estudio de la materia y sus interacciones entre sí misma y con la energía. Se originó fundamentalmente en la alquimia, de la que se separararía también entre los siglos XVII y XIX, a partir de los trabajos de Boyle, Lavoisier y Dalton. En la actualidad, interacciona fuertemente con la física a través de la fisicoquímica, con la biología mediante la bioquímica y con la geología por la vía de la geoquímica. Como “portadora del conocimiento físico” al campo de la materia y energía más inmediatas, resulta esencial en la práctica totalidad de las ciencias aplicadas y las tecnologías, desde la electrónica hasta la farmacología clínica, pasando por la nanotecnología o los nuevos materiales.
  • Geología, que tiene como campo de estudio la materia y energía que constituyen el planeta Tierra (por el momento…). O sea, que estudia las piedras, pero no hay que olvidar que nuestro planeta y todos los demás planetas y lunas son… piedras. Al comenzar a comprender cómo es y cómo se formó este piedro en el que vivimos, comenzamos a comprender todos los demás piedros del cosmos y el origen y evolución de los mismos, lo que resultaría clave para el progreso de la física. La geología es muy antigua, primero como disciplina aplicada precientífica de uso en minería o arquitectura y luego como ciencia fundamental, sobre todo a partir de Hutton y Lyell (si bien existe una intrigante geología islámica medieval, hasta el extremo de que muchas veces se considera a Avicena el “padre de la geología”). La geología también está estrechamente relacionada con la biología, al aportar el conocimiento sobre el sustrato material sobre el que se desarrolla la vida.
  • Biología, orientada al estudio de un tipo de materia muy particular: la materia viva (y eso nos incluye a ti y a mí, claro). A diferencia de las demás, se trata de una ciencia muy moderna cuyos antecedentes son más oscuros y casi totalmente centrados en el ámbito de la anatomía o la botánica. Realmente no se puede empezar a hablar de una biología como la que conocemos hasta los siglos XVII y XVIII, y realmente no encontró su lugar en el orden cósmico hasta el XIX, con Darwin, Mendel y la teoría celular. Las leyes de la vida resultaron ser demasiado sutiles, demasiado sofisticadas para nuestros antepasados y aún nosotros peleamos por comprender algunos aspectos inmediatos (¡eso significa que quedan cosas chulas por aprender sin irse muy lejos!). Estrechamente emparentada con la geología y la química, la biología está proporcionando grandes resultados en ciencias aplicadas como la medicina, la agronomía, la veterinaria… y también la astrobiología, junto a la astrofísica, la astroquímica y la astrogeología lo que cierra el círculo cósmico de estas ciencias fundamentales.
HTC

La ciencia aplicada suele plasmarse a través de la tecnología, pero también mediante las técnicas aplicadas a todos los campos.

Ciencias aplicadas.

Por su naturaleza natural, todas las ciencias tienen aplicaciones prácticas inmediatas, incluso sin intermediación alguna. Obsta mencionar lo que hacen la química, la biología o la geología por nosotros a diario. La física es todo; en el orden más inmediato, a ver cómo resuelves un sistema de producción y distribución eléctrica o una red de telecomunicaciones sin aplicarla directamente. Sin astronomía, no hay calendarios, ni navegación, ni cosechas y además está detrás de todo, aportándonos constantemente una perpectiva de conjunto única. Y las matemáticas… pues qué vamos a decir: que están detrás de todo, desde la cuenta del bar, la contabilidad de tu empresa, tu cuenta corriente o la fecha de tu cumpleaños hasta los extremos más remotos de la física teórica.

La diferencia sustancial entre las ciencias fundamentales y las ciencias aplicadas es, pues, una cuestión de matiz. Eso sí, un matiz de cierta envergadura. En el mundo contemporáneo, la función primaria de la ciencia fundamental es crear conocimiento, tenga o no una aplicación inmediata (aunque cuando la tiene, que es casi siempre, resulta sin duda muy bienvenido). Mientras que la función primaria de las ciencias aplicadas es utilizar todo ese conocimiento más el que generan por sí mismas en usos prácticos directos, normalmente a través de técnicas y tecnologías.

Por su enorme utilidad inmediata, la mayor parte de las ciencias aplicadas tienen una historia precientífica propia, pues la necesidad existía desde mucho antes de que hubiera una ciencia básica fiable para servirles de sustrato. Y precisamente por su sentido eminentemente práctico, orientado a la obtención de resultados inmediatos, desarrollaron algunas herramientas y avances naturalistas que luego resultarían esenciales en el surgimiento de las modernas ciencias fundamentales. En el presente y ya para siempre, las ciencias fundamentales se lo devuelven aportándoles conocimientos básicos muy avanzados que han permitido su extraordinario desarrollo hasta extremos que difícilmente sus practicantes de antaño habrían podido soñar. Las ciencias aplicadas son muchas, pero entre las más duras se encuentran las siguientes:

Medicina en la antigua Grecia

La medicina es, con toda probabilidad, la ciencia aplicada que ha sido percibida como de mayor utilidad práctica inmediata a lo largo de la historia. Sin embargo, al igual que todas, depende de las ciencias fundamentales para poder avanzar.

  • Medicina, veterinaria y farmacología. Qué quieres que te cuente de estas ciencias que no sepas ya. ¿Que tu esperanza de vida se ha duplicado y pico en los últimos cien años? ¿Cuántos paralíticos de polio has visto últimamente por la calle? ¿Y ciegos de viruela? ¿Cuántas jovencitas se te han muerto de tisis? ¿A cuántos entierros de niños y bebés has ido en los últimos años (salvo pésima, pésima fortuna)? ¿Cuánto hace que no se te muere nadie por una intoxicación alimentaria? Pues hasta hace bien poco, eso era la cotidianeidad. Todo eso y mucho más es la obra gigantesca de las ciencias médicas… que sólo acaba de empezar.
  • Ingenierías. Las ingenierías son las que desarrollan las tecnologías y construyen los productos o servicios finales. Toda clase de tecnología, producto o servicio: industrial, civil y arquitectónica, electrónica e informática o de telecomunicaciones, aeroespacial, agropecuaria, químicalo que se te ocurra. El desarrollo de tecnologías suele constituir el último paso entre la ciencia y la sociedad, y por tanto acostumbra a resultar el más visible y apreciado. Todo el mundo entiende de inmediato para qué sirve un ingeniero y si no, lo capta tras una breve explicación; no todo el mundo comprende fácilmente la utilidad de un físico teórico, un geoquímico o un astrobiólogo. Entre las ingenierías también se cuenta a veces la gestión y administración.
  • Las llamadas “ciencias blandas” (como la economía, la psicología, las ciencias jurídicas, las ciencias políticas, ciertas aproximaciones a la historia y otras). La expresión ciencias blandas se entiende a veces de manera peyorativa (por oposición a las “ciencias duras”, pata negra), pero esto no es necesariamente así siempre o ni siquiera a menudo: resulta una manera bastante visual de representar su menor grado de adscripción al método científico más estricto y en consecuencia su menor capacidad predictiva (yo puedo afirmar con rotundidad que una masa se verá atraida por otra masa, y apostar mi vida a que sucederá siempre –lo hacemos a diario inconsciente pero constantemente–; esta clase de afirmaciones predictivas resulta mucho más problemática en estas otras ciencias). Sin embargo, su interés práctico evidente en una multitud de campos es bien conocida y permite incluirlas en el conjunto de las ciencias aplicadas.

Por estos motivos de utilidad práctica inmediata, las salidas laborales de numerosas ciencias aplicadas suelen ser bastante extensas, y según épocas y especialidades su labor se valora bastante bien en el mercado. Los científicos fundamentales, en cambio, suelen encontrarse más a menudo en el ojo del huracán: normalmente dependen de la siempre voluble financiación pública (pocas empresas privadas invierten en la adquisición de conocimientos a los que no se puede extraer un beneficio económico directo), sus conclusiones no son siempre aceptadas de buen grado por todo el mundo, la sociedad percibe los beneficios de su labor de manera más remota y a menudo ganan menos pasta por más trabajo; por ello, la ciencia básica tiene bastante de vocación. Sin embargo, ambos grupos son absolutamente imprescindibles para que la humanidad siga avanzando y de hecho, como ya comenté, un estancamiento en ciencia fundamental conlleva un efecto mucho más grave sobre el conjunto del progreso humano que en cualquier otro caso.

Una nota sobre la percepción social de la ciencia básica, las ciencias aplicadas y las tecnologías.

El problema de la percepción social de las ciencias puras, aplicadas y tecnologías.

El problema de la percepción social de las ciencias puras, aplicadas y tecnologías. Las tecnologías son ubicuas y la sociedad percibe directamente sus logros y beneficios, sin necesidad siquiera de intermediarios, con una utilidad práctica cotidiana evidente. Las ciencias aplicadas ya se ven un poquito más de refilón, y a veces con mayor desconfianza, pues normalmente sólo se las ve trabajar "en directo" en situaciones más excepcionales. El trabajo cotidiano de las ciencias básicas o fundamentales resulta invisible por completo para el conjunto de la sociedad, a menos que medie interés particular o se produzca un gran avance o descubrimiento que llegue a los medios de comunicación (y que normalmente se encuentra en el borde de lo que sabemos y suele parecer remoto y de poca utilidad práctica). Esto produce un efecto sociopolítico y económico en el que las tecnologías son generalmente conocidas, aceptadas y apreciadas, mientras que las ciencias que hay detrás se ignoran y a veces incluso inspiran desconfianza o minusvaloración, tanto más cuanto más fundamentales son.

Y esto representa un problema significativo en las sociedades contemporáneas, sobre todo cuando escasean los recursos económicos. En ciertos periodos, como la Guerra Fría, los estados realizan grandes inversiones en ciencia fundamental (y también en aplicada y en tecnología) con o sin la aprobación general del público. Esto seguramente no resulta muy democrático, pero es que cualquier persona con dos dedos de frente en una posición de poder entiende rápidamente que quedarse atrasados en ciencia fundamental representa “romper el triángulo” y quedarse atrasados en todo lo demás, con el evidente peligro de resultar derrotados en lo que quiera que se esté peleando.

Uruk en la actualidad

Uruk, una de las cunas de la civilización, en la actualidad. La historia no espera a nadie.

En tiempos como los actuales, donde la batalla parece ser económica por conseguir el máximo beneficio con el mínimo coste, resulta obvio que los principales actores no tienen muchos motivos para invertir en ciencia fundamental. En tiempos de crisis, además, los estados se ven presionados para reducir el gasto público y la ciencia básica suele contarse entre sus primeras víctimas, debido precisamente a que no se percibe como fundamental. Lo importante es el próximo consejo de administración, las próximas elecciones. Y a fin de cuentas, ¿qué pasa si avanzamos un poco más lento o incluso retrocedemos un poco, eh?

Pues pasan dos cosas. La primera es que un avance más lento o un retroceso de la ciencia se traduce inmediatamente en sufrimiento humano, y además de una forma singularmente interclasista. Si una técnica médica no se desarrolla, no se desarrolla ni para el hambriento de África Central ni para los hijos de los dueños de “los mercados”. Si no hay energía más barata y ecológica, no la hay ni para fabricar magdalenas de tres bolsas a un euro ni para producir coches de lujo. Si no surge una nueva tecnología de materiales que permita hacer aviones más seguros, no surge ni para Air Low Cost ni para Luxury Airlines. El estancamiento de la ciencia se traduce rápidamente en una vida peor para todos. A fin de cuentas, por mucho dinero que tengas, sólo puedes comprar lo que existe.

Pero es que, además, el estancamiento o retroceso científico es la manera más eficaz de irnos (casi) todos al pozo en términos económicos. Las sociedades que se estancan o retroceden también se arruinan en la parte de los dineros, un hecho sobradamente conocido a lo largo de toda la historia humana; esto es cierto para cualquier estancamiento o regresión, pero resulta especialmente cierto con los estancamientos o regresiones científico-técnicas. Por el contrario, los grandes avances científico-técnicos siempre se han traducido en una mayor creación de riqueza para todos. Querer salir de una crisis recortando la inversión científica es como querer salvar un barco que se hunde desmontando la quilla para tapar el agujero con las planchas. Es pobreza y dependencia garantizadas.

Magiæ naturalis, la magia natural. Así tituló Giambattista della Porta a uno de los primeros textos de divulgacion científica –o precientífica– de la época moderna; y bajo tal nombre se empezó a enseñar en la Universidad de Bolonia durante el siglo XVI, a instancias del filósofo Pietro Pomponazzi, esa nueva magia empírica que se diferenciaba de la filosofía y la religión. Magia naturalis, ciencia natural, ciencia. Dice el diccionario de la Real Academia Española que la magia natural es aquella que por medios naturales obra efectos que parecen sobrenaturales. Difícilmente se podría encontrar una descripción mejor.

301 Comentarios Trackbacks / Pingbacks (4)
¡Qué malo!Pschá.No está mal.Es bueno.¡¡¡Magnífico!!! (66 votos, media: 4,77 de 5)
Loading ... Loading ...
Be Sociable, Share!