La anomalía de L’Atalante

Los metazoos de L’Atalante, en el Mediterráneo oriental, desafían una vez más los límites de la vida.

Tardigrado u osito de agua, un poliextremófilo extremadamente resistente, incluso al espacio exterior.

El tardígrado u osito de agua, un invitado habitual en este blog. Pese a ser un animal como nosotros, se trata de un poliextremófilo radical capaz de sobrevivir a 6.000 atmósferas de presión, a más de 5.000 grays de radiación (10 grays bastan para aniquilar a los humanos) y hasta en el espacio exterior: en septiembre de 2007, la cápsula rusa Foton-M3 se llevó a unos cuantos de paseo por la órbita terrestre durante 12 días, expuestos al vacío cósmico y la radiación ultravioleta solar. Tras ser rehidratados a su regreso, el 68% revivieron (aunque la mortalidad posterior fue elevada.) Los huevos que llevaban con ellos resultaron esterilizados, pero los que pusieron después eclosionaron con normalidad. Fuente: Jönsson et al, «Tardigrades survive exposure to space in low Earth orbit», Current Biology Magazine vol. 18, nº 17, R729-731.

Me fascinan los extremófilos, esos seres disidentes que por el mero hecho de existir ponen en tela de juicio todas las convenciones sobre lo que es posible en el mundo de los vivos. Desde hace algún tiempo, ya sabemos que existen seres capaces de medrar y tomarse unas cañitas tranquilamente en entornos antiguamente considerados imposibles para la vida. Arqueas que siguen reproduciéndose a 122ºC o sumergidas en ácido sulfúrico, bacterias capaces de sobrevivir a presiones suficientes como para producir diamante artificial (16.000 atmósferas) o a 30.000 grays de radiación gamma (similar a la radiación directa a 590 metros de un arma termonuclear de un megatón), líquenes que mantienen su actividad fotosintética a 20ºC bajo cero, indicios de actividad enzimática en mezclas acuosas a 100ºC bajo cero, y hasta organismos pluricelulares complejos con la habilidad de soportar buena parte de todo esto mientras viajan expuestos al espacio exterior, como nuestro querido osito de agua

Incluso sin salir de aquí, incluso sin abandonar el planeta Tierra, donde la vida ha surgido sometida a unos determinantes físico-químicos muy específicos, estamos rodeados por vivientes que podrían sobrevivir, reproducirse y evolucionar en condiciones alienígenas. De hecho, es incluso posible que la primera vida sobre la faz de la Tierra estuviera constituida por algunos de estos seres extremos, al calor de las fumarolas submarinas. Así pues, con tantas pruebas de que es posible la vida e incluso la vida compleja donde se creía imposible, surge inmediatamente la pregunta de si es posible la vida e incluso la vida compleja como se creía imposible. Por ejemplo, en ausencia de alguno de sus constituyentes fundamentales: carbono, nitrógeno, hidrógeno, oxígeno, lo que viene a llamarse por el acrónimo CHON.

Bioelementos.

Composición química del ser humano, por masa

Composición elemental del ser humano, por masa. (Clic para ampliar)

En el planeta Tierra, los elementos fundamentales para la vida son el carbono, el nitrógeno, el hidrógeno y el oxígeno. Entre los cuatro, suman entre el 97,9 y el 99,7% de lo que somos. No tiene nada de raro: todos ellos se cuentan entre los elementos más comunes de nuestra galaxia y de la corteza y atmósfera terrestres que nos vieron nacer. También se consideran esenciales el fósforo y el azufre, dando lugar al acrónimo CHONPS. Y resulta difícil imaginar vivientes como los de aquí sin sodio, calcio, potasio, magnesio, cloro, hierro y yodo. Los demás elementos que intervienen en la vida terrestre, hasta unos setenta aproximadamente, aparecen en unos seres vivos y en otros no. (+info: Esta es tu naturaleza)

De todos ellos, la clave de la vida terrestre es el carbono pero su principal componente es el oxígeno: por ejemplo, en un cuerpo humano, asciende al 62,8% de la masa que nos constituye. En las bacterias esta cifra aumenta al 73,7% y en algunas plantas, como la alfalfa, llega al 77,9%. ¿Y dónde está este oxígeno? Bueno, pues mayormente fijado en el agua; entre la mitad y las tres cuartas partes de lo que somos es agua. Pero también en un montón de las demás moléculas que nos dan forma. De hecho, es difícil concebir biomoléculas que no contengan oxígeno. Desde los lípidos más básicos que componen las membranas celulares hasta monstruos como el ADN y el ARN, todos necesitan el oxígeno para existir.

Hasta hace poco se pensaba que todos los seres multicelulares complejos necesitamos de la presencia del oxígeno libre (O2) en nuestro entorno para sobrevivir y reproducirnos. Es decir, que somos aerobios obligatorios. Sin oxígeno libre en el aire o en el agua que nos rodea, según tengamos pulmones o agallas o lo que sea, nos asfixiamos y morimos rápidamente. Eso de vivir en ausencia de oxígeno era cosa de seres unicelulares como las bacterias o las arqueas, que usan mecanismos como la fermentación o la respiración anaeróbica para conseguir lo suyo. Pero nada más complejo que un protozoo podía existir sin tirar mano del oxígeno a su alrededor; y aún estos, con dificultades. Eso creíamos.

Buque oceanográfico L'Atalante

Buque oceanográfico L’Atalante, del Instituto Francés de Investigaciones para la Explotación del Mar (IFREMER). Foto: © IFREMER

Los extraños habitantes de L’Atalante.

Cuenca de L'Atalante - Ubicación

Ubicación de la Cuenca de L’Atalante, Mediterráneo Oriental. Mapa base: © Google Maps (clic para ampliar)

Así fue hasta el año 2010, cuando empezaron a llegar noticias sobre unos bichejos francamente extraños que medran a su gusto en la Cuenca de L’Atalante, a su vez un sitio bastante peculiar. La Cuenca de L’Atalante es un lago submarino de salmuera situado en el Mediterráneo Oriental, 192 km al Oeste de Creta, a unos 3.500 metros de profundidad. No es el único; hay bastantes más. En realidad, es el más pequeño de los tres que se encuentran por la zona. Este en particular recibe su nombre por el buque francés de investigación oceanográfica que lo descubrió en 1993.

Este lago de salmuera y sus dos vecinos, Urania y Discovery, se formaron hace no más de 35.000 años, conforme los depósitos de evaporita surgidos durante la Crisis salina del Messiniense (hace algo más de cinco millones de años) fueron disolviéndose y reconcentrándose en las profundidades del Mediterráneo. Así, su salinidad se disparó. Hoy en día es ocho veces superior a la del agua marina corriente, cerca del punto de saturación. Se trata básicamente de un lago hipersalino, pero a gran profundidad.

Estos lagos submarinos de salmuera tienen varias peculiaridades. Una de ellas es que sus aguas se mezclan muy poco con las del resto del mar. Es decir, con las que tienen oxígeno libre disuelto, lo que permite respirar a los peces y demás. Eso significa que éste no puede pasar y, como resultado, son fuertemente anóxicos. Vamos, que prácticamente no hay oxígeno libre en ellos.

Así que durante los siguientes diecisiete años se supuso que en L’Atalante sólo residían los vecinos de turno en semejantes sitios: bacterias y arqueas quimioautótrofas, como las euriarqueotas aficionadas a las fuentes hidrotermales y demás extremófilos a los que sólo les molan los sitios que nos matarían rápidamente a todos los demás. Especialmente, a los metazoos. O sea, a nosotros, los animales.

Spinoloricus nov. sp.

La loricífera Spinoloricus nov. sp. de la Cuenca de L’Atalante, el primer animal encontrado que puede vivir en condiciones totalmente anóxicas. Teñida con Rosa de Bengala. Imagen: Danovaro et al. BMC Biology 2010, 8:30

Hasta que, en 2010, apareció la anomalía. Lo hizo en un paper encabezado por el profesor italiano de biología marina Roberto Danovaro, que lleva por título «Los primeros metazoos viviendo en condiciones anóxicas permanentes.« Es decir, animales viviendo sin presencia de oxígeno libre. Hasta el día anterior tal cosa se consideraba, esencialmente, imposible.

Y sin embargo ahí están, bien sanos y lustrosos. En las fosas hipersalinas del Mediterráneo se han pillado el apartamento al menos tres especies de Loricifera que no necesitan respirar oxígeno libre como todo hijo de madre pluricelular. Los Loricifera son unos bichitos microscópicos o casi, residentes habituales en los sedimentos del fondo marino y evolutivamente próximos a los gusanos gordianos y los gusanos-pene (sí, ese pene en el que estás pensando). Estas tres especies se llaman Spinoloricus nov. sp. (o Spinoloricus Cinzia), Rugiloricus nov. sp. y Pliciloricus nov. sp.

¿Pero cómo son capaces? Bien, según los estudios realizados hasta el momento, resulta que estos tres animalitos carecen de mitocondrias, con lo que no tienen las mismas exigencias de respiración celular que el resto de nosotros. En su lugar parecen poseer hidrogenosomas, algo más propio de ciertos hongos, protistasprotozoos ciliados. El intrincado proceso evolutivo mediante el que tales hidrogenosomas pudieron acabar en un animal pluricelular como tú y como yo es todavía desconocido. Algunos sugieren que podría tratarse de simbiontes, pero esto presenta sus propios problemas.

A decir verdad, todavía no se sabe gran cosa de ellos. Están en ello. Pero se reproducen por huevos (que nooo, que quiero decir que son ovíparos). Aunque el equipo del Dr. Danovaro no logró llevar a ninguno de estos animales hasta la superficie sin que murieran por el camino, dos de los que obtuvieron contenían huevos. Se los extrajeron y los incubaron en condiciones totalmente anóxicas a bordo del buque, con éxito. Los huevos terminaron abriéndose y dieron lugar a animalitos vivos.

Cada vez más vida, en lugares cada vez más imposibles.

Naturalmente, Spinoloricus nov. sp., Rugiloricus nov. sp. y Pliciloricus nov. sp. incorporan tanto oxígeno en sus moléculas como el resto de los terrestres y lo necesitan para sobrevivir, por mucho que lo obtengan de manera distinta. Toda la vida que conocemos en este planeta procede de un antepasado común; estos Loricifera no son una excepción. Están sujetos a las mismas reglas que todos los demás, y eso incluye ser CHONis –ya sabes, carbono, hidrógeno, oxígeno, nitrógeno ;-) –. No son animales libres de oxígeno, como se ha dicho por ahí. Simplemente gestionan su oxígeno de una manera distinta, bastante extraordinaria.

Pero también es cierto que la vida no deja de darnos sorpresas. Cada vez que alguien establece un límite sobre los lugares donde es posible la vida, al menos en un entorno planetario como la Tierra, termina apareciendo algún bicho que se lo come. Y algunos, claro, nos preguntamos dónde está el límite. Los más astrobiotrastornados, nos preguntamos lo que podría ser posible con otras biologías, bajo la luz de otros soles.

En este sentido, una de mis rayadas favoritas me la enseñó el astrofísico del pueblo Carl Sagan, y no soy el único que la sufre. Es, por supuesto, lo que llamamos el chauvinismo del agua. En las propias palabras de Carl:

Hay chauvinismo del carbono, chauvinismo del agua… ya sabes, gente que dice que la vida, en todas partes, sólo puede basarse en las mismas bases químicas en que nos sustentamos nosotros. Bien, a lo mejor tienen razón. Pero dado que los mismos tipos que hacen esa afirmación están basados en el carbono y en el agua, a mí me hace sospechar. Si estuvieran basados en alguna otra cosa, me merecerían más credibilidad.

Debo confesar que soy un chauvinista del carbono. Habiendo estudiado las alternativas, me parece que el carbono es mucho más adecuado para crear moléculas complejas, y mucho más abundante que cualquier otra cosa en que podamos pensar. (…) Sin embargo, no soy tan chauvinista del agua. Me puedo imaginar al amoníaco, o combinaciones de hidrocarburos que no son nada raras en el universo, desempeñando el papel del agua.

Luego tenemos a los chauvinistas del tipo espectral G, que dicen que sólo puede haber vida en torno a estrellas como la nuestra. Los chauvinistas planetarios dicen que la vida sólo puede ocurrir en planetas y no, por ejemplo, en estrellas o en el medio interestelar. Soy un chauvinista planetario: parece haber buenas razones para que la vida sólo pueda aparecer en planetas [o lunas].

El chauvinista extremo dice: «si mi abuela estaría incómoda en ese ambiente, entonces la vida es imposible ahí.» Uno se encuentra con eso a menudo. La conocida expresión «la vida tal y como la conocemos» se basa exactamente en esa idea. Pero hay muchos microorganismos exóticos en la Tierra a los que les va bien en soluciones calientes de ácido sulfúrico concentrado y otras muchas cosas. Si no has oído hablar de ellos, te crees que nadie podría vivir en semejante entorno. Pero hay bichos que lo adoran.

Creo que una de las grandes delicias de la exobiología es que nos obliga a enfrentarnos al provincialismo en nuestras suposiciones biológicas. Toda la vida en la Tierra es esencialmente la misma; químicamente, somos idénticos a las bacterias o las begonias. (…) Creo que es ahí donde estará la realidad en la búsqueda de inteligencias extraterrestres. No se va a ajustar a nuestras fantasías, y no se va a ajustar a nuestro chauvinismo.

–Timothy Ferris [1973], entrevista a Carl Sagan en la revista Rolling Stone.

(Recogida por Tom Head [2006], Conversaciones con Carl Sagan, pp. 10-12)

No, por el momento seguimos sin tener el más mínimo indicio de vida extraterrestre, pese a todos los creyentes en los OVNIs y contactados que en el mundo son. Hoy por hoy, la paradoja de Fermi (más o menos: «si la vida es común en el universo, ¿dónde está todo el mundo?») sigue tan en vigor como cuando se formuló.

Fotografía del exoplaneta Beta Pictoris b

La primera fotografía directa de un exoplaneta: Beta Pictoris b, a 63 años-luz de aquí, Obtenida por el Very Large Telescope (VLT) del European Southern Observatory en Chile. (Clic para ampliar)

Sin embargo, la hipótesis de la Tierra especial, de que la Tierra es un caso excepcional en el universo con una rarísima capacidad para albergar vida, se sostiene cada vez menos. Para empezar, estamos detectando exoplanetas sin parar. En estos momentos, se han confirmado 1.074 en 812 sistemas solares, de los cuales al menos 178 son sistemas múltiples como el nuestro, y hay varios miles de candidatos más. Incluso con nuestras precarias capacidades de detección actuales –los planetas y lunas no emiten luz propia, con lo que requieren instrumentos extremadamente sensibles para captarlos–, vamos estando en condiciones de extrapolar que hay al menos cien mil millones de planetas sólo en nuestra galaxia, un promedio de uno por cada estrella como mínimo. Es de suponer que muchos de estos planetas tendrán lunas, demasiado pequeñas para distinguirlas con nuestra tecnología actual. A poco que los sistemas solares se generen de manera parecida en el universo observable, y no tenemos ningún motivo para sospechar lo contrario, puedes ir multiplicando eso por los al menos cien mil millones de galaxias que hay (probablemente bastantes más.) Eso es un uno seguido de veintidós ceros, sólo para empezar.

Los sistemas solares no son raros en absoluto. Suponiendo que sólo las estrellas de tipo G (como el Sol) y unas pocas de las más parecidas entre las F y las K pudieran albergar vida (el chauvinismo del tipo espectral G que mencionaba Sagan), representarían al menos un 10% de todas ellas. Continuamos teniendo un uno seguido de veintiún ceros. Vamos a descontar también las que pudieran estar fuera de las zonas de habitabilidad galáctica, un concepto en parte controvertido que algunos nos tomamos con un grano de anís. Pero lo daremos por bueno, y además en una de sus variantes más severas: metámosle a la cifra un hachazo de otro 90% (en vez del 60% habitual o el 40% optimista) y seguimos teniendo un uno seguido de veinte ceros de estrellas como la nuestra instaladas en las zonas más habitables de sus respectivas galaxias. Y a cada una de ellas le corresponde un sistema solar como el nuestro, compuesto por planetas y lunas como las nuestras. Si esto de incluir a todas las galaxias te parece demasiado atrevido y sólo quieres contar la nuestra, mil millones.

Y si sólo uno de cada mil planetas son de tipo terrestre y se hallan en las zonas de habitabilidad estelar de sus respectivos soles (una estimación considerablemente estirada a la baja), nos siguen quedando un millón en esta galaxia y cien billones en el universo observable presente. Y aún no hemos empezado a contar satélites, que no se pueden descartar en absoluto, porque algunos de ellos pueden ser de notable tamaño, con atmósfera propia, aunque orbiten en torno a planetas de tipo no-terrestre. Como, por ejemplo, Titán de Saturno, que presenta una densa atmósfera de nitrógeno, agua en forma de hielo e hidrocarburos líquidos superficiales. Sólo en nuestro sistema solar, hay 19 lunas que han alcanzado el equilibrio hidrostático y por tanto se podrían considerar planetas o planetoides si orbitaran directamente alrededor del Sol. Muchos de estos exosistemas solares presentan también grandes gigantes gaseosos, que algunos consideran importantes para el surgimiento de la vida.

Gliese 667C c - impresión artística superficial

Impresión artística de una puesta del sol en la súper-Tierra Gliese 667 Cc. Las estrellas son el sistema ternario Gliese 667 A/B/C; el planeta orbita en torno a esta última. Imagen:
European Southern Observatory / L. Calçada (Clic para ampliar)

En estos momentos, los exoplanetas confirmados que creemos más similares a la Tierra son Gliese 667C c, a 12 años-luz de aquí, y Kepler-62e, a 1.200. Ambos se encuentran dentro de esa supuesta zona de habitabilidad galáctica de nuestra Vía Láctea y en la zona de habitabilidad estelar de sus respectivos soles, si bien al lado caliente, lo que podría hacer de ellos planetas «súper-tropicales» (!). Hay otros candidatos pendientes de confirmación muy interesantes. En general, la probabilidad de que haya otros mundos capaces de albergar vida se multiplica con cada una de estas detecciones. Y no paran de producirse, conforme nuestros instrumentos mejoran más y más.

Por el extremo contrario, descubrimientos como el de L’Atalante nos demuestran que la vida, incluso la vida pluricelular compleja, incluso los animales como nosotros, son posibles en condiciones cada vez más extremas sin ni siquiera salirse de la biología terrestre, ni del ADN ni de los eucariontes. Sin salirse de los que son como nosotros. Con otras bioquímicas, surgiendo y evolucionando a partir de condiciones distintas hacia dominios insospechados bajo presiones evolutivas radicalmente diferentes, las posibilidades son inmensas y están más allá de lo que puede soñar la más desbocada imaginación.

64 Comentarios Trackbacks / Pingbacks (22)
¡Qué malo!Pschá.No está mal.Es bueno.¡¡¡Magnífico!!! (62 votos, media: 4,84 de 5)
Loading...
Be Sociable, Share!

Resultados encuesta: ¿Ha detenido el ser humano su evolución biológica?

Resultados encuesta junio 2011.

Anterior: ¿Conseguirá España algún premio Nobel científico antes de 2050?

Resultados encuesta La Pizarra de Yuri junio 2011: El ser humano, ¿ha detenido su evolución biológica?

Resultados encuesta La Pizarra de Yuri junio 2011: El ser humano, ¿ha detenido su evolución biológica?

Una vez cerrada la décima encuesta, realizada entre el 1 y el 30 de junio de 2011 (inclusives), los 902 votos emitidos han dado lugar a los siguientes resultados en detalle:

El ser humano, ¿ha detenido su evolución biológica?

  1. No; nuestra evolución biológica proseguirá adaptándose a nuestros condicionantes sociales: 358 (39,69%).
  2. En gran medida, sí; en las sociedades modernas, la presión evolutiva ha quedado reducida a un mínimo: 298 (33,04%).
  3. No; no está a nuestro alcance detenerla: 195 (21,62%).
  4. Tengo otra opinión distinta: 51 (5,65%).

Los porcentajes pueden no totalizar el 100% debido a los redondeos decimales.

Esta encuesta no es científica. Sólo refleja la opinión de aquellas personas que eligieron participar.
Los resultados no representan necesariamente la opinión del público, de los usuarios de Internet en general o de los lectores de La Pizarra de Yuri en su totalidad.

Encuesta de julio:

Si tuvieras una máquina del tiempo, ¿a dónde preferirías viajar?

21 Comentarios Trackbacks / Pingbacks (21)
¡Qué malo!Pschá.No está mal.Es bueno.¡¡¡Magnífico!!! (18 votos, media: 4,56 de 5)
Loading...
Be Sociable, Share!

El Gran Morir

En comparación, lo de los dinosaurios no pasó de broma pesada.
Hace 251,4 millones de años, algo mató al 96% de las especies marinas, al 70% de los vertebrados terrestres
y a una inmensa cantidad de insectos y plantas. Fue el Gran Morir, y aún no tenemos claro por qué.

Impresión artística de la vida a orillas de un río pérmico.

Impresión artística, científicamente rigurosa, de la vida a orillas de un río del Pérmico medio. Casi todo esto y muchas cosas más desaparecieron con el Gran Morir. (Clic para ampliar)

Si los gorgonópsidos hubieran tenido noticieros como los nuestros, seguramente habrían puesto la noticia al final, justo antes de los deportes. O a lo mejor ni siquiera eso. Los volcanes son muy espectaculares y quedan guapos en la tele, pero esto comenzó más bien como una suave erupción de lava en la costa nororiental de Pangea. Ellos no tenían ninguna manera de saberlo, y sin embargo estaban ante el inicio de las temibles escaleras siberianas, el principio del acto final en el mayor proceso de extinción que se ha visto en el planeta Tierra jamás y que acabaría con ellos también. Los humanos, que no aparecimos por aquí hasta doscientos cincuenta millones de años después, la llamamos la extinción supermasiva del Pérmico-Triásico (P-Tr). Más brevemente, la Gran Mortandad.

O el Gran Morir. Porque eso fue exactamente lo que pasó: muerte a una escala planetaria, sobrecogedora, general. Si mañana hiciéramos estallar a mala baba todo lo que guardamos en nuestros arsenales más devastadores y sofisticados, no provocaríamos (en principio) nada ni parecido; nos vendría justito para extinguirnos a nosotros mismos, algo no muy meritorio, y relativamente poco más. Puede que el invierno nuclear subsiguiente llegara a producir una pequeña extinción. En cambio, el Gran Morir aniquiló al 96% de las especies marinas, al 70% de los vertebrados terrestres y a tantas plantas e insectos que aún andamos contándolos, entre otras cosas porque apenas quedó rastro de todos ellos. Y matar a tanto insecto sí que tiene mérito: son los seres pluricelulares más resistentes que hay.

Acabó con seres tan ubicuos y resistentes como los trilobites, que llevaban aquí 270 millones de años y ocupaban prácticamente todos los nichos ecológicos marinos. Al menos una tercera parte de los insectos desaparecieron, especialmente aquellos tan grandes típicos del periodo anterior. No hubo más escorpiones marinos, que dominaban el océano. Los blastozoos se fueron también. Los helechos con semilla se extinguieron y a las gimnospermas les costó una buena temporada reaparecer. No se generó carbón durante el periodo, a diferencia de lo ocurrido característicamente en el Carbonífero precedente, lo que invita a pensar que la práctica totalidad de las plantas turberas cayeron. Hasta el 60% de todas las especies vivas dejaron de existir. Puso un gigantesco punto y aparte a la historia de la vida en el planeta Tierra, al menos por encima del nivel de las bacterias y archaeas; tanto es así, que consideramos que el Paleozoico con toda su vida primitiva termina ahí. La recuperación fue muy lenta: más de treinta millones de años.

Verdaderamente, la extinción supermasiva del Pérmico-Triásico fue el Gran Morir. Y, como suele ocurrir con la muerte, también el principio del Gran Vivir que permitió el surgimiento de las formas de vida avanzadas. Eso nos incluye, claro, a ti y a mí: una extinción nos abrió el camino y otra nos lo cerrará, a menos que aprendamos a impedirlo alguna vez.

Mapamundi a finales del Pérmico.

Mapamundi terrestre a finales del Pérmico, cuando sucedió el Gran Morir. Las escaleras siberianas entraron en erupción en la costa oriental de la región de aguas poco profundas situada justo al norte. Fuente: Dr. Ron Blakey, profesor emérito de geología en la Universidad de Arizona del Norte. (Clic para ampliar)

Del Pérmico.

El Pérmico recibe su nombre por la ciudad de Perm, situada en Rusia a caballo entre Europa y Asia, alrededor de la que se encuentran una gran cantidad de fósiles de aquellos tiempos (sobre todo en los Montes Urales). Fue un periodo geológico con una duración de casi cincuenta millones de años (comenzó aproximadamente hace 299 millones de años y terminó hace unos 250, precisamente con esta extinción) en el que ocurrieron un montón de cosas interesantes, como la evolución claramente diferenciada de los saurópsidos –que darían lugar a los reptiles, incluyendo a los dinosaurios y luego a las aves– y los sinápsidos –donde se originaron los mamíferos, o sea, nosotros–.

En tiempos pérmicos, la deriva continental estaba empujando a todos los continentes contra sí mismos hasta constituir uno solo: un supercontinente gigantesco donde se concentrarían casi todas las tierras emergidas del planeta Tierra, al que llamamos Pangea. Este supercontinente estaba –lógicamente– rodeado por un superocéano aún mayor, que bautizamos como Panthalassa. Para cuando sucedió el Gran Morir, una región insular separatista a la que llamamos Cimmeria había comenzado a desprenderse, desarrollando el Océano Paleo-Tetis; mientras que, al norte, Siberia terminaba de formar la Pangea una y grande precipitándose hacia el sur.

El clima pérmico varió significativamente a lo largo de tanto millón de años, desde las glaciaciones del Carbonífero final, que había provocado el colapso de la pluviselva tropical, hasta la dislocación térmica masiva que coincidió con la gran extinción. Pero la presencia de un supercontinente tan grande como Pangea hizo que se mantuvieran algunas tendencias a lo largo de todo el periodo. Por ejemplo, el clima del interior de Pangea tendía a ser supercontinental, con veranos muy calurosos, inviernos gélidos y pocas precipitaciones, lo que daba lugar a un entorno muy seco. Esto estaba matizado por fortísimos monzones, con lluvias muy intensas pero muy estacionales, más importantes cerca de las costas. Con gran probabilidad, los vientos debían ser bastante más fuertes que en la actualidad, debido a las elevadas diferencias térmicas entre el interior de Pangea y las costas y mares de Panthalassa.

Estratos de arenisca del límite Pérmico-Triásico fotografiados en Runcorn Hill, Reino Unido.

Estratos de arenisca del límite Pérmico-Triásico fotografiados en Runcorn Hill, Reino Unido. (Nueva ventana o pestaña para ampliar)

La presencia de oxígeno atmosférico, que había llegado al 35% a finales del Carbonífero, descendió durante todo el Pérmico y cuando ocurrió el Gran Morir era del 16%, un poco menor que la actual (20%); seguiría descendiendo hasta bien entrado el Triásico, llegando a caer hasta el 12%. Se sospecha seriamente que esta variación del oxígeno atmosférico está estrechamente relacionada con los complejos fenómenos planetarios que condujeron a la catástrofe, y que bien podían haberse puesto en marcha mucho tiempo atrás.

Un paisaje típico de Pangea a finales del Pérmico podría estar constituido por un bosque de coníferas, helechos con semillas y gimnospermas donde revoloteasen grandes blatópteros, libélulas o caballitos del diablo, sin mariposas ni aves. Tampoco había flores aún. Por entre el follaje medrarían seres como los gorgonópsidos, los dicinodontes o los primeros arcosauriformes que antecedieron a los dinosaurios. Al fondo, algunos de los grandes pareiasaurios herbívoros. Seguramente a esas alturas ya no quedaban dimetrodontes, pero sí batracosaurios y temnospónlidos. Debido al bajo nivel de oxígeno, respirar nos resultaría tan difícil como en lo alto de una gran montaña de hoy en día o cosa parecida; por lo demás, no hay ninguna razón por la que no pudiéramos sobrevivir en el lugar. Seguramente las bacterias y virus de aquel tiempo no nos afectarían, dado que no habrían tenido ocasión de co-evolucionar con nosotros. En cambio, sería de lo más razonable evitar a cualquier cosa capaz de tirar bocados, que no eran pocas.

Así era nuestra Tierra vieja cuando lentamente comenzó la catástrofe ecológica más grande de todos los tiempos. Al parecer hubo varios pulsos de extinción consecutivos a lo largo de los veinte millones de años anteriores que habrían dejado a la vida en un estado convaleciente relativamente frágil. Pero el Gran Morir se concentró sobre todo en el último, de aproximadamente un millón de años de duración o puede que incluso menos. De hecho, muchos animales pudieron desaparecer en apenas 10.000 – 60.000 años, con la mortandad disparándose masivamente a partir de un determinado instante radiodatado hace 251.400.000 años, teniendo en cuenta un margen de error de treinta milenios arriba o abajo. A las plantas les costó un poco más, unos pocos cientos de miles de años. Y parece que hubo varios sub-pulsos, separados 730.000 y 1.220.000 años entre sí. Pero todo apunta a que se trató de un evento súbito, una gran catástrofe repentina en términos geológicos. Y no hay muchas cosas que le puedan hacer semejante mal, tan deprisa, a algo tan feraz, tan absurdamente resistente como la vida.


Mapamundi de la deriva continental terrestre a lo largo de 800 millones de años (650 conocidos del pasado y 150 proyectados hacia el futuro).

La escalera siberiana.

Las escaleras siberianas en la actualidad.

Las escaleras siberianas en la actualidad. Foto: Mikhail Maksimov (Clic para ampliar)

Las hipótesis sobre las causas del Gran Morir son muchas y variadas, pero para ser admisibles, deberían explicar algunos de los fenómenos observados durante este proceso. Y en el Gran Morir se produjeron varios fenómenos muy singulares, que ninguna de ellas explica hoy por hoy en su totalidad.

El primero de estos fenómenos observados en los estratos geológicos del periodo es una notabilísima alteración de las proporciones globales entre los isótopos carbono-12 y carbono-13 (fuente 1, fuente 2, fuente 3). En algún caso, el descenso de carbono-13 con respecto al carbono-12 llega al 42 ‰. ¿Y esto qué significa? Bueno, resulta que como ocurre con todos los átomos, se presentan en la naturaleza con una determinada proporción entre sus distintos isótopos. El carbono-12 constituye el 98,93% del carbono presente en el medio ambiente terrestre, mientras que el carbono-13 representa el 1,07%. Sin embargo, los seres vivos tienden a fijar una proporción menor del isótopo 13, y cada ser vivo lo hace además en unas cantidades determinadas; estas variaciones constituyen la llamada firma isotópica. Pero también, de manera muy característica, la presencia masiva de este carbono extremadamente bajo en isótopo 13 resulta típica en las grandes erupciones volcánicas y ciertos depósitos de gases subterráneos con origen orgánico.

Extraer una conclusión directa de esta variación de las proporciones entre el carbono-13 y el carbono-12 sería muy aventurado, pero hay algo que indica con claridad: el ciclo del carbono terrestre quedó brutalmente alterado durante la extinción supermasiva del Pérmico-Triásico. Estas alteraciones del carbono-13 se puede medir en los estratos geológicos correspondientes a todas las extinciones, pero en el caso del Gran Morir resulta espectacular: es del 2,5 – 10 ‰ a nivel global y en algunos puntos llega hasta el 42 ‰.

Entonces, inevitablemente, todo el mundo mira en la dirección de otro fenómeno monumental sucedido exactamente en ese mismo momento. Hace 251 millones de años comenzaba una de las mayores erupciones volcánicas de la historia terrestre, en las orillas del continente ancestral que ahora forma parte de lo que llamamos Siberia. Como apunté al principio, no se trató de una gran explosión, sino de la efusión rápida de grandes cantidades de lava caliente y poco viscosa a lo largo del siguiente millón de años. Por las formas características que forma la lava al solidificarse en estos casos, que recuerdan a una escalera, se denominan con la palabra sueca trapp (que significa eso mismo). Y por eso a esta enorme erupción se la conoce en todo el mundo como siberian trapps (en ruso original: Сибирские траппы), que a veces se ve (erróneamente) traducido al castellano como trampas siberianas pero en realidad quiere decir escaleras siberianas.

Extensión de las escaleras siberianas en un mapa actual.

Extensión de las escaleras siberianas en un mapa actual. (Nueva ventana o pestaña para ampliar)

Las escaleras siberianas son una de las dos erupciones más grandes ocurridas en aguas poco profundas o en la superficie terrestre de las que queda alguna pista (las hubo mayores, pero ocurrieron en el fondo oceánico, lo que matiza sus efectos). Se estima que proyectó entre uno y cuatro millones de kilómetros cúbicos de lava basáltica, cubriendo unos siete millones de kilómetros cuadrados de terreno, más una cantidad aún indeterminada pero extraordinariamente grande de gases de efecto invernadero entre los que se encontraba el CO2. Para hacernos una idea, la erupción explosiva conocida más potente de todas las épocas (Guarapuava – Tamarana – Sarusas, durante las escaleras de Paraná y Etendeka, hace unos 130 millones de años) proyectó al exterior unos 8.600 km3 de material. Es decir: entre cien y cuatrocientas cincuenta veces menos.

Digámoslo: es imposible pensar en una gran extinción, con un descenso acusado del carbono-13, y no pensar instantáneamente en una de las mayores erupciones de la historia de la Tierra que sucedía en ese mismo momento exacto. Sin embargo, tenemos un problema, y es que ni siquiera esa inmensa erupción basta para explicar una caída tan grande en el isótopo carbono-13, por varios órdenes de magnitud.

Casi con total seguridad, ambos fenómenos tienen que estar relacionados de algún modo. Sería una casualidad extraordinaria, absurda, si la mayor extinción de la historia de la Tierra coincide exactamente en el tiempo con una de las mayores erupciones volcánicas conocidas y ambos hechos no tuvieran vínculo alguno. Pero no es suficiente. Hace falta algo más, algo mucho mayor para explicar lo que ocurrió.

Avalancha de eventos a nivel de extinción.

Extinciones durante los últimos 542 millones de años.

Extinciones durante los últimos 542 millones de años, representadas como el porcentaje de géneros de un determinado periodo que no se encuentra en el registro geológico del siguiente. Puede observarse cómo el Gran Morir (P-Tr) destaca nítidamente sobre todas las demás.

Otra de las ideas que vienen inmediatamente a la cabeza, sobre todo desde que sabemos que a los dinosaurios se los cargó un meteorito, es que el Gran Morir fuera causado por otro de estos objetos que caen de los cielos. El problema es que no hay ningún indicio claro al respecto, y de manera muy específica no hay una capa de material de origen extraterrestre (como el iridio presente en el de los dinosaurios) en el estrato de la extinción supermasiva del Pérmico-Triásico. En ausencia de esta clase de evidencia, la hipótesis meteorítica para el Gran Morir no pasa de suposición o conjetura.

En estos momentos se postula un fenómeno en avalancha, que seguramente resultó activado por la erupción de las escaleras siberianas, pero que se amplificó enormemente debido a otros fenómenos. El primero de estos fenómenos, como ya hemos comentado, es que la vida terrestre estaba un tanto convaleciente de las miniextinciones precedentes y bajo presión por el constante descenso del oxígeno atmosférico a lo largo de todo el Pérmico. El segundo fue la formación del supercontienente Pangea, en el mismo periodo, que al concentrar las tierras emergidas en un solo lugar redujo la extensión y diversidad de las aguas poco profundas, que son las mejores para la vida. El tercero estaría relacionado con el punto exacto de erupción de las escaleras siberianas: en tierra, cerca de grandes depósitos de carbón y también de clatratos de hidratos de metano fijados al suelo.

Así, la lava basáltica producida en la gran erupción de las escaleras siberianas habría incendiado este carbón, emitiendo grandes cantidades de CO2 a la atmósfera. Pero no sólo eso: también habría liberado los hidratos de metano como un fusil de clatratos (ver también aquí). Este fenómeno –que, por cierto, podría estar repitiéndose ahora mismo– sí bastaría para explicar el enorme incremento de carbono pobre en isótopo 13 registrado durante el Gran Morir. También puede liberar, de una manera análoga, cantidades significativas del muy tóxico sulfuro de hidrógeno. Tanto el metano como el sulfuro de hidrógeno son potentes gases de efecto invernadero, con lo que la temperatura terrestre habría comenzado a ascender significativamente.

Listrosaurio

Animales como el Listrosaurio sobrevivieron al Gran Morir y sus descendientes evolutivos, también a la extinción de los dinosaurios. De ellos surgieron los mamíferos modernos, como tú y yo, por ejemplo.

La liberación del metano presente en los clatratos, además, puede tener otro efecto devastador para la vida cuando se produce en aguas relativamente poco profundas. Al burbujear a través del agua, le roba el oxígeno, produciendo anoxia oceánica que el incremento de la temperatura ocasionado por el calentamiento global empeora aún más (y que también ha sido medida en los estratos del Gran Morir). Así, lo que tendríamos en marcha es una especie de máquina natural de eventos a nivel de extinción que se retroalimenta a sí misma sin parar. Pudieron producirse otros sucesos paralelos más.

Estos modelo de causas múltiples y orígenes distintos pero encadenadas en torno a un elemento común, que se suelen llamar modelos del asesinato en el Orient Express, son los que probablemente expliquen mejor un fenómeno tan complejo y tan enorme como el Gran Morir. Ningún agente reconocible en ese momento y lugar pudo causar semejante mortandad por sí solo y tan rápidamente; en cambio, una sucesión de causas-efectos concatenados sí habría sido capaz. De esa forma, un fenómeno insuficiente pero poderoso –como la erupción de las escaleras siberianas– disparándose en el contexto adecuado habría puesto en marcha una máquina de la extinción a escala planetaria que sólo se detuvo cuando alcanzó un nuevo punto de estabilidad, un millón y pico de años después.

Aunque ya tenemos datos muy sólidos, el mecanismo exacto que es capaz de matar a tanta vida aún se nos escapa. Sin embargo, el registro fósil no deja lugar a dudas: a lo largo de la historia de la vida, algo –o, más probablemente, varios algos distintos– fue capaz de provocar grandes catástrofes ecológicas que se realimentaron a sí mismas hasta exterminar a órdenes de la vida enteros. Desde mi punto de vista, las enseñanzas son (al menos) dos. Una, que no comprendiendo bien cómo sucedieron pero sabiendo que un suceso relativamente menor y lento puede activar un mecanismo aniquilador mucho más grande y veloz, resulta arriesgadísimo apostar a que algo –algo que hagamos, por ejemplo– será incapaz de poner en marcha un proceso así. Y la otra, que de la muerte siempre surge la vida, una y otra vez, y seguirá haciéndolo mientras este planeta siga orbitando en torno a un Sol mínimamente estable; algo más profundo de lo que a primera vista pueda parecer.

216 Comentarios Trackbacks / Pingbacks (14)
¡Qué malo!Pschá.No está mal.Es bueno.¡¡¡Magnífico!!! (176 votos, media: 4,82 de 5)
Loading...
Be Sociable, Share!