La máquina a bobinas magnéticas del joven sargento Lavréntiev

Los reactores de fusión nuclear Tokamak.

Oleg Alexandróvitch Lavréntiev

El joven sargento del Ejército Rojo Oleg Alexandróvitch Lavréntiev (1926-2011), que acabaría siendo doctor en física nuclear y teórica y el «abuelo» de la bomba termonuclear soviética y los reactores de fusión TOKAMAK, sobre los que se basa actualmente el ITER. Foto: © Agencia Federal de Archivos, Ministerio de Cultura de la Federación Rusa.

Imagínate: es 1948, formas parte del poderoso Comité Central del Partido Comunista de la URSS y de algún modo cae en tus manos la carta de un cierto sargento Oleg Lavréntiev, de 22 años, destinado en un remoto agujero del Océano Pacífico. El joven sargento Lavréntiev dice que sólo acabó la secundaria porque se fue a la guerra, pero le gusta mucho la física atómica; incluso se gasta parte de su escasa paga en una suscripción a la revista Avances en Ciencias Físicas. Ah, y que sabe cómo hacer una bomba de hidrógeno y un reactor de fusión nuclear.

No sé tú, pero yo habría pensado que estaba ante el típico charlatán. O, más probablemente, me lo habría tomado a broma. Claro que eran malos tiempos para esa clase de humor, con el padrecito Stalin todavía en plena forma y el camarada Beria encargado de tratar con los bromistas (y también, en el más absoluto secreto, de supervisar el programa soviético para hacer la bomba atómica, que ni eso tenían aún por esas fechas.) Hay que tener en cuenta que Oleg había tenido el cuajo de escribir primero al mismísimo Stalin y, al no recibir respuesta, decidió ponerse en contacto con los segundones del Comité Central, el muchacho. Asombrosamente, ni la carta terminó en una papelera ni el joven sargento Lavréntiev, natural de Pskov, hijo de administrativo y enfermera, obtuvo un nuevo destino un pelín más al interior. Por la parte de Kolymá o así.

En vez de eso, poco después el oficial al mando del sargento Lavréntiev recibió instrucciones estrictas de que le proporcionaran un despacho con escolta y tiempo para plasmar sus ideas de manera más exhaustiva con la máxima discreción. Cosa que debió dejar a todos sus compañeros, empezando por el oficial al mando en cuestión, bastante atónitos. Dos años después, el 29 de julio de 1950, Oleg manda a Moscú un paquete por correo militar secreto donde describe los principios de un arma termonuclear por fusión de deuteruro de litio («liddy») y una máquina para producir grandes cantidades de electricidad mediante una «trampa electromagnética» toroidal para confinar reacciones del deuterio y el tritio. Que es, exactamente, el principio de funcionamiento de todas las armas termonucleares del mundo y los reactores de fusión tipo Tokamak, como el ITER que se está construyendo ahora mismo.

El paquete acabó ni más ni menos que en manos de Andréi Sájarov, quien ya trabajaba con Ígor Tamm en esas mismas cuestiones, al amparo del entonces secretísimo Laboratorio nº 2 o Laboratorio de Aparatos de Medida de la Academia de Ciencias de la URSS, hoy en día conocido como el Centro Nacional de Investigación – Instituto Kurchátov. En su evaluación, Sájarov escribió:

«Creo que es necesario discutir detalladamente el proyecto del camarada. Con independencia de los resultados de esta discusión, debe reconocerse la creatividad del autor.»

Mucho tiempo después, en sus memorias, Sájarov se explayaría más a gusto sobre el paquete remitido por el sargento Lavréntiev desde su lejana base del Pacífico:

 «Quedé enormemente impresionado por la originalidad y la audacia de esas ideas producidas independientemente, mucho antes de que comenzaran a aparecer las primeras publicaciones sobre el tema. (…) [Mis] primeras tenues ideas sobre el aislamiento térmico magnético comenzaron a formarse al leer su carta y escribir el informe al respecto. (…) El trabajo de Lavréntiev fue un ímpetu para mejorar la investigación del aislamiento térmico magnético del plasma de alta temperatura que realizábamos Tamm y yo.»

Entrada principal al Instituto Kurchatov en la actualidad.

Entrada principal al Instituto Kurchátov en la actualidad. Imagen: © Google Street View.

 Diseño original de Oleg Lavréntiev para un arma termonuclear.

Diseño original de Oleg Lavréntiev para un arma termonuclear. 1) Detonador temporizado. 2) Carga explosiva [convencional]. 3) Semiesferas de plutonio. 4) Cámara de vacío. 5) Capa de litio-6. 6) Deuteruro de litio-6. Aunque es muy primitivo y requeriría varias modificaciones importantes para hacerlo funcionar, todos los conceptos esenciales de un arma con componente de fusión están ahí: se trata básicamente de un diseño «sloika» con un primario de detonación por disparo (similar a la idea inicial «Thin Man» estadounidense para una bomba de fisión de plutonio, o a la bomba «Little Boy» de Hiroshima si sustituimos el plutonio por uranio) envuelto en un secundario compuesto por una capa de litio y, muy acertadísimamente, deuteruro de litio-6. El deuteruro de litio-6 («liddy») fue y sigue siendo el explosivo de fusión idóneo para las armas termonucleares. Hay que tener en cuenta que cuando Lavréntiev ideó esto, todas estas cosas eran altísimo secreto o simplemente ni siquiera estaban inventadas y puede decirse que «se lo sacó todo de su cabeza». Imagen: © Agencia Federal de Archivos, Ministerio de Cultura de la Federación Rusa.

Apenas un mes después, Lavréntiev es desmovilizado y matriculado en la Facultad de Física de la Universidad Estatal de Moscú, con derecho a habitación y beca. Ahí le piden que desarrolle más su propuesta. Oleg se pone a ello. En octubre del mismo año, Sájarov y Tamm completan el primer análisis de un reactor de fusión nuclear por confinamiento magnético, bajo el auspicio de Ígor Kurchátov, basándose no poco en el documento original del joven sargento. Así, pasaron a la historia como los inventores de este tipo de reactor, el más prometedor y el más utilizado del mundo hoy en día, mientras que Lavréntiev quedaría relegado a una oscuridad que no comenzó a esclarecerse hasta que se desclasificaron los documentos secretos de la época en el año 2000.

Hay que decir que a Oleg no le fue mal. Cuando terminó de desarrollar sus planteamientos en enero de 1951, le invitaron al Kremlin, se entrevistó con Beria en persona, le aumentaron la beca, le proporcionaron una habitación mejor, le dieron acceso a todas las publicaciones científicas que necesitara y le pusieron un tutor personal: el matemático Alexander Samarskiy, prácticamente desconocido en Occidente pero un peso semipesado de la ciencia soviética, experto en análisis numérico y física computacional. Así Oleg se graduó con honores e incluso pasó una temporada por el exclusivísimo Laboratorio de Aparatos de Medida, donde trabajaban Sájarov y Tamm. Pero luego, por razones no demasiado claras fue transferido al Instituto de Física y Tecnología de Járkov (Ucrania, entonces parte de la URSS), otro centro de investigación muy prestigioso. Ahí el antiguo sargento Oleg Lavréntiev, que postuló una bomba termonuclear y un reactor de fusión con sólo su educación secundaria, su suscripción a Avances en Ciencias Físicas, su curiosidad y su pasión, pasó el resto de su carrera profesional haciendo lo que le gustaba. No tuvo una mala vida y en esa ciudad murió el 10 de febrero de 2011, a los 84 años.

Sin embargo, como te digo, su papel en el desarrollo de las armas termonucleares de la URSS y sus reactores de fusión por confinamiento magnético permaneció oculto hasta el año 2000, e incluso hoy en día casi nadie lo conoce fuera del espacio post-soviético. Sájarov y Tamm (e, indirectamente, Kurchátov) se llevaron todos los méritos. Que no digo que no se lo curraran y no los merecieran, que se lo curraron y los merecieron, pero tras ellos estuvo la sombra de Lavréntiev. El caso es que los reactores Tokamak comenzaban a nacer en el sector 44 del Laboratorio de Aparatos de Medida de la Academia de Ciencias de la URSS, situado al Noroeste de Moscú. Vamos, el Instituto Kurchátov.

La toroidalnaya kamera s magnitnymi katushkami.

El primer TOKAMAK, llamado T-1, en el Instituto Kurchatov de Moscú donde fue inventado en 1968. Foto: ITER.

El primer prototipo de reactor de fusión Tokamak, llamado T-1, en el Instituto Kurchatov de Moscú (1958). Foto: © ITER Organization.

Al principio, no se llamaron Tokamak, y no todos creían en ellos. El primer «aparato toroidal» para el control del plasma a alta temperatura construido en el sector 44 se llamaba TMP y era una cámara de porcelana, a la que luego le añadieron unas espirales metálicas por el interior. Después vinieron otros dos dispositivos con paredes de cobre y espacios de aislamiento. No fue hasta finales de 1957 que estos primeros aparatos de medida termonucleares dieron lugar al dispositivo T-1, «montaje experimental nº5» o «disposición de 1958» (por el año en que se puso en marcha.)

Hubo algo de bronca para ponerle nombre. Estuvo a punto de llamarse «Tokomag», por тороидальная камера магнитная, o sea toroidalnaya kamera magnitnaya, es decir cámara magnética toroidal. E incluso «Tokomak», porque a algunos oídos les sonaba mejor. Pero al final se impuso la opinión del subdirector del laboratorio, Ígor Golovkin, que era un apasionado del proyecto: sus estrellas contenidas por confinamiento magnético se llamarían Tokamak, de тороидальная камера с магнитными катушками, pronunciado toroidalnaya kamera s magnitnymi katushkami, lo que viene siendo cámara toroidal con bobinas magnéticas. Algún otro dice que podría significar también тороидальная камера с аксиальным магнитным полем (toroidalnaya kamera s aksialnym magnitnym polem, cámara toroidal con campo magnético axial), lo que define al ingenio igualmente bien. Yo me quedaré con lo de cámara toroidal a bobinas magnéticas, que era la idea original de Lavréntiev y suena más sovietpunk y molón. :-P

Como puede suponerse, esto del bautismo no fue la única bronca que rodeó al proyecto, ni mucho menos la más importante. El afamado académico Lev Artsimovich (jefe del Departamento de Investigación del Plasma), quien luego se haría un auténtico converso hasta el punto de que le llaman «el padre del Tokamak», decía por entonces que «conseguir la fusión con un Tokamak es como intentar crear un cigarrillo a partir del humo.» Muchos opinaban que este extraño aparato de medida jamás podría satisfacer la condición KruskalShafranov y estabilizar el plasma en su interior.

Pero lo logró. En 1958, el llamado montaje experimental nº 5 del Insituto Kurchátov, una sencilla cámara de cobre de 1,34 metros de diámetro con una corriente eléctrica en el plasma de 100.000 amperios y una intensidad del campo magnético toroidal de 1,5 teslas, demostró que podía contener el plasma estabilizado y sería posible fusionar deuterio con él en una boscosa periferia de Moscú. Exactamente, aquí. Así, el montaje experimental nº 5 paso definitivamente a la historia como el Tokamak T-1. Una de las grandes puertas a la energía nuclear de fusión, la energía de las estrellas traída a la Tierra, se acababa de abrir sobre la idea original de un joven sargento que sólo contaba con su educación secundaria pero tenía mucha, muchísima audacia y curiosidad.

Diseñando estrellas.

Isótopos naturales del hidrógeno

Los tres isótopos naturales del hidrógeno: protio, deuterio y tritio. El deuterio y el tritio pueden fusionar con «relativa» facilidad. Pero obsérvese que la carga total del núcleo es siempre positiva. Esto tiende a separarlos por repulsión electrostática. Para que puedan entrar en contacto y fusionar, hay que «acelerarlos a temperaturas termonucleares.» Esta es también la razón fundamental de que la fusión fría, al menos en su forma convencional, no tenga demasiado sentido.

El problema básico para producir una reacción nuclear de fusión es que los núcleos de los átomos que constituyen toda la «materia normal«, como tú o yo por ejemplo, tienen carga eléctrica positiva. Si recuerdas, en el núcleo atómico están los neutrones, que no tienen carga, y los protones, que la tienen positiva. Pero no hay ninguna carga negativa. Las cargas negativas están en los electrones, situados en los orbitales de alrededor. Como estamos hablando de fenómenos nucleares, nos tenemos que olvidar de los electrones y nos quedamos con los núcleos. Que, al estar compuestos exclusivamente por neutrones (sin carga) y protones (con carga positiva), son positivos, tanto más cuanto más grandes sean y más protones contengan. Pero desde el más básico de todos, el hidrógeno, con un único protón, tienen carga positiva.

¿Y qué? Pues que, como es bien sabido, cargas opuestas se atraen y cargas iguales se repelen. Igual que en los imanes. Dos polos positivos o dos polos negativos se repelen entre sí. Esto es la repulsión electrostática. La única forma de unirlos es aplicando tanta fuerza que logre superar esta repulsión, siquiera sea temporalmente. Pero en condiciones normales, dos objetos con la misma carga (por ejemplo, dos núcleos atómicos) tienden a separarse, no a unirse y fusionar. (Y por eso lo de la fusión fría nos hizo alzar tanto la ceja a tantos desde el principio. Bajo condiciones estándar, no hay ninguna manera obvia mediante la que los núcleos atómicos puedan vencer la repulsión electrostática hasta fusionar.)

Las estrellas, que son gigantescos reactores de fusión nuclear natural, hacen trampa. Resuelven el problema a base de pura fuerza bruta, con la fuerza de la gravedad. Como son tan grandes y tienen tanta masa, la gravedad las hace colapsar sobre sí mismas hasta que la presión y con ella la temperatura aumentan tanto como para alcanzar las a veces denominadas temperaturas termonucleares. Pero nosotros no tenemos semejantes masas a nuestra disposición.

La manera sencilla de resolver el problema, y la única que nos ha ido bien hasta el momento, es explosiva. Esto es: provocar un brutal pico de presión, temperatura y radiación que haga fusionar núcleos atómicos fácilmente fusionables, como el deuterio, el tritio o el litio. Pero el resultado es todavía más explosivo: así es, talmente, como funciona un arma termonuclear. Claro, eso va muy bien para desintegrar a unos cuantos millones de prójimos con un golpe casi instantáneo de energía monumental, pero no tanto para mover suavemente nuestras sociedades. Si queremos energía de fusión civil, tenemos que producirla de una manera más lenta, progresiva, en un «reactor lento» o algo que se comporte como tal. Cosa que parecía sencilla y al alcance de la mano hace unas décadas, pero ha resultado ser uno de los problemas más difíciles a los que se ha enfrentado jamás la humanidad.

Explicado muy a lo sencillo, estas temperaturas termonucleares son muy, pero que muy superiores a lo que puede resistir ningún material. No se puede construir una «vasija» como las que usamos en los reactores de fisión de las centrales nucleares actuales. A las temperaturas propias de la fusión, cualquier vasija de cualquier material existente, imaginable o teorizable en este universo se convierte instantáneamente en plasma y se desintegra. (Y esa es una de las razones por las que las armas termonucleares son tan devastadoras: en las inmediaciones de la detonación, ninguna clase de materia puede pervivir de manera organizada.)

Repulsión y fusión nuclear

Polos opuestos se atraen, polos iguales se repelen. Los núcleos atómicos están compuestos por neutrones (sin carga) y protones (con carga positiva); como resultado, los núcleos en su conjunto son fuertemente positivos y por tanto se repelen con fuerza entre sí. En condiciones normales, esta repulsión los mantiene separados e impide que puedan llegar a fusionar. Sin embargo, a temperaturas termonucleares (millones de grados), los núcleos vibran violentamente y la inercia de estos movimientos es capaz de vencer a la repulsión electrostática, haciéndolos colisionar y fusionar entre sí con alta liberación de energía. En la imagen, dos núcleos de deuterio (hidrógeno-2) y tritio (hidrógeno-3) colisionan, fusionan y liberan un núcleo de helio-4 y un neutrón altamente energéticos.

En resumen: que sabemos cómo hacer fusionar cosas, pero no cómo ralentizar y contener la reacción para convertirla en esa energía domadita que mueve nuestros hogares, nuestros trabajos y nuestro mundo en general (y luego quienes tú ya sabes nos cobran a precio de oro…). A decir verdad, a estas alturas también sabemos cómo ralentizarla y contenerla… pero sólo en parte, de manera muy limitada, y consumiendo en el proceso total más energía de la que obtenemos. Es decir, que tenemos armas de fusión capaces de aniquilar civilizaciones enteras pero no tenemos más reactor nuclear de fusión eficaz que el sol brillando sobre nuestras cabezas.

Concepto básico para una central eléctrica de fusión nuclear basada en un Tokamak, como el que está desarrollando la cooperación internacional ITER.

Concepto básico para una central eléctrica de fusión nuclear basada en un Tokamak, como el que está desarrollando la cooperación internacional ITER.

Y no es porque no se le haya echado pasta y ganas encima, ¿eh? La energía nuclear de fusión prometía y promete ser tan estupenda que en algunos periodos se le han echado encima ingentes cantidades de dinero y no pocas de las mentes más brillantes del periodo. Pero aún así se resiste, la jodía.

Como te digo, el problema no es fusionar núcleos atómicos. Eso sabemos hacerlo. El problema es todo lo demás, y muy particularmente la producción y confinamiento de esa reacción con un saldo energético favorable. Como ya hemos visto, las estrellas como nuestro sol usan de manera natural el confinamiento gravitacional aprovechando su enorme masa. Vamos, que la gravedad de esa masa mantiene la reacción contenida durante largos periodos de tiempo en esas luminarias que cubren el cielo, como si dijéramos «empujando hacia adentro». Puesto que como también hemos dicho nosotros no tenemos tales masas para trabajar, nos toca recurrir a trucos distintos. Hoy por hoy, estos son básicamente dos: el confinamiento inercial y el confinamiento magnético. La cámara a bobinas magnéticas que imaginó el joven sargento Lavréntiev, o sea el Tokamak soviético, o sea el ITER internacional, utilizan esta segunda técnica.

En el mismo 1958 los científicos soviéticos presentaron los primeros resultados obtenidos con el dispositivo T-1 en la II Conferencia de Átomos para la Paz, celebrada en Ginebra. Este fue uno de los mayores encuentros científicos de la historia, con más de 5.000 participantes. La URSS presentó un paper titulado «Estabilidad y calentamiento de plasmas en cámaras toroidales.» Se había tomado la decisión de desclasificar la investigación y en este artículo aparecía prácticamente todo, incluso un esquema de la máquina, salvo el nombrecito Tokamak de marras. Pese a ello, la era Tokamak acababa de nacer.

La era Tokamak.

Interior del Tokamak JET detenido y (en la inserción) funcionando, con plasma en su interior.

Interior del Tokamak JET detenido y (en la inserción) funcionando, con plasma en su interior. Foto: Cortesía EFDA-JET. (Clic para ampliar)

Al dispositivo T-1, fundamentalmente experimental, le siguieron el T-2 del año 1960 y el T-3 de 1962. El T-3 era ya un dispositivo funcional por completo. En 1968, el Tokamak T-4 de Novosibirsk demostró la primera fusión nuclear casi-estacionaria. Los resultados del T-3 y el T-4 fueron tan prometedores que pronto comenzaron a construirse también fuera de la URSS. Los primeros fueron los japoneses, que arrancaron en 1969 con los JFT y los NOVA, antecesores del actual JT-60. Les siguieron los estadounidenses con el Alcator A del Instituto de Tecnología de Massachusetts (1972), origen del Alcator C-Mod, y después con el DIII-D. En Francia tampoco quisieron perdérselo y en 1973 ponían en marcha el Tokamak de Fontenay-aux-Roses del que luego saldría el Tore Supra en Cadarache, donde ahora se está construyendo el ITER. Luego vendrían muchos más, en muchos países, desde China, Brasil o Italia a Irán, Portugal o México. Y en España, el Tokamak TJ-I de 1984.

Los soviéticos, por su parte, no se durmieron en los laureles. Siguieron adelante con diseños cada vez más grandes y sofisticados. Vino el T-7, el primer Tokamak con imanes superconductores. Le siguió el T-8, con la característica cámara con sección en forma de «D» que se mantiene en los diseños actuales. Culminarían en el Tokamak T-15 de 1988, sobre el que después se realizarían los estudios preliminares para diseñar el ITER; ahora lo están actualizando. Pero tras el colapso de la URSS se han quedado un poco fuera de juego, aunque anden liados con el Globus-M; más que nada, participan en la cooperación ITER.

Pese al éxito del Tokamak, no todas sus alternativas han quedado aplastadas. El diseño Stellarator, aunque quedó un poco pachucho durante una larga temporada, vuelve a presentar interés (en el Laboratorio Nacional de Fusión del CIEMAT tenemos uno: el TJ-II.) Y por supuesto, la otra gran alternativa, el confinamiento inercial, prosiguió con dispositivos como la National Ignition Facility estadounidense o el Laser Mégajoule francés, de doble uso en investigación civil / militar. En la National Ignition Facility parecieron obtener un resultado muy importante en septiembre de 2013 (producir la misma energía que se consumía para obtener la fusión), pero luego resultó que eso era muy matizable (y aquí.) Tanto, que sólo obtuvieron un 0,78% de la energía consumida. :-/ En el Joint European Torus, el Tokamak más grande del mundo, se llega al 70% y según algunos modelos teóricos del JT-60 japonés, se ha podido llegar al 125% (esto está disputado.) Pero para empezar a generar energía con el conjunto del reactor hay que llegar al 500% y para hacer una central de fusión práctica, superar el 1.000 o el 1.500% y preferiblemente rondar el 2.500%.

Océano Pacífico desde Poronaysk, isla de Sajalín, Rusia.

Una estrella y un mar llenos de hidrógeno con los que soñar: el Océano Pacífico y (algo de) sol matutino vistos desde Poronaysk (Sajalín, Rusia), donde estaba destinado el sargento Oleg A. Lavréntiev cuando tuvo su idea genial. Foto: Alex Nov., 2009.

El caso es que ahora mismo el gran proyecto internacional para obtener energía de fusión es un Tokamak: el conocido y ya muchas veces mencionado ITER, que debería empezar a dar resultados en el periodo 2020-2027. Si consigue sus objetivos, después tendrá que venir DEMO para convertirlo en una central eléctrica práctica allá por 2033-2040. Ya te conté hace algún tiempo que esto de la energía nuclear civil de fusión avanzaba a su ritmo, y por qué. Lo cierto es que sigue avanzando, pero comprendo que haya decepcionado a muchas personas. Hace décadas se crearon expectativas que en su momento se creían realistas… pero no lo eran. El problema resultó mucho más diabólico de lo que parecía. Eso sí, cuando lo consigamos, seguramente habrá que volver a acordarse de aquel sargentillo que con sus estudios de secundaria y su esforzada suscripción a Avances en Ciencias Físicas, mientras miraba al sol naciente sobre las aguas del Pacífico, tuvo una ocurrencia genial.

Bibliografía / Para aprender más:

 

44 Comentarios Trackbacks / Pingbacks (2)
¡Qué malo!Pschá.No está mal.Es bueno.¡¡¡Magnífico!!! (31 votos, media: 5,00 de 5)
Loading...
Be Sociable, Share!

Resultados encuesta: ¿Qué fuentes de energía deberíamos fomentar más?

Resultados encuesta marzo 2011.

Anterior: ¿Crees que sucederá algún suceso de tipo apocalíptico durante tu tiempo de vida?

En esta ocasión, si lo llego a hacer a propósito no me sale una encuesta más adecuada a las circunstancias. Durante la tarde del 11 de marzo comenzaron a llegar noticias de que en las centrales nucleares japonesas pasaba algo tras el terremoto sucedido ese día, así que se me ocurrió anotar los votos recopilados hasta ese momento al punto de la medianoche. Por ello, puedo ofrecerte los resultados totales y desglosados en dos periodos: el primero desde el día 1 hasta el 11, momento en que el tsunami puso en marcha los accidentes nucleares de Fukushima que siguen sucediendo ahora mismo, y el segundo a partir del día 12 hasta el cierre de la encuesta a fin de mes. Aunque esta encuesta no es científica por los motivos habituales, el elevado número de votos recibidos desde un montón de direcciones IP y lugares geográficos distintos me hace conjeturar que puede ser cuanto menos indicativa del pulso social al respecto.

Así pues, una vez cerrada la séptima encuesta de la Pizarra de Yuri, realizada entre el 1 y el 31 de marzo de 2011 (inclusives), los 4.786 votos emitidos han dado lugar a los siguientes resultados en detalle:

Resultados encuesta marzo 2011: ¿Qué fuentes de energía deberíamos fomentar más?

Resultados encuesta marzo 2011: ¿Qué fuentes de energía deberíamos fomentar más?

¿Qué fuentes de energía deberíamos fomentar más?

Total Del
1 al 11
Del
12 al 31
Diferencia %
entre ambos periodos
Las energías renovables 2.594 (54,20%) 331
(43,78%)
2.263
(56,15%)
+28,25% (Abs: +12,37%)
La energía nuclear de fusión 1.520 (31,76%) 283
(37,43%)
1.237
(30,69%)
–18,00% (Abs: –6,74%)
La energía nuclear de fisión 554 (11,58%) 125
(16,53%)
429
(10,65%)
–35,62% (Abs: –5,89%)
Otras 77 (1,61%) 11
(1,46%)
66
(1,64%)
+12,56% (Abs: +0,18%)
Las «convencionales» (petróleo,
gas natural, carbón, hidroeléctrica…)
41 (0,86%) 6
(0,79%)
35
(0,87%)
+9,43% (Abs: +0,07%)

Los porcentajes pueden presentar diferencias o no totalizar el 100% debido a los redondeos decimales.

Esta encuesta no es científica. Sólo refleja la opinión de aquellas personas que eligieron participar.
Los resultados no representan necesariamente la opinión del público, de los usuarios de Internet en general o de los lectores de La Pizarra de Yuri en su totalidad.

Encuesta de abril:

¿Existen inteligencias extraterrestres en nuestra propia galaxia?

101 Comentarios Trackbacks / Pingbacks (4)
¡Qué malo!Pschá.No está mal.Es bueno.¡¡¡Magnífico!!! (22 votos, media: 4,64 de 5)
Loading...
Be Sociable, Share!

Así funciona una central nuclear

Energía nuclear de fisión.


La película El Síndrome de China (1979) sigue conteniendo una de las mejores explicaciones sencillas del funcionamiento de una central nuclear.
Sin embargo, hoy intentaremos profundizar un poquito más.

Pues… que me he dado cuenta de que aquí hemos hablado con detalle sobre armas nucleares, termonucleares e incluso del juicio final. Y sobre las perspectivas de la fisión y de la fusión, sobre los héroes y mitos de Chernóbyl, sobre la central nuclear más grande del mundo, mil cosas… pretendo incluso elaborar un todavía futuro post sobre lo sucedido de verdad en Chernóbyl (ya te dije, resulta más difícil distinguir la paja del grano de lo que parece, y ese quiero que sea riguroso y documentado hasta el extremo)… pero aún no he explicado cómo funciona realmente una central nuclear y el ciclo de su combustible. Yo, que soy así de chulo. :-/

La central nuclear de Cofrentes vista desde el pueblo. Foto de la Pizarra de Yuri.

La central nuclear de Cofrentes (Valencia) vista desde el pueblo. Contiene bajo la cúpula un reactor de agua en ebullición (BWR) que produce 1.092 MWe. (Clic para ampliar)

Producción, demanda y balance de importación - exportación de la Red Eléctrica de España

Producción, demanda y balance importador/exportador de la Red Eléctrica de España, 1995-2010. Datos tomados de los informes mensuales en www.ree.es/operacion/balancediario.asp (Clic para ampliar)

Seguramente sabrás, y si no ya te lo cuento yo, que una central nuclear es una fábrica de electricidad. Cualquier día típico en España, las centrales nucleares producen uno de cada cinco vatios que consumimos para mover nuestras vidas (¿te imaginas un mundo sin electricidad?). Esta cifra del 19%, que antes era mayor (hace quince años era del 35%), es ahora similar a la de los Estados Unidos o el Reino Unido. Por el momento, vamos servidos: España es, desde hace más de un lustro, exportador neto de electricidad (sí, exportador; y sí, desde mucho antes de la crisis: si te han dicho otra cosa, te han mentido. Observa que en los informes de la REE el saldo importador aparece en positivo y el exportador en negativo).

Una central nuclear es, además, un tipo particular de central térmica. Es decir: la energía eléctrica se produce generando calor. En las centrales térmicas corrientes se utilizan grandes quemadores a carbón, gas natural o derivados del petróleo como el gasoil, bien sea en ciclo convencional o en ciclo combinado, con o sin cogeneración. En todo caso se trata, básicamente, de calentar agua en unas calderas hasta que ésta se convierte en vapor con fuerza suficiente como para hacer girar una turbina según los ciclos de Carnot y Rankine. El eje rotativo de la turbina impulsa a su vez el de uno o varios alternadores, que son los que producen la energía eléctrica en sí. Cuando hablamos de estos grandes generadores instalados en las centrales eléctricas y conectados a potentes turbinas de vapor, se suelen denominar turboalternadores.

La pura verdad es que no resulta un método muy eficiente: se pierde aproximadamente entre una tercera parte y las dos terceras partes de la energía térmica producida (y por tanto del combustible consumido) debido a las ineficiencias acumulativas de estos mecanismos y a las limitaciones teóricas del ciclo de Carnot. Toda central térmica del presente, nuclear o convencional, necesita producir entre dos y tres vatios térmicos para generar un vatio eléctrico. Esto es: uno o dos de cada tres kilos o litros de su valioso combustible –petróleo, gas natural, carbón, uranio– se malgastan en estropear cosas caras dentro de la instalación y ocasionar contaminación térmica en el exterior. Típicamente, una central nuclear capaz de generar mil megavatios eléctricos debe producir tres mil térmicos. Es lo que hay. Si se te ocurre alguna manera de mejorarlo, no dejes de comentármelo, que tú y yo tenemos que hablar de negocios. :-D

Así pues, la clave de toda central térmica consiste en calentar agua para producir vapor que haga girar unas turbinas y con ellas unos alternadores eléctricos. En el caso particular de una central nuclear, este calor se origina por medios… eso, nucleares. :-) Específicamente, hoy por hoy, mediante la fisión de átomos pesados e inestables como algunos isótopos del uranio. Veámoslo.


Cualquier cosa capaz de hacer girar el eje de un alternador producirá energía eléctrica.
Arriba, un alternador manual;
abajo, el eje de un gigantesco generador hidroeléctrico en la Presa Hoover, Estados Unidos.

Fisión nuclear y reacción en cadena.

Ya te conté un poquito de cómo va esto de la fisión y la reacción en cadena en Así funciona un arma nuclear. Vamos a repasarlo por encima, centrándonos en esta aplicación civil. Como sabes, existen algunas sustancias en la naturaleza que son radioactivas. ¿Qué quiere decir esto? Bueno, su propio nombre nos da una pista: radio-activas. O sea: no son totalmente inertes desde el punto de vista físico, como cualquier otro piedro, líquido o gas. Por el contrario, los núcleos de sus átomos presentan una actividad física que se expresa en forma de radiación; para ser más exactos, en forma de radiaciones ionizantes. Estas radiaciones son más energéticas y pueden causar más alteraciones en la materia que las no ionizantes, como las que emite una televisión de tubo, una antena de radio o un teléfono móvil.

¿Por qué se produce esta radioactividad? Para contestar a eso hay que responder primero a otra pregunta: ¿por qué algunos núcleos atómicos no son estables? Esto se debe a que la configuración de protones y neutrones en su núcleo es anómala y tiende a un estado de menor energía. Veámoslo con un ejemplo, que ya introdujimos en Así funciona un arma termonuclear. La mayor parte del carbono que nos compone (a nosotros y a otro buen montón de cosas en este universo) es carbono-12 (12C). Se llama así porque tiene en su núcleo seis protones y seis neutrones: en total, doce partículas. Este es un núcleo estable, que no tiende espontáneamente a un estado de menor energía bajo condiciones corrientes. El hecho de tener seis protones en su núcleo es lo que hace que sea carbono; este número no debe variar o pasará a ser otra cosa.

Algunos isótopos del carbono: carbono-12, carbono-13 y carbono-14.

Algunos isótopos del carbono: carbono-12, carbono-13 y carbono-14.

Sin embargo, su número de neutrones sí que puede variar, y seguirá siendo carbono. Por ejemplo, cuando tiene seis protones y siete neutrones (total, trece partículas) estamos ante el carbono-13 (13C). El carbono-13 es también estable en condiciones estándar y, de hecho, aproximadamente el 1,1% del carbono natural (incluyendo el que forma nuestro cuerpo) pertenece a esta variante. Como sigue siendo carbono, sus propiedades químicas (y bioquímicas) son prácticamente idénticas; las físicas varían un poquito, pero muy poco.

Si este núcleo presenta un neutrón más, entonces estamos ante el carbono-14 (14C), que constituye una billonésima parte del carbono natural y está compuesto por seis protones y ocho neutrones. ¡Ah! Aquí cambia la cosa. Esta combinación ya no es estable: tiende a perder energía (y algún neutrón) para transformarse en otra cosa. Sus propiedades químicas y bioquímicas siguen siendo las mismas, pero las físicas difieren sustancialmente. Entre estas diferencias, de manera muy notoria, surge la radioactividad. Con el paso del tiempo, estos núcleos de carbono-14 van a sufrir transmutación espontánea para convertirse en otra cosa. Por ejemplo, en una muestra de carbono-14, la mitad de sus átomos transmutarán en 5.730 años aproximadamente. Cualquiera de ellos puede hacerlo en cualquier momento, por mero azar.

El carbono-14 lo hace por desintegración beta negativa: uno de sus neutrones se reajusta, pierde una carga negativa (en forma de un electrón) y con eso deja de ser neutrón (sin carga) y pasa a tener una carga positiva, con lo que ahora es un protón. Dicho en términos sencillos: un neutrón (neutro, como su nombre indica) «expulsa un negativo» para «quedarse en positivo». Y al «quedarse en positivo» ya no es un neutrón, porque ya no es neutro: se ha convertido en protón (que es positivo). Con lo que ahora tenemos en el núcleo siete protones y siete neutrones. ¿Hemos dicho siete protones? ¡Entonces ya no puede ser carbono! Acaba de transformarse en nitrógeno, un gas en condiciones estándar con propiedades físico-químicas totalmente distintas; para ser exactos, en nitrógeno-14 (14N), el nitrógeno común. Sí, como en la transmutación que soñaban los alquimistas y que finalmente resolvió la física nuclear. (Observa que durante este último proceso el número de partículas en el núcleo no ha cambiado. Lo que ha cambiado es su naturaleza y configuración.)

Uranio-235 altamente enriquecido.

Uranio-235 altamente enriquecido. Rebajado con uranio-238 y dispuesto en forma de pastillas, constituye el combustible más frecuente de las centrales nucleares.

¿Y qué pasa con el electrón («el negativo») que ha emitido? Pues que escapa hacia el exterior, y además lo hace con una cierta energía: 156.000 electronvoltios. Estamos ante la radiación beta. Ya tenemos nuestra radioactividad.

Los núcleos atómicos pueden decaer y desintegrarse de distintas maneras, lo que ocasiona los distintos tipos de radioactividad. Pueden hacerlo en forma de un pequeño grupo de dos protones y dos neutrones (o sea, un núcleo de helio-4), que se llama partícula alfa y constituye la radiación alfa. O como acabamos de ver, emitiendo un electrón o un positrón, lo que forma la radiación beta. O en forma de fotones muy energéticos, de naturaleza electromagnética, que da lugar a la radiación gamma y X. O lanzando neutrones libres, en lo que viene a ser la radiación neutrónica. Cada una de ellas tiene unos efectos y una peligrosidad diferentes, pero todas son distintas manifestaciones del mismo fenómeno: la radioactividad. Todas estas emisiones son capaces de desarrollar trabajo, hacer cosas; entre otras, producen calor. Este calor es el que vamos a utilizar para calentar el agua que moverá las turbinas y con ellas los generadores de electricidad.

Algunos núcleos resultan tan inestables que además son fisionables. Es decir: no se conforman con hacerse retoques aquí y allá, sino que se parten en otros núcleos más pequeños. Al hacerlo, despiden una notable cantidad de energía en forma de energía cinética de los fragmentos, fotones (radiación gamma) y neutrones libres. De manera espontánea, esto sólo ocurre con núcleos muy grandes y pesados, que pueden contener unas configuraciones de lo más raro. Entre estos se encuentra el torio-232 (232Th) o el uranio-238 (238U).

Unos pocos núcleos fisionables son además fisibles. Es decir: la energía que emiten cuando se rompen es tan alta, su estabilidad resulta tan pobre y su sensibilidad al impacto de los neutrones libres es tan elevada que pueden fisionarse entre sí muy rápidamente, intecambiando neutrones una y otra vez. Cuando esto sucede, estamos ante la reacción en cadena: la fisión espontánea de un solo núcleo puede romper varios más, que a su vez rompen muchos más, y así hasta que se agote el material fisible. Hay muy pocos isótopos que reúnan estas condiciones; en la práctica, sólo dos sirven para producir energía de fisión a gran escala. Uno está presente en la naturaleza: el uranio-235 (235U). El otro hay que producirlo artificialmente: se trata del plutonio-239 (239Pu). Hay algunos más, todos ellos sintéticos, como el uranio-233 (233U).


La reacción en cadena. Un neutrón fragmenta un núcleo fisible, lo que produce más neutrones que fisionan los de alrededor, y así sucesivamente hasta que se agota el material o la reacción se contamina demasiado. Cada una de estas fisiones produce energía que se plasma, entre otras cosas, en forma de calor.

Es posible que hayas oído también hablar del torio como combustible para la fisión nuclear. Hablaré de ello con más detalle próximamente, pero ya te adelanto que no es ni con mucho la «solución mágica» que algunos pretenden.

Pila Chicago 1

La Pila Chicago-1, en Estados Unidos, donde Enrico Fermi y Leó Szilárd consiguieron la primera reacción en cadena autosostenida de la historia.

Masa crítica.

Hecho este inciso, sigamos. ¿Cómo se consigue la reacción en cadena? Pues es muy sencillo: simplemente acumulando el suficiente material fisible. Sí, sí, si echas el suficiente uranio-235 enriquecido o plutonio-239 en un cubo, él solito se activará y comenzará a producir energía. De hecho, así ocurren los accidentes de criticidad, como los dos del famoso núcleo del demonio en el Laboratorio Nacional Los Álamos.

¿Cómo es esto posible? Sencillo. En cualquier masa de material fisible hay siempre algún átomo sufriendo fisión espontánea, que vimos más arriba. Si no hay mucho material, los neutrones generados escapan al medio exterior y la reacción en cadena no se produce. Pero cuando se alcanza cierta cantidad de material fisible, la probabilidad de que estos neutrones alcancen a otros núcleos durante su fuga se incrementa; entonces, estos núcleos fisionan y producen más neutrones. Ya tenemos la reacción en cadena.

En consecuencia, por el simple hecho de echar suficiente material fisible en una piscina de agua, éste sufrirá una reacción en cadena y el agua se calentará. Usando uranio-235 puro, bastaría con unir las dos mitades de una esfera de 52 kg dentro de una balsa y tendrías tu reactor nuclear. Claro, la cosa no es tan sencilla. Para empezar, tú no quieres hacer eso; porque si lo haces, obtendrás una excursión instantánea de energía nuclear y con ella uno de esos bonitos accidentes de criticidad abierta que se parecen a una bomba atómica floja aunque no sean realmente una bomba atómica. Y luego, ¿cómo lo paras?

El primer reactor nuclear de la historia fue la Pila Chicago-1, creada por Enrico Fermi y Leó Szilárd: un precario montaje de madera que soportaba capas alternas de grafito mezclado con seis toneladas de uranio puro junto a otras 34 de óxido de uranio. El grafito es un potente moderador neutrónico capaz de ralentizar los neutrones rápidos producidos por la fisión y transformarlos en neutrones térmicos (los alemanes tuvieron un error con el grafito y por eso no pudieron completar nucna un reactor operativo).  Esto tiene dos efectos. El primero es que facilita la fisión entre todo ese material disperso: los neutrones rápidos son demasiado energéticos y tienden a escapar al exterior, mientras que los térmicos están en su punto justo para mantener la reacción en cadena. El segundo es que lo puedes utilizar para acelerar y decelerar la reacción a tu gusto. Sin embargo, la Pila Chicago-1 sólo usaba el grafito para la primera función; la segunda quedaba asegurada mediante unas barras de cadmio, que absorbe los neutrones. Esto dio lugar al peculiar puesto de trabajo del hombre del hacha, quien debía cortar la cuerda para que estas barras cayeran de golpe si todo saliera mal. A las 3:25 de la tarde del día 2 de diciembre de 1942, esta Pila Chicago-1 situada en la ciudad estadounidense del mismo nombre produjo la primera reacción en cadena sostenida de la historia de la humanidad. Comenzaba así la Era Atómica.

Gráfica de intensidad neutrónica de la Pila Chicago-1

Gráfica de intensidad neutrónica de la Pila Chicago-1, el 2 de diciembre de 1942. Puede observarse el momento en que la reacción en cadena neutrónica se dispara por sí misma y no deja de aumentar hasta que se insertan las barras de control.

Las centrales nucleares modernas.

Tomemos como ejemplo la Central Nuclear de Cofrentes (Valencia), que me pilla cerca de casa. Cofrentes es un diseño estadounidense, desarrollado por General Electric, que se llama de reactor de agua en ebullición (BWR). Es el segundo diseño más popular entre los utilizados comúnmente en Occidente,  sólo por detrás del reactor de agua a presión (PWR). Veamos una representación esquemática de este BWR:

Diseño esquemático BWR de la Central Nuclear de Cofrentes (Valencia)

Diseño esquemático BWR de la Central Nuclear de Cofrentes (Valencia). (Iberdrola) (Clic para ampliar)

Vamos a concentrarnos en la parte central derecha de la imagen anterior, que es donde se genera la energía y se halla distribuida del siguiente modo:

Distribución general de los edificios de reactor, combustible y turbinas en la Central Nuclear de Cofrentes

Distribución general de los edificios de reactor, combustible y turbinas en la Central Nuclear de Cofrentes. (Iberdrola) (Clic para ampliar)

…y específicamente en el reactor, donde se produce la energía térmica que luego convertiremos en eléctrica. Ya dijimos que las centrales térmicas son muy poco eficientes: este reactor en particular genera 3.237 megavatios térmicos; sin embargo, la potencia final resultante es de 1.092 megavatios eléctricos. Eso es un 33,7%, apenas un pelín más de la tercera parte. Expresado de otra manera, el 66,3% de la producción (o sea, del valioso combustible nuclear) se pierde por las vías ya mencionadas (sin contar la emisión neutrínica que se funde casi el 5% antes incluso de empezar a producir energía térmica).

Detalle esquemático del reactor nuclear de Cofrentes.

Detalle esquemático del reactor nuclear de Cofrentes. 1.- Venteo y rociador de la tapa. 2.- Barra para izado del secador. 3.- Conjunto del secador de vapor. 4.- Salida de vapor. 5.- Entrada para rociadores del núcleo. 6.- Conjunto de separadores de vapor. 7.- Entrada de agua de alimentación. 8.- Distribuidor de agua de alimentación. 9.- Entrada de la inyección de refrigerante. 10.- Tubería de rociadores del núcleo. 11.- Distribuidor para rociadores del núcleo. 12.- Guía superior. 13.- Bombas de chorro. 14.- Envolvente del núcleo. 15.- Elementos combustibles. 16.- Barra de control. 17.- Placa soporte del núcleo. 18.- Entrada de agua de recirculación. 19.- Salida de agua de recirculación. 20.- Soporte de la vasija. 21.- Blindaje del reactor. 22.- Accionadores de las barras de control. 23.- Tuberías de accionamiento hidráulico de las barras de control. 24.- Detectores internos de neutrones. (Iberdrola)

El reactor es una vasija de acero SA-533 GrB con revestimiento interior inoxidable, de 21,3 metros de altura por 5,53 de diámetro; el grosor mínimo del acero asciende a 13,6 cm, para soportar una presión máxima de 87,5 kg/cm2 (unas 84,7 atmósferas). Los reactores BWR utilizan agua destilada corriente como refrigerante y como moderador, por lo que aquí no nos encontramos con grafito ni agua pesada ni nada de eso; pero, por esta razón, requiere para funcionar uranio ligeramente enriquecido en el isótopo fisible 235U. En el caso particular de Cofrentes, utiliza uranio enriquecido al 3,6% (el llamado uranio natural tiene un 0,7% de 235U).

Este combustible está organizado en forma de pequeñas esferas o perdigones de dióxido de uranio, introducidos en varillas y ensamblajes de un material que se llama zircaloy. El zircaloy es una aleación compuesta en su gran mayoría por zirconio. El zirconio, un metal, tiene una característica peculiar: es muy transparente a los neutrones. O sea: los neutrones que aseguran el sostenimiento de la reacción en cadena pueden pasar libremente a su través, saltando de barra en barra.

Para el uranio natural, el agua corriente (agua ligera) es un absorbente neutrónico y bloquea la reacción en cadena. Sin embargo, con este uranio enriquecido al 3,6%, la radiación neutrónica es lo bastante intensa para mantenerla y entonces el agua ligera actúa de moderador como si fuera grafito o agua pesada. Esto presenta varias ventajas significativas. La primera es que el agua ligera destilada sale enormemente más barata y accesible que el agua pesada. Al mismo tiempo, no presenta el riesgo de incendio del grafito (en Chernóbyl, el incendio principal fue un incendio de grafito). Sirve para transportar el calor producido. Y, adicionalmente, el flujo y temperatura del agua se pueden utilizar en el control de la reacción.

Pero el control principal corre por cuenta de 154 barras de carburo de boro, un poderoso absorbente neutrónico con poca tendencia a crear isótopos raros como resultado de esta absorción. Cuando se insertan estas barras entre las de combustible, atrapan los neutrones producidos por la fisión del uranio presente en estas últimas y deceleran o interrumpen la reacción en cadena. Al extraerlas, permiten la circulación de los neutrones y el reactor se acelera.

La lógica del invento resulta bastante sencilla. Hemos quedado en que la mera acumulación de un material fisible como el uranio-235 inicia espontáneamente una reacción en cadena, cuya intensidad depende fundamentalmente del enriquecimiento y de la densidad; esta reacción se produce porque los neutrones emitidos en cada fisión espontánea pueden alcanzar otros átomos de uranio-235, haciéndolos fisionar a su vez, y así sucesivamente.

En un reactor recién cargado pero aún parado tenemos las barras de combustible introducidas en el agua, lo que debería iniciar de inmediato esta reacción en cadena espontánea; sin embargo, hemos metido por entre medias las barras de control, el absorbente neutrónico, con lo que los neutrones no pueden saltar de barra en barra y por tanto la reacción no se produce o lo hace con una intensidad muy pobre.

Entonces, para poner en marcha la central comenzamos a extraer las barras de control (de absorbente neutrónico). Las fisiones espontáneas en los núcleos de uranio-235 (o, para el caso, plutonio-239) comienzan a lanzar neutrones en todas direcciones, y específicamente hacia las demás barras de combustible.

Estos neutrones producidos por la fisión son mayoritariamente neutrones rápidos. Los neutrones rápidos tienen una capacidad relativamente pobre de provocar nuevas fisiones; ya dijimos que, por explicarlo de algún modo, pasan demasiado deprisa para tener un efecto. Pero entonces se encuentran con el moderador, que tradicionalmente era grafito o agua pesada y aquí es agua destilada corriente. Cuando el uranio está poco enriquecido, el agua actúa como absorbente neutrónico –igual que si fuera una enorme barra de control– y los detiene por completo, interrumpiendo la reacción. Pero cuando el uranio está algo más enriquecido (como en este caso, al 3,6%), el agua actúa como moderador neutrónico: es decir, los ralentiza hasta convertirlos en neutrones térmicos, óptimos para provocar nuevas fisiones.

Así que al extraer las barras de control y dejar a las de combustible envueltas en agua, la reacción en cadena comienza a acelerar, calentando este agua de su alrededor. Mediante una compleja combinación de barras de control y flujo del agua, se puede ajustar la reacción en cada zona exacta del núcleo con gran precisión.

De este modo, la temperatura del agua circundante aumenta rápidamente. En la gran mayoría de los reactores nucleares, esta agua moderadora-controladora-transportadora se encuentra contenida en un circuito cerrado con circulación forzada que nunca entra en contacto directo con el exterior (o no debe hacerlo, vamos). Este circuito cerrado que pasa por dentro del reactor se llama circuito primario.

En un reactor de agua en ebullición, el agua de este circuito primario se halla a unas 70 o 75 atmósferas de presión (en Cofrentes está a 70,1). Esto permite que entre en ebullición cuando la temperatura alcanza unos 285ºC (los reactores de agua a presión se mantienen a casi 160 atmósferas, lo que no deja que haya ebullición). Así se forma rápidamente vapor en la parte superior de la vasija, que circula por unas canalizaciones hacia la turbina de alta presión. Ya tenemos energía. Ahora hay que convertirla en electricidad.

Central nuclear de Cofrentes desde una loma cercana.

La central nuclear de Cofrentes vista desde una loma cercana, con las torres de refrigeración proyectando los característicos –e inocuos– penachos de vapor.

Cuando este vapor a elevada presión y temperatura llega a la turbina de alta presión, la hace girar sobre su eje siguiendo las leyes de Carnot y Rankine que mencionamos más arriba. Y con ello hace girar un alternador que produce energía eléctrica, exactamente como cualquier otra clase de central térmica y la inmensa mayoría de los generadores. De ahí, el vapor –que aún mantiene una cantidad importante de energía aprovechable– pasa a las turbinas de baja presión, cuyos alternadores producen más electricidad. Toda esta corriente es remitida a los transformadores exteriores y de ahí a la red de 400.000 voltios para su distribución comercial.

Ahora ya sólo queda asegurarnos de que el agua vuelve al reactor para mantener el ciclo sin fin, más fría y de nuevo en estado líquido. Esta es la función de los condensadores, que son, en esencia, cambiadores de calor. Los condensadores se mantienen fríos con agua procedente de algún río o mar próximo, que viaja por su propio circuito: el circuito secundario. Así, cuando el agua del circuito primario pasa por estos condensadores, pierde temperatura suficiente como para volver al estado líquido por completo y regresar al reactor. Ambos circuitos no entran nunca en contacto, garantizando que la contaminación radioactiva ocasionada al pasar por el reactor permanezca contenida en el primario.

Finalmente, el agua del secundario –que se ha calentado al pasar por los condensadores– es enfriada en las torres de refrigeración. Así se forman esas características nubes de vapor blanco que podemos ver en la imagen de la izquierda.

En mi opinión, las centrales nucleares de fisión son una buena manera de producir la muy necesaria electricidad. Lo que pasa es que tienen sus limitaciones. En realidad, no son ni la pesadilla que creen unos ni la panacea que creen otros. Ya apunté las razones en el post El renacimiento nuclear, en la incubadora. De manera muy resumida, es cara, es incierta, tiene sus riesgos y resulta poco flexible en los mercados liberalizados. Resulta tremendamente significativo que el 89% de los reactores que se construyen en la actualidad pertenezcan a empresas monopolísticas estatales o paraestatales, mientras sólo seis unidades representan una apuesta privada.

De hecho, la energía nuclear de fisión ha sido la más subvencionada de toda la historia: sólo en los Estados Unidos, representó el 96% de los subsidios totales al desarrollo energético entre 1947 y 1999. El coste de instalación por kilovatio es varias veces mayor que el de, por ejemplo, una central de ciclo combinado a gas natural. El precio en el mercado del kilovatio final no sale tan ventajoso. Y tampoco garantiza la independencia en tecnologías energéticas: por razones de liberalización y deslocalización de los mercados, existen componentes esenciales de las centrales nucleares que únicamente se fabrican en Japón, China y Rusia. Las mayores minas de uranio sólo están en Canadá, Australia, Kazajstán, Rusia, Namibia y Níger: muchos menos países que productores de petróleo o gas. Si se opta por combustible reprocesado, únicamente quedan reactores regeneradores a gran escala en Rusia. (Los datos de todo esto están en el post mencionado sobre el renacimiento nuclear)

En suma: después de décadas de cultura de la seguridad, ni milagro ni diablo. Sólo una fuente de energía más, al menos en el presente orden socioeconómico, que nos obliga a seguir investigando otras maneras de extraerle a la naturaleza la energía que necesitamos. Y necesitaremos.


Otra explicación básica del funcionamiento de una central nuclear.

Próximamente: El ciclo del combustible nuclear.

129 Comentarios Trackbacks / Pingbacks (75)
¡Qué malo!Pschá.No está mal.Es bueno.¡¡¡Magnífico!!! (78 votos, media: 4,85 de 5)
Loading...
Be Sociable, Share!