Verneshot: Entrevista al Dr. Jason P. Morgan

¿Y si a los dinos no los mató un meteorito? ¿Y si existiera otro fenómeno igualmente aniquilador acechando bajo nuestros pies?

Deposición de un Verneshot.

Ya lo damos por sentado: a los dinos y un montón de especies más se los cargó el meteorito. Para ser un pelín más técnicos, la extinción masiva del Cretácico-Paleogeno (hasta hace poco llamada del Cretácico-Terciario) fue iniciada o profundizada severamente por el impacto del mismo cuerpo celeste que pudo ocasionar el cráter de Chicxulub. Esta hipótesis planteada por Luis Álvarez y otros en 1980 comenzó siendo objeto de cierta sorna y bastante escepticismo para pasar a convertirse en la hipótesis por excelencia y, para mucha gente, el símbolo de lo que puede pasar si el cielo cae sobre nuestras cabezas.

Desde entonces, la idea de que los grandes impactos extraterrestres pueden jugar un papel fundamental en las extinciones se ha extendido a otras que van desde el Drias reciente hasta el Gran Morir. Investigadores como el paleontólogo David Raup han intentado vincular las cinco grandes extinciones del último medio millar de millones de años con impactos cósmicos. Al menos en lo que hace a la extinción del Cretácico-Paleogeno –la de los dinos–, la hipótesis de Álvarez es muy sólida y por eso constituye hoy el consenso científico generalizado. Sin embargo, no toda la Galia se ha rendido a los romanos. Aquí y allá, existen científicos que plantean alternativas y que ahora mismo son objeto del mismo escepticismo, cuando no sorna, que se encontraron Álvarez y compañía a principios de los ’80. Hablamos de científicos pata negra, no de los chalados habituales, ya me entiendes.

Dr Jason Phipps Morgan, profesor de Ciencias de la Tierra, U. Londres

El Dr. Jason P. Morgan de la Universidad de Londres, que ha tenido la santa paciencia de contestarme a todo lo que le quise preguntar sobre su hipótesis de los Verneshots. :-) Con mi agradecimiento.

Por ejemplo, hablamos del Dr. Jason Phipps Morgan (New London, Connecticut –EEUU–, 1959), profesor de Ciencias de la Tierra en la Royal Holloway de la Universidad de Londres. Anteriormente, enseñó Geofísica y Física Planetaria en el Instituto Scripps de Oceanografía en La Jolla, California; y fue también profesor en el Instituto de Tecnología de Massachusetts (MIT) y en la Universidad Cornell, la de Carl Sagan o Richard Feynman. Además, entre 1999 y 2004 dirigió el Departamento de Geodinámica Marina del GEOMAR de la Universidad de Kiel, Alemania. Vaya, que cualquiera diría que el doctor Jason Morgan sabe un par de cositas sobre esta vieja Tierra y cómo funciona.

Al Dr. Jason Morgan no le gustan estas hipótesis del meteorito. Ve en ellas muchos cabos sueltos y demasiadas casualidades. En particular, la extraña coincidencia entre tales impactos y unas erupciones volcánicas aún mayores a las que llamamos inundaciones basálticas o traps. Porque parece haber una sincronía clara entre varias súper-extinciones y estas inundaciones basálticas. La de los dinos –Cretáceo-Paleogeno– coincide con las traps del Decán, en la actual India, hace 68-65 millones de años. La del Triásico-Jurásico, con la erupción de la Provincia Magmática del Atlántico Central (CAMP) hace 200 millones de años.  Y el Gran Morir, o sea la extinción súper-masiva del Pérmico-Triásico, ocurre exactamente al mismo tiempo –hace 250 millones de años– que las monumentales Escaleras Siberianas, una de las mayores inundaciones basálticas de todos los tiempos.

Que una de estas erupciones terrestres monumentales coincida con un impacto extraterrestre gigantesco ya es casualidad, ya. Que lo haga más de una comienza a parecer sospechoso. El Dr. Morgan, basándose en los trabajos del propio Luis Álvarez, estima que la probabilidad de que pase una vez es de aproximadamente 1/8: una mala tirada de dados. Pero la probabilidad de que ocurra dos veces es del 1/59, lo que ya va llamando la atención. La de que suceda tres veces se reduce a 1/454. Y la de que se dé cuatro veces cae a una entre más de 3.500, que ni el mejor tahúr podría vencer. O de algún modo el universo conspira para hacer coincidir semejantes catástrofes sin relación aparente entre sí, o aquí hay algo que no cuadra.

Pese a ello, las hipótesis cósmicas siguen siendo fuertes porque hay indicios fuertes de lo que parecen ser impactos brutales de origen extraterrestre en esos mismos periodos. No sólo es la famosa anomalía del iridio, considerado un metal extraterrestre a esas concentraciones, en el estrato de transición entre Cretácico y Paleogeno. Es también la presencia de microesferulitos y cuarzo chocado, nanodiamantes, fullerenos C60 y C70 conteniendo concentraciones anómalas de gases nobles, campos de tectitas y demás fenómenos convencionalmente vinculados a violentos impactos procedentes del espacio exterior. Y luego están los cráteres: nítidamente, Chicxulub para la del Cretácico-Paleogeno y, menos nítidamente (porque en algunos casos se van de varios millones de años), Manicouagan para la del Triásico-Jurásico, Alamo o Woodleigh para la del Devónico Tardío y en el caso del Gran Morir del Pérmico-Triásico… pues no está claro, pero se sugiere el Cráter de la Tierra de Wilkes (Antártida) como un posible candidato. Para explicar esta extraña sincronía entre impactos extraterrestres y erupciones terrestres hay quien postula que un gran impacto puede inducir graves alteraciones geológicas tanto en sus alrededores como en las antípodas; lo bastante como para iniciar procesos volcánicos a gran escala.

Correlación de las principales extinciones con diversos fenómenos geológicos.

Correlación de las principales extinciones con diversos fenómenos geológicos. Puede observarse que la gran mayoría coinciden con grandes inundaciones basálticas (provincias ígneas, «escaleras», «traps».) Por el contrario, la sincronía con aparentes impactos extraterrestres no es tan evidente. Imagen: de Morgan, J Phipps; Reston, T.J.; Ranero, C.R. (15 de enero 2004): «Contemporaneous mass extinctions, continental flood basalts, and ‘impact signals’: are mantle plume-induced lithospheric gas explosions the causal link?». Earth and Planetary Science Letters 217 (3–4): 263–284. DOI: 10.1016/S0012-821X(03)00602-2. (Clic para ampliar)

A todo esto le daba vueltas el Dr. Jason Morgan sin verlo nada claro hasta que se le ocurrió una idea: ¿y si los meteoritos en cuestión no procediesen del espacio exterior? Espera, espera: los meteoritos vienen del cosmos como todos sabemos, ¿no? ¿Qué tontería es esta?

Verneshot.

Una tontería con sentido: si hay una nítida sincronía entre varias extinciones importantes y estas erupciones basálticas; si además hay indicios fuertes de violentos impactos en los mismos periodos; pero la probabilidad de que ambas cosas coincidan en el tiempo es baja o muy baja… ¿qué tal si las erupciones provocasen los impactos? ¿Pero cómo sería eso posible?

Representación artística convencional de un Verneshot.

Representación artística convencional de un Verneshot, en el que un gigantesco fragmento de corteza terrestre sale propulsado en vuelo balístico para caer en algún otro punto de la Tierra de manera análoga a un gran meteorito. No obstante, el Dr. Morgan tiene algunas precisiones importantes que hacer al respecto, como veremos a continuación.

Pues mediante un mecanismo que el Dr. Jason Morgan ha bautizado como el Verneshot, o disparo de Verne, inspirándose en el cañón espacial que se inventó Julio Verne para su novela De la Tierra a la Luna. Básicamente sería un diatrema similar a las erupciones kimberlíticas que generan las minas de diamantes, pero a lo bestia. Muy a lo bestia.

¿Y esto de las erupciones kimberlíticas qué es? Básicamente, explosiones volcánicas súbitas originadas a entre dos y ocho kilómetros de profundidad que se expanden hacia arriba a velocidades supersónicas arrastrando todo el material que pillan por medio conforme el terreno circundante colapsa sobre sí mismo, produciendo como un cono o cucurucho de helado (o cañón de trabuco…) característico en el subsuelo. Las presiones que alcanzan son tan enormes que generan grandes cantidades de diamantes a partir del carbono implicado en el proceso. No otra cosa son las mayores minas diamantíferas del mundo: Yubileiny, Udáchnaya y Mir (Rusia); Argyle (Australia); Orapa (Botswana) y todas las demás.

Un Verneshot no es más que una erupción explosiva supersónica de estas, sólo que más profunda, grande y rápida. Y por tanto capaz de lanzar más material, más lejos. En un planeta como la Tierra, a miles de kilómetros de distancia. En uno más pequeño y con menos gravedad, como Marte, incluso podría entrar en órbita. El caso es que si parte de ese material sale despedido en forma de grandes bloques, o de fragmentos más pequeños pero concentrados en forma de chorros o algo parecido, allá donde atice va a provocar unos efectos muy similares a los de un meteorito de los gordos. Esta es una hipótesis elegante que explicaría la sincronía de los impactos aparentemente extraterrestres con las grandes erupciones basálticas, quizá capaces de ocasionar estos Verneshots.

Hay que decir que esta es, en estos momentos, una hipótesis absolutamente minoritaria. Después de su publicación en 2004, suscitó reacciones que van desde el tradicional «es una aproximación creativa a un problema real» del geólogo Paul Hoffman de Harvard hasta los más contundentes «no hay ni una sola prueba de ningún Verneshot» de Jan Smit (Universidad Libre de Amsterdam), pasando por la opinión del Dr. Philippe Claeys (Bruselas), sugiriendo que los indicios de impacto sólo son válidos para la extinción de los dinos y que en los demás casos «no necesitamos ninguna hipótesis mega-volcánica mística e indemostrable para resolver el problema.» Vamos, que la idea del Dr. Morgan cayó regular, por decirlo finamente.

Pero como aquí no nos asustamos de estas cosas, y además así es como avanza la ciencia, le he pedido directamente al Dr. Morgan que defienda su hipótesis para nosotros. Vamos, que ha sido tan amable de concederme una entrevista en exclusiva para la Pizarra de Yuri, y cuando digo amable, lo digo en serio, además de paciente. Más que nada porque le pillé en medio de la preparación de otro paper que se va a publicar próximamente donde sugiere que lo de Tunguska pudo ser un mini-Verneshot con presencia previa de luces de terremoto y, después, los efectos que le serían propios. Vamos allá:

Entrevista al Dr. Jason Phipps Morgan, proponente de los Verneshots.

Dr. Morgan, muchas gracias por su valioso tiempo. Cuéntenos: ¿qué es exactamente un Verneshot? ¿Dónde podemos encontrar uno?

No hay registro histórico de ningún Verneshot, pero tampoco de ninguna erupción de kimberlita. Un Verneshot es una erupción producida fundamentalmente por gases del carbono (CO2 + CO + menor cantidad de agua + gases del manto profundo asociados a las erupciones de kimberlita), básicamente sin magma líquido: sólo gas (y fragmentos rocosos, al igual que ocurre en las kimberlitas y otras erupciones explosivas generadas por vapor a menor profundidad.) La presión inicial de estos gases sería la propia de la exsolución del manto a 80 km de profundidad: unos 2,7 gigapascales. Es decir, una presión gaseosa 20 o 30 veces superior a la de los volcanes explosivos ocasionados por vapor, como Pinatubo, pero creo que similar a las presiones asociadas con las erupciones kimberlíticas.

Una erupción de kimberlita como las que formaron los grandes yacimientos diamantíferos que explotamos en la actualidad.

Una erupción de kimberlita como las que formaron los grandes yacimientos diamantíferos que explotamos en la actualidad. En estas erupciones, las presiones son lo bastante altas como para formar el diamante y los gases y el material salen propulsados a velocidades supersónicas hacia arriba. Después, las paredes colapsan y rellenan la chimenea, dejando sólo un cráter superficial visible. Un Verneshot no sería más que una erupción de kimberlita particularmente profunda y potente, con múltiples impactos secundarios a grandes distancias conforme el material retorna a la superficie y efectos severos sobre el clima global ocasionados por los gases expulsados. Imagen: © De Beers Diamond Trading Co.

Entonces, los Verneshots están estrechamente relacionados con las erupciones kimberlíticas, ¿correcto?

Sí, un Verneshot es básicamente una mega-kimberlita con tanto gas que no se conserva nada de magma kimberlítico. De hecho, en las kimberlitas, este «magma kimberlítico» característico ya es sólo una pequeña fracción del volumen de la chimenea.

Por cierto, ¿por qué tanto carbono?

Porque el CO2 forma una exsolución a la profundidad necesaria para crear una fase gaseosa estable en torno a los 2,7 gigapascales de presión (la presión «estática» a unos 80 km de profundidad.) El agua no produce una exsolución capaz de formar una fase de vapor análoga hasta alcanzar presiones mucho más bajas. Los materiales ricos en carbono se funden fácilmente bajo las condiciones del manto, así que en una pluma caliente que se eleva serán los primeros en fundirse (los que lo harán a más profundidad), creando magmas con una composición química del tipo de las kimberlitas o las carbonatitas. Conforme ese material fundido asciende por encima de los 80 km de profundidad, comienza a formar gases ricos en carbono.

¿Entiendo que la idea del Verneshot procede de la sorprendente coincidencia entre inundaciones basálticas continentales e impactos de meteoritos en el contexto de las grandes extinciones?

Eso es.

Y por ejemplo, podrían explicar también la capa de iridio en el estrato de la extinción del Cretácico-Paleogeno, ¿no?

Creo que sí. Los gases del manto profundo son ricos en azufre y crean fácilmente compuestos químicos con metales del grupo del platino como el iridio. En Isla Reunión hay depósitos de «gases de plumas del manto profundas» con las concentraciones de iridio más altas que se conocen en toda la Tierra. Esto podría representar una fracción volumétrica suficiente para formar una capa global de iridio como la de un impacto, dado que se emitiría más masa de gases del manto que la masa de un gran objeto extraterrestre, con una cantidad similar de iridio añadida a la superficie terrestre.

¿Qué más cosas explicarían?

La presencia de otras señales de «impacto» como una capa global de esferulitos y cuarzo chocado. El material propulsado al estallar el Verneshot inicial podría también generar impactos múltiples y cráteres de impacto. De hecho, una de las predicciones de mi hipótesis es que los grandes Verneshots deberían estar asociados con múltiples cráteres de impacto comparativamente pequeños.

¿Y qué no explicarían?

Cráteres del tamaño de Chicxulub al otro lado de la Tierra. La distancia máxima posible que puede recorrer el material proyectado por un Verneshot es de aproximadamente media Tierra.

La hipótesis de los Verneshots no disfruta de un consenso generalizado entre los expertos en Ciencias de la Tierra. Algunos opinan que es una aproximación interesante, otros la consideran un poco «en el límite», o incluso innecesaria para explicar las observaciones. Hay un par de papers afirmando que esta coincidencia entre inundaciones basálticas continentales e impactos extraterrestres no es tan rara. También hay quien defiende que los impactos de grandes meteoritos podrían ocasionar las grandes inundaciones basálticas. ¿Cómo ve el debate en este momento?

Me parece que es muy difícil proponer un mecanismo físico viable mediante el que un impacto [extraterrestre] pueda generar una pluma del manto persistente. Creo que tampoco ha propuesto nadie un mecanismo viable por el que pueda ocasionar una inundación basáltica en manto cratónico frío. Por ejemplo, algunas personas como Adrian Jones apuntan que un gran impacto podría crear un cráter de 30 km de profundidad, y que este cráter haría que el material que hay debajo se fundiese para formar una inundación basáltica. Sin embargo, en continentes estables, retirar 30 km de terreno (o sea, excavar un cráter de 30 km) no hará que el material que hay debajo se funda. Estará demasiado frío para fundirse, incluso aunque esté a ~1 gigapascal menos de presión de lo que estaba antes de que el cráter apartase los 30 km de corteza continental que tenía encima.

O sea que incluso un cráter de 30 km de profundidad [que alivie súbitamente toda esa presión sobre el material que hay debajo] no puede generar una inundación basáltica como la de las Escaleras Siberianas. El único mecanismo que parece plausible para lograr esto es una pluma del manto actuando sobre un rift. De hecho, las inundaciones basálticas son conocidas por generarse mediante un proceso lento de fusión parcial, donde aproximadamente el 10 – 25% del material se forma en equilibrio lento con el manto y va liberándose poco a poco, no como un proceso de fusión por impacto en la que toda la roca se fundiría instantáneamente con una composición totalmente distinta a la de las inundaciones basálticas.

Así que mi proposición es la siguiente: SI hay indicios de impacto coincidiendo en el tiempo con las mayores inundaciones basálticas y las grandes extinciones, entonces tengo la confianza de que algo parecido a los Verneshots debe existir. Si por el contrario no hay correlación entre indicios de impacto y extinciones masivas EXCEPTO Chicxulub, entonces no hay necesidad de algo como los Verneshots. Pero también estaríamos admitiendo que fueron las inundaciones basálticas continentales, y no los impactos [extraterrestres], las que ocasionaron casi todas las grandes extinciones del pasado.

¿Diría que está usted «batallando» contra los proponentes de la hipótesis del impacto extraterrestre? ;-)

El Dr. Jason P. Morgan sobrevuela Siberia en un helicóptero.

El Dr. Jason P. Morgan sobrevuela Siberia en un helicóptero, con rumbo a Tunguska. Foto: Rick Beyer.

Sí. Pero las batallas científicas suelen ser muy lentas. Ahora mismo, mantengo sin duda alguna un punto de vista minoritario en este tema, dado que la ciencia revisada por pares es MUY conservadora. Hemos hecho más trabajos al respecto desde entonces, pero ha sido muy difícil publicarlos e imposible conseguir financiación. [Pronto vamos a publicar] un paper sobre las pruebas que hemos recogido en dos minúsculas expediciones a Tunguska en 2008 y 2009, pagadas de nuestro bolsillo, con un equipo de filmación.

De hecho, intentamos minimizar deliberadamente los aspectos más «sensacionales» de nuestra hipótesis (…) porque hemos observado que los «revisores por pares» no se sienten muy cómodos con esta idea «imposible.» ¿Y por qué es imposible? Simplemente porque hay un consenso científico que dice que lo es. Ya te digo, la revisión por pares es un proceso muy conformista.

Y de hecho, por eso la ciencia funciona tan bien como lo hace. Normalmente el consenso científico se sustenta en cotejar las hipótesis con las observaciones. Una vez establecido, un consenso es muy difícil de cambiar. La «hipótesis del impacto extraterrestre» causando las grandes extinciones se consideraba una locura hasta que Álvarez mostró los indicios de iridio que, en su opinión, no podían originarse en procesos de la corteza terrestre. (…) Ahora, la «hipótesis del impacto extraterrestre» es el conocimiento convencional, «claramente evidente» en muchos impactos de la Tierra y la Luna, e ideas como los Verneshot caen en la categoría de locuras. Pero ahí están esas extrañas coincidencias entre inundaciones basálticas continentales, «indicios de impacto» y extinciones masivas que la hipótesis estándar del impacto extraterrestre no pueden explicar.

Pues vamos a mojarnos todavía más. ;-) ¿Cómo ocurriría un Verneshot? ¿Dónde, cuándo?

Se desarrollaría en un lugar como Tunguska: un grueso cratón, al principio de un proceso de rifting continental. Hoy en día, sólo Siberia, África o Norteamérica (¿rift de Río Grande?) podrían reunir estas condiciones.

¿Habría «alerta temprana» de alguna clase, o sería más bien un caso de «¡últimas noticias: un gran trozo de la corteza terrestre está balístico ahora mismo!»? ¿O simplemente formaría parte de una lentísima inundación basáltica medida en tiempos geológicos?

No habría mucho preaviso. Quizá muchos pequeños terremotos a 80 km de profundidad asociados con el inicio de la ruptura de la litosfera. En numerosas erupciones volcánicas explosivas suelen producirse muchos terremotos pequeños antes del fallo catastrófico final. Estos terremotos y enjambres de terremotos son relativamente fáciles de detectar si hay una red local de sismómetros en el área. El problema con las erupciones volcánicas explosivas «normales» es que muchas veces se producen enjambres de terremotos sin que luego ocurra una erupción. En todo caso, si en un cratón apareciera súbitamente una zona con muchos terremotos de poca intensidad a profundidades en el rango de los 80 km, eso sería, para mí, una señal de que una erupción de kimberlita o un Verneshot podrían estar a punto de ocurrir.

Las rocas eyectadas serían más bien un «chorro» de fragmentos, no una única pieza. Estaríamos hablando de una masa rocosa de unos 80 km de altitud por 500 metros de diámetro en el caso de un gran Verneshot, o sea más o menos 16 km3 de material, esencialmente procedente del manto.

¿Pero ocurriría siempre en el contexto de una inundación basáltica?

Quizá no. Y los «mini-Verneshot» más pequeños como el que creo que ocurrió en Tunguska no parecen estar asociados con ningún indicio de inundaciones basálticas.

Mecanismo de acción que podría generar aparentes "indicios de impacto" terrestres mediante un Verneshot.

Mecanismo de acción propuesto por Morgan et al. que podría generar aparentes «indicios de impacto» terrestres mediante un Verneshot. (a) El CO2 se acumula y calienta bajo la litosfera cratónica por la acción de una pluma del manto ascendente. (b) El material de la pluma fluye lateralmente y hacia arriba hasta acumularse bajo la zona más delgada de la litosfera, fundiéndose para formar la primera inundación basáltica. Mientras tanto, la pluma sigue añadiendo CO2, incubando el Verneshot en la litosfera cratónica profunda y desplazando magmas preexistentes ricos en carbono hasta aproximadamente 80 km de profundidad: el umbral de 2,5 GPa para la exsolución del CO2 a partir del magma rico en carbono. Así sigue aumentando la presión bajo la litosfera cratónica. (c) El fallo catastrófico de la litosfera dispara el Verneshot. Los gases emitidos, ricos en azufre y carbono, pueden iniciar una extinción. Tras el Verneshot, la región alrededor de la chimenea así formada tiene una presión muy baja con respecto a la litosfera circundante; el colapso de abajo arriba de este agujero casi vertical puede progagarse hacia la superficie a velocidades hipersónicas. Este «frente de colapso» hipersónico sería capaz de crear y propulsar minerales chocados en forma de grandes chorros de material. Tomado de: Morgan, J Phipps; Reston, T.J.; Ranero, C.R. (15 de enero 2004): «Contemporaneous mass extinctions, continental flood basalts, and ‘impact signals’: are mantle plume-induced lithospheric gas explosions the causal link?». Earth and Planetary Science Letters 217 (3–4): 263–284. DOI: 10.1016/S0012-821X(03)00602-2. (Clic para ampliar)

Así que podemos tener «mini-Verneshots…»

Sí, en mi opinión el suceso de Tunguska de 1908 pudo ser un mini-Verneshot que ocurrió en el mismo lugar que el Verneshot original (y, de hecho, reutilizó la chimenea original, que sería ahora una especie de «válvula de seguridad» o «conducto débil» en la litosfera siberiana.)

¿Y «súper-Verneshots»?  ;-)

Esto es difícil de imaginar. Estimé que un Verneshot de escala análoga a Chicxulub liberaría una energía mecánica de 5 x 1020 julios, equivalente a un terremoto de magnitud 11, unas 20 veces más que el mayor terremoto histórico conocido. Pero, para ponerlo en perspectiva, si la energía sísmica decae a razón de 1/distancia2, «se sentiría» sólo como el terremoto de Chile de 2010 a 4,5 veces la distancia del epicentro. Seguiría siendo un suceso de alcance local. Lo mismo con la onda de choque. La explosión principal del Krakatoa, con una energía aproximada de 1018 julios, se oyó a distancias de 5.000 km y causó problemas auditivos graves a marinos que se encontraban a 60 km. Un gran Verneshot con una liberación de energía de 5 x 1020 julios sería 500 veces más fuerte que la explosión del Krakatoa, creando una onda de choque que literalmente se oiría en todo el mundo. (La intensidad de la onda de choque decae sólo a razón de 1/distancia porque viaja como una onda por la capa inferior de la atmósfera, así que a una distancia de 60 x 500 = 30.000 km tendría un efecto similar al que la onda de choque del Krakatoa produjo a 60 km.)

¿Qué aspecto tendría un Verneshot «grande» mientras está sucediendo?

Como una gran explosión volcánica, quizá con un chorro de fragmentos elevándose de tierra en una gran nube de gas caliente propulsada a lo alto de la atmósfera, donde inmediatamente empezaría a formar nubes de polvo y cristales de hielo.

Puede que el lugar de la explosión siguiera emitiendo gases durante un tiempo, pero la pluma principal seguramente desaparecería tras la erupción inicial. Podría producirse una serie de erupciones, la primera creando el canal a través de la litosfera y las siguientes reutilizándolo conforme las regiones más profundas se relajen tras la emisión inicial de CO2 con la primera detonación.

¿Sería un fenómeno súbito, digamos como una explosión nuclear con un «súper-hongo», o algo más progresivo?

Creo que la primera detonación sería la mayor: la que formaría la chimenea del Verneshot desde los aproximadamente 80 km de profundidad hasta la superficie. Pero podría haber detonaciones posteriores con expulsiones de gas a más presión que ninguna erupción volcánica explosiva conocida, dado que la presión del gas es entre 10 y 40 veces superior (al originarse a profundidades de 80 km en vez de los 2 a 8 habituales.) El gas se habría expandido entre 10 y 40 veces más al alcanzar la superficie. Sí, definitivamente imagino que la primera erupción sería como una explosión nuclear, excepto que el gas saldría despedido verticalmente mientras se expande en todas direcciones. Una columna ardiente de 60 a 100 km de altitud sería un auténtico pilar de fuego…

Y si pudiésemos sobrevolarlo a continuación, ¿qué veríamos?

Un agujero muy hondo. La chimenea volcánica colapsaría de inmediato, en cuanto saliese el gas, pero quedaría un gran agujero que se llenaría rápidamente de agua y después se erosionaría y rellenaría a lo largo de cientos de miles de años (como parece haber pasado con las chimeneas kimberlíticas y otros diatremas explosivos.)

¿Resultaría aniquilada el área circundante? ¿O, dado que el material y la energía viajan sobre todo hacia arriba, sólo sufrirían un terremoto «convencional»? ¿Alguna estimación de daños?

Sería exactamente igual que si hubiese habido un gran impacto [extraterrestre], o un terremoto mayor que ninguno de los que constan en la historia humana (presenté una comparación en el paper de 2004.) La energía alrededor del Verneshot decaería aproximadamente a razón inversa de la distancia durante los primeros 80-100 km, y a razón inversa del cuadrado de la distancia a partir de ahí. Pero la zona del Verneshot en sí misma, descontando el área afectada por la onda de choque inicial, no resultaría destruida a escala regional.

¿Hasta dónde podrían llegar los fragmentos propulsados por el Verneshot antes de caer a tierra otra vez? ¿Tiene alguna estimación sobre velocidad, apogeo de la trayectoria balística y energía de impacto? ¿Estamos hablando de rocas de cientos de metros cayendo aquí y allá o más bien de una «granizada» de objetos más pequeños?

Un cálculo rápido sugiere que podría llegar a ser posible que el material eyectado acabase en cualquier punto de la Tierra, aunque esto sería mucho más probable en un planeta de menor gravedad como Marte. En la práctica, cabe esperar una eyección de menor energía, con distancias de vuelo en el rango de los miles de kilómetros (no 20.000 km.) Pero los fragmentos chocados de menor tamaño y los microesferulitos fundidos y mezclados con el gas que saldrían despedidos a la atmósfera superior podrían recorrer el mundo entero antes de posarse, así que estos «indicios de impacto» tendrían una distribución global.

Si las partículas son pequeñas, la atmósfera las frenará muy deprisa. Por el contrario, una nube o «perdigonazo» tendrá un efecto similar al de un único objeto de gran tamaño al impactar contra el suelo. Creo que tenderá a haber uno o varios «chorros» de material que recorrerán las mayores distancias. Si un «chorro» «perfora» un orificio temporal en la atmósfera, favorecerá que más material circule por ahí. Pero las partículas a menor velocidad no llegarán tan lejos y podrían producir algo como «sendas» de tectitas a lo largo de la dirección del chorro.

Así que sí, una «granizada» a lo largo de la ruta de cada chorro, con la posibilidad de bloques concentrados que viajen juntos desde la detonación hasta la reentrada en las regiones más densas de la atmósfera y el impacto final contra el suelo. No veo ningún motivo por el que se tuviera que formar un único cráter a consecuencia de un Verneshot, porque incluso un «chorro» bien enfocado tendería a ser más disperso que el típico meteorito. Sería más sencillo tener muchos cráteres de menor tamaño asociados con un único Verneshot, con un diámetro de unos pocos kilómetros y el potencial de conservarse en el registro geológico si se formara en regiones marinas donde se esté produciendo sedimentación. He leído algún informe anecdótico sobre pequeños cráteres en el Mar del Norte que podrían coincidir en el tiempo con la extinción del Cretácico-Paleogeno.

Me lo estoy imaginando como una especie de gigantesca «palmera» de fuegos artificiales…

Podría ser.

La colosal erupción explosiva del Monte Pinatubo (Filipinas, 1991, VEI-8.)

La colosal erupción explosiva del Monte Pinatubo (Filipinas, 1991, VEI-6) es minúscula en comparación con otras que han ocurrido a lo largo de la historia de la Tierra, y sería casi ridícula en comparación con un Verneshot. Imagen: Wikimedia Commons.

¿Qué clase de daños producirían estas «granizadas» al caer? ¿Hablamos de ciudades arrasadas por estos «perdigonazos» o más bien de una «lluvia de piedras»?

Dependería de lo concentradas que llegasen. Si se limita a «llover piedras» no sería tan grave en términos de daños en tierra. Pero masas de material más concentradas golpearían el suelo como un meteorito de tamaño similar… y a velocidades similares. Probablemente estas piedras estarían también «al rojo vivo» o parcialmente fundidas.

Bien, entiendo que un Verneshot podría ocasionar o ser parte de una extinción masiva. ¿Podría explicarnos sus efectos globales «inmediatos»?

Los gases añadidos repentinamente a la atmósfera superior –gases sulfúricos, dióxido de carbono y vapor de agua hasta la estratosfera– provocarían efectos climáticos severos hasta que la química atmosférica restableciese el equilibrio. En los primeros años, los gases ricos en azufre impedirían que parte de la luz solar llegara a la superficie y la atmósfera interior, dando lugar a un súbito pulso de enfriamiento global y lluvia ácida. Esto conduciría a algo mucho más drástico que las «noches blancas» asociadas con el suceso de Tunguska de 1908 o los meses de puestas de sol espectaculares asociadas a la erupción del Krakatoa. Probablemente le costaría años disiparse… varios años seguidos muy fríos hasta que estos gases sulfúricos lloviesen de vuelta a la superficie.

Pero después, el CO2 añadido a la atmósfera ocasionaría un periodo de intenso calentamiento global de uno o varios milenios de duración, con el riesgo adicional de que se produjera una fuerte estratificación y anoxia oceánica superficial global muy peligrosa para la vida, hasta que los niveles de CO2 atmosféricos vuelvan a la «normalidad» para ese periodo.

¿Un solo Verneshot o varios consecutivos?

No hay ningún motivo por el que una inundación basáltica continental no pueda vincularse con varios Verneshots, separados unos 100.000 años entre sí.

Arriésguese: ;-) Sugiérame un par de sitios en Europa o América donde podría ocurrir un Verneshot.

En Europa, me pregunto si los «famosos» cráteres de Ries y Steinheim al Sur de Alemania son en realidad un Verneshot que ocurrió hace unos 15 millones de años. Pero ahora mismo el vulcanismo de la pluma Eifel se encuentra en el rift de las fosas tectónicas del Rin, así que cabría esperar un vulcanismo menos explosivo, si bien con alguna posibilidad de impactos locales en Europa; Europa del Norte en particular.

En Norteamérica, apostaría por algún lugar próximo a la intersección entre el rift de Río Grande, el cratón de Wyoming y Yellowstone.

Hmmm… se me ha venido a la cabeza la zona entre el cratón del Atlántico Norte y el rift de la margen oriental de Groenlandia…

Podría ser, pero en la época de las inundaciones basálticas de Groenlandia, no ahora. :-)

¿Tengo entendido que han encontrado ustedes «indicios de Verneshot» bajo las traps del Decán, o incluso en el área de Tunguska?

Lo curioso de las traps del Decán es que hay «indicios de impacto» dentro de los estratos inferiores. [No debajo.] Esto implica que la inundación basáltica ya estaba sucediendo cuando se produjo el «impacto.» Tunguska presenta evidencias de un impacto mayor ocurrido allí hace unos 250 millones de años, contemporáneo con la formación de las Escaleras Siberianas.

 (Al finalizar esta entrevista, el Dr. Jason Morgan me suministró ese nuevo paper sobre sus observaciones en Tunguska aceptado para próxima publicación en Earth and Planetary Science Letters. Por si te interesa, la referencia es: Paola Vannucchi; Jason P Morgan; Damiano Della Lunga; Chris Andronicos; William J Morgan (2014): «Direct evidence of ancient shock metamorphism at the site of the 1908 Tunguska event.»)

Bibliografía:

61 Comentarios Trackbacks / Pingbacks (12)
¡Qué malo!Pschá.No está mal.Es bueno.¡¡¡Magnífico!!! (21 votos, media: 4,95 de 5)
Loading...
Be Sociable, Share!

BIG’95: El gran tsunami del Mediterráneo español

Hola, ola. :-|

Maremoto de Lisboa del 1 de noviembre de 1755.

El maremoto del 1 de noviembre de 1755 llega a la ciudad de Lisboa, ya gravemente dañada e incendiada por el terremoto precedente. Grabado: G. Hartwig, «Volcanoes and earthquakes», Longmans, Green & Co., 1887. (En la colección de la Universidad de Wisconsin – Madison)

Tsunami de 2004 en Banda Aceh, Indonesia.

Banda Aceh, Indonesia, después del tsunami de 2004. Indonesia sufrió unos 175.000 muertos sin que el nivel del mar subiera más de diez metros en la práctica totalidad del país. La gran cantidad de población costera viviendo en casitas bajas de poca resistencia situadas en llanuras contribuyó significativamente a la catástrofe. Imagen: Wikimedia Commons. (Clic para ampliar)

Cuando oímos hablar de tsunamis, solemos pensar en Asia, y muy especialmente en el país que nos dio la palabra: Japón. Ciertamente, los maremotos que se dan en algunas costas asiáticas son terribles, debido a una mezcla de factores geológicos, geográficos y superpoblación (y, últimamente, añadiría yo que por ciertas centrales nucleares cuyas defensas contra los mismos resultaron ser ridículas.) Pero no son los únicos. Se da la circunstancia de que la Península Ibérica es otra de las regiones con riesgo maremotriz. Engaña, porque por estos lares no son tan frecuentes y tampoco suelen ser tan intensos. Pero el riesgo existe.

No otra cosa fue el gran terremoto y tsunami de Lisboa del día de Todos los Santos de 1755, que ya te comenté en este blog. Se le suele llamar «de Lisboa» y «de Todos los Santos» porque prácticamente aniquiló la capital portuguesa, matando (entre muchas otras personas) a una montaña de gente que se encontraba en las iglesias celebrando esa festividad, o buscó refugio en ellas. Se calcula que hubo unos 40.000 – 60.000 muertos, sobre una población en la época de 275.000 habitantes. Semejante tragedia alentó notables dudas sobre la divinidad, sus atributos, su bondad y su poder protector, alejando a muchos pensadores influyentes de la teodicea de Leibniz, contribuyendo significativamente a la difusión del racionalismo ilustrado y, de paso, creando la sismología moderna. Fue tan gordo que hubo un antes y un después de la catástrofe «de Lisboa» en la cultura occidental.

Pero yo lo entrecomillo porque no fue sólo Lisboa. El maremoto, originado en la falla Azores-Gibraltar, golpeó con fuerza desde Irlanda al Senegal. Al Sur de la Península Ibérica, causó devastación y mortandad entre el Algarve portugués y la provincia de Cádiz, con olas a las que se les han estimado hasta quince metros de altura. Se llevó por medio Ayamonte, matando a unas mil personas, más un número indeterminado de pequeñas comunidades costeras. Por su parte, el terremoto, estimado en una magnitud de 8,5, causó daños importantes en lugares tan lejanos como Valladolid o Ciudad Real. Algunas fuentes afirman que las víctimas totales rondaron las 90.000.

Animación del tsunami del Atlántico de 1755, según el modelo computacional RIFT.
Puede observarse cómo en media hora ya estaba barriendo todo el Golfo de Cádiz.
Estudio realizado por la NOAA / NWS / Pacific Tsunami Warning Center.

Terremoto y tsunami de Mesina de 1908.

El terremoto y tsunami de Italia del 28 de diciembre de 1908 mató a 123.000 personas y destruyó las ciudades de Mesina y Reggio Calabria en su práctica totalidad. Foto: Wikimedia Commons. (Clic para ampliar)

El Mar Mediterráneo tampoco es inmune a los tsunamis, sobre todo en su parte central y oriental, con fuerte actividad sísmica. El historiador griego Heródoto de Helicarnaso ya nos cuenta que, en el año 479 aEC, durante un asedio a la ciudad de Potidea, los atacantes persas que aprovechaban un repentino y sorprendente descenso del nivel del mar para atravesar el istmo fueron sorprendidos por una gran ola como nunca se había visto antes y perecieron ahogados. Aunque Heródoto era un liante, habitualmente considerado al mismo tiempo el padre de la historia y el padre de la mentira, esto describe el comportamiento de ciertos tsunamis bastante bien y puede que el relato se sustente en un hecho real. Heródoto achacó este maremoto a la ira de Poseidón.

El primero que estableció un vínculo directo entre terremoto y maremoto fue otro historiador griego, Tucídides, cuando nos cuenta de uno sucedido en el Golfo Malíaco durante el verano del año 426 aEC. Al parecer, se llevó por medio a todas las poblaciones costeras. Desde entonces, ha habido muchos más. Quizá el más conocido de todos sea el que ocurrió a primera hora de la mañana del 21 de julio de 365 EC. Un fuerte terremoto submarino con epicentro cerca de Creta arrasó Libia y Egipto, y notablemente las ciudades de Apolonia y Alejandría, matando a mucha gente. Aparecieron barcos tres kilómetros tierra adentro. El fenómeno se repitió menos de un milenio después, en el año 1303. Mucho más recientemente, durante la madrugada del 28 de diciembre de 1908, el terremoto y tsunami de Mesina, al Sur de Italia, se llevó por delante a entre cien y doscientas mil personas.

¿Y en el Mediterráneo Occidental, o sea, más o menos las costas españolas y parte del extranjero? Bien, la actividad sísmica en el Mediterráneo Occidental no es tan intensa, pero también suceden. El más reciente así digno de mención fue el 21 de mayo de 2003, a consecuencia del terremoto de Bumerdés, Argelia. Este seísmo les hizo dos mil y pico muertos en tierra a nuestros queridos proveedores de gas natural, pero también inició un pequeño maremoto que, aunque sin causar otras víctimas, provocó bastantes daños en los puertos baleares. Destrozó numerosos pantalanes y hundió más de cien barcos pequeños, recordándonos así su poder.

Pese a ello, hay quien asegura que en el Mediterráneo Occidental no pueden producirse grandes tsunamis (y aquí). Otros, en cambio, dicen que eso no está claro. De hecho, probablemente ya ocurrió al menos una vez, que sepamos. En términos humanos, fue hace mucho tiempo: unos 11.500 años, allá por el Epipaleolítico. Pero en términos geológicos, eso es nada, hace un momentín. Pudo barrer las costas de Castellón, el Sur de Tarragona y las Islas Baleares con olas de hasta unos nueve metros, puede que algo más. Hoy en día lo llamamos el tsunami del BIG’95.

Deslizamiento de tierras BIG'95 y áreas primarias de impacto del tsunami (año 11.500 BP)

Ubicación aproximada del deslizamiento de tierras BIG’95 (Epipaleolítico, año 11.500 BP) y, si se hubiera producido hoy en día, de las áreas primarias de impacto del tsunami que generó. En aquella época la costa estaba más mar adentro y, por tanto, golpeó en regiones actualmente sumergidas. Mejor versión y explicación en la fuente original: Iglesias, O.; Lastras, G. et al. (2012): The BIG’95 submarine landslide-generated tsunami: a numerical simulation. The Journal of Geology, vol. 120, nº 1 (enero 2012.) ISSN: 0022-1376. Mapa: © Google Maps. (Clic para ampliar)

BIG’95.

Frente a las costas de Castellón y Tarragona se extiende una plataforma continental llamada la plataforma del Ebro, al estar básicamente constituida por sedimentos que aportaron este río y sus antecesores al menos desde el Aquitaniense (Mioceno inferior, hace aproximadamente 23 millones de años.) Es muy suave; en algunos puntos, por ejemplo frente a la ciudad de Castellón, hay que alejarse de la orilla más de sesenta kilómetros para que supere los cien metros de profundidad, con lo que gran parte de ella debió estar emergida durante el Último Máximo Glacial. Hace 11.500 años, la línea costera debía estar todavía unos 40-50 metros más baja que ahora, y por tanto 15-20 km mar adentro con respecto a su posición actual.

Sin embargo, esta suave plataforma termina abruptamente. En la zona que nos ocupa, por las Islas Columbretes, la profundidad aumenta deprisa hacia los dos mil metros: la llamada Depresión de Valencia. [Aquí tienes un fichero KMZ del Instituto de Ciencias del Mar (Consejo Superior de Investigaciones Científicas) para ver toda esta zona con detalle en Google Earth.] Se comprende fácilmente que los bordes de una suave ladera sedimentaria seguida por un desnivel de casi dos kilómetros están pidiendo a gritos un deslizamiento de tierras. Y esto fue lo que ocurrió, hace ahora once milenios y medio: 26 kilómetros cúbicos de sedimentos se desprendieron del borde de la plataforma del Ebro por la parte de las Columbretes para precipitarse hacia la Depresión de Valencia. No fue, ni con mucho, uno de los deslizamientos más grandes que se conocen. Nada que ver con los de Storegga (3.500 km3), en el Mar del Noruega, tres milenios y medio después, cuyo gigantesco tsunami separó definitivamente Gran Bretaña de la Europa Continental. Incluso mucho menos que el de 1929 frente a Terranova (Canadá), con sus 200 km3.

No obstante, debido al acusado desnivel, BIG’95 descendió rapidito, llegando a superar en algún punto los 150 km/h (> 40 m/s.) El conjunto del deslizamiento recorrió más de 110 km depresión abajo en menos de 73 minutos, cubriendo 2.200 km2 de fondo marino. Una masa de más de 50.000 millones de toneladas desplomándose a velocidades que rondan los cien kilómetros por hora (entre 70 y 150) tiene una cantidad notable de energía, y puede transferírsela al medio circundante. En este caso, el agua del mar.

Probablemente, el tsunami se formó durante los primeros minutos del colapso. Lo hizo en dos frentes, uno más rápido que avanzaba hacia las Islas Baleares y otro más lento que retrocedía hacia la costa de Castellón. El frente rápido golpeó la costa Noreste de Ibiza en primer lugar, 18 minutos después, con una ola inicial de hasta ocho metros que llegó sin previo aviso. La siguió una retirada del mar y al menos otra de unos siete que llegó pocos minutos después, y luego otras más pequeñas. Para entonces, el tsunami ya golpeaba Mallorca (en el minuto 27) aunque con olas de menor altura, entre 2 y 4 metros. Sin embargo, un fenómeno de resonancia en el sector de la Bahía de Palma pudo elevar la ola inicial hasta los diez metros por la parte de Santa Ponça. Por suerte, parece ser que las Baleares carecían de población humana en aquellos tiempos.

Animación de la llegada de un tsunami

Cuando un maremoto llega a aguas someras, la amplitud y velocidad de las olas se reducen, pero a cambio su altura aumenta. Imagen: R. Lachaume vía Wikimedia Commons.

Lamentablemente en el minuto 54 el frente lento, más energético, alcanzó la costa peninsular frente a lo que hoy en día sería casi todo Castellón y el Sur de Tarragona, más o menos. Y ahí, con toda probabilidad, había gente. No tanta como hoy en día, desde luego, y menos si pensamos en la temporada alta del turismo. Pero sí personas como los magdalenienses que ocupaban la cueva Matutano, situada en las proximidades. Esos eran homo sapiens, gente de los nuestros y todo ese rollo. Puede que familias, clanes o tribus de pescadores epipaleolíticos. Las costas y su pesca siempre han atraído a la humanidad.

Primero, se fue el mar. A continuación, regresó. El intenso efecto de asomeramiento producido por la propia plataforma del Ebro elevó las olas, puede que hasta los nueve metros. Quizá esto te parezca poco, acostumbrados como ya estamos a oír de tsunamis de cuarenta metros en el Japón, pero créeme, tú no quieres estar en el camino de un maremoto de nueve metros. Nueve metros son tres plantas de un edificio. La mayoría de las víctimas que causan los grandes tsunamis se dan en zonas donde el agua llega con menos de diez metros de altura; los puntos donde realmente superan los treinta son raros, «el máximo.» Durante el maremoto del Océano Índico de 2004, la inmensa mayor parte de los 175.000 muertos que ocasionó en Indonesia estaban en lugares donde la elevación del mar no superó los diez metros y a menudo ni siquiera los cinco. El de 2011 alcanzó la central nuclear de Fukushima con una altura máxima de 14-15 metros y ya sabes la que armó. En la práctica, medio metro basta para arrastrarte. El agua engaña mucho. Cuando llega con semejante fuerza, incluso inundaciones aparentemente pequeñas tienen un poder pavoroso. Y una vez te ha arrastrado, vete a saber dónde acabas, y cómo. De dos a tres metros ahogarán a todo el que no logre subirse a algo o sepa nadar muy bien (y tenga su día de suerte.)

El maremoto de 2004 llega a Banda Aceh, Indonesia.
Obsérvese que no es realmente muy alto, pero sólo en ese sector causó más de 31.000 muertes.

Área a menos de 9 msnm en el sector Burriana - Alcocéber

Cubierta en azul, el área que actualmente se encuentra a menos de 9 metros sobre el nivel del mar en el sector Burriana – Alcocéber. No obstante, cuando el tsunami alcanzó la antigua costa, varios kilómetros mar adentro, tuvo que inundar un área bastante superior debido a la suave inclinación de la plataforma continental del Ebro. Imagen: Google Maps / flood.firetree.net (Clic para ampliar)

El caso es que el tsunami de hace 11.500 años barrió esta costa hoy desaparecida unos kilómetros frente a lo que ahora son Burriana, Almazora, el Grao de Castellón, Benicasim, Oropesa del Mar, Torreblanca, Alcocéber, Peñíscola, Benicarló, Vinaroz, Alcanar, San Carlos de la Rápita y posiblemente hasta el Delta del Ebro (cuya formación es muy posterior, incluso posterior a la época romana.) Es imposible saber cuánta gente vivía ahí en aquellos tiempos. Si hubiese sido en nuestra época, especialmente durante la temporada turística, puede uno imaginarse lo que ocurriría.

Y… ¿puede volver a ocurrir hoy en día? Pues lo cierto es que no se sabe muy bien. Los mismos investigadores que han estudiado el BIG’95 creen que el punto donde se produjo es ahora estable a menos que hubiera un terremoto de bastante envergadura. Reconozco que un servidor se puso algo nerviosito con los terremotos vinculados al Proyecto Castor de Florentino que se produjeron durante el otoño pasado, justamente en esa zona. La presencia de la central nuclear de Vandellós algo más al Norte tampoco resultaba muy tranquilizadora. No obstante, con respecto a esto último, el Consejo de Seguridad Nuclear asegura que desde 2007 ésta dispone de «un nuevo sistema de refrigeración esencial» situado a más de 23 metros sobre el nivel del mar. Además, a raíz de lo de Fukushima, están realizando inversiones para incrementar la seguridad frente a estos fenómenos.

Sin embargo, como yo tengo mi puntito paranoico, nada, poca cosa, lo de los terremotos en una zona que ya pudo provocar un tsunami importante seguía teniéndome mosca. Así que he decidido ponerme en contacto con uno de los autores de la investigación: Galderic Lastras, profesor titular de Geología Marina de la Universidad de Barcelona. El doctor Lastras, por cierto muy gentilmente, me serena: haría falta uno bastante más intenso y cercano al talud continental que los de 2013 para iniciar, por sí solo, un deslizamiento de tierras de este calibre. No obstante, tales deslizamientos ocurren a veces porque sí; es decir, porque la ladera es o se vuelve inestable y simplemente colapsa. Pero por otra parte, el periodo de retorno (el tiempo medio que tarda en volver a ocurrir) es, obviamente, muy largo: este de hace 11.500 años fue el último que ocurrió en el sector. Decía antes que 11.500 años es un tiempo muy breve en términos geológicos, pero muy largo en términos humanos. Las probabilidades de que vuelva a ocurrir durante nuestro tiempo de vida, o el de nuestros hijos y nietos, son francamente bajas. No es imposible, por supuesto. Pero la probabilidad es muy pequeña.

No obstante, quise saber también si estamos muy en bragas o no en el caso de que esta probabilidad tan pequeña llegara a hacerse efectiva. Como ya te digo que yo soy apenas nada paranoico, molesté a Elena Tel (del Instituto Español de Oceanografía), Emilio Carreño (director de la Red Sísmica del Instituto Geográfico Nacional) y Gregorio Pascual (jefe del área de desastres naturales de la Dirección General de Protección Civil), todos los cuales tuvieron la santa paciencia de seguirme la corriente con gran amabilidad.

Vinieron a explicarme que, a pesar de los recortes, se está desarrollando un sistema de alerta contra maremotos en las costas españolas, en su mayor parte utilizando equipos ya existentes y cooperación internacional. Pero que, por su propia naturaleza, alertar de fenómenos cuya llegada se mide en decenas de minutos es complicado. Que ni esto es el Océano Pacífico, donde pueden transcurrir horas desde que se produce el terremoto hasta que llega el maremoto, ni nosotros somos los japoneses, que llevan décadas perfeccionando sus sistemas de la más alta tecnología hasta ser capaces de alertar a la población en cuestión de minutos. Y que en el caso de los tsunamis causados por deslizamientos de tierras, sin un claro terremoto que los genere, puede pasar un buen rato antes de que las boyas marítimas comiencen a indicar que ocurre algo raro. Es la detección del terremoto y sus características lo que nos permite deducir que viene la ola. Los deslizamientos de tierras se pueden captar, pero resultan mucho más ambiguos.

Sobreviviendo al maremoto.

Tilly Smith

Tilly Smith (izda.), de 10 años de edad, había prestado atención a su profe en clase. Así sabía que cuando el mar se va, es para volver con muy mal genio. Gracias a eso y a su entereza, salvó la vida de numerosas personas en una playa de Phuket (Tailandia) cuando llegó el maremoto de 2004, al dar la alerta que nadie más supo dar. Foto: © The Nation, Tailandia.

Me insisten en que la educación es importante. Durante el maremoto del Índico de 2004, una jovencita británica de diez años llamada Tilly Smith salvó a decenas de personas en una playa de Tailandia al recordar lo que les había contado en clase su profesor Andrew Kearney sobre lo que podía pasar cuando el mar se va. Tilly vio que el mar se iba y se lo explicó a sus padres. Su madre no la creía, pero su padre percibió tanta firmeza en sus palabras que avisó a otros bañistas y al personal del hotel donde se alojaban, activando así una evacuación improvisada. Cuando el mar regresó con todo su poder, fue una de las pocas playas del sector donde no hubo ni un solo muerto.

En realidad, la manera más eficaz de salvarse de un maremoto es relativamente sencilla: al primer indicio, corre. No te quedes a mirar. No pases de todo. No comentes la jugada. No intentes recoger tus posesiones ni ir a buscar el coche ni nada por el estilo. Alerta a los demás, intenta ayudar a quienes no puedan valerse por sí mismos y corre como si te fuera la vida en ello, porque te va. Aléjate del agua hacia el lugar más alto posible: montes, lomas, las plantas superiores de edificios resistentes. Si no hay otra cosa, incluso las copas de árboles grandes, difíciles de desarraigar. Lo que puedas. Una diferencia de pocos metros de altura representa la diferencia entre la vida y la muerte. Y si no hay absolutamente nada sólido a lo que subirse, simplemente corre tierra adentro. El maremoto perderá fuerza conforme avance hacia el interior. Si te pilla, intenta agarrarte a algo que flote. Hay gente que ha sobrevivido así.

¿Y cuáles son esos indicios de que viene un maremoto? Pues el primero de todos es un terremoto percibido en una zona costera. Si estás cerca de la orilla (incluyendo la de los ríos y canalizaciones próximos al mar) y notas un terremoto, ponte en alerta. A lo mejor no pasa nada, la mayoría de veces no pasará nada, pero tú presta atención. Por desgracia, este indicio no es de fiar: a menudo el terremoto se produce lejos, muy mar adentro, y no se percibe en tierra. Entonces sólo te queda lo mismo que alertó a Tilly Smith: que el mar se retire, como si de repente la marea hubiese bajado mucho. Lamentablemente, esto tampoco ocurre siempre, sino sólo cuando llega el vano de la ola en primer lugar. Otras veces, la cresta viene por delante. Entonces, la cosa se complica. Los tsunamis de verdad no son como las olas esas de hacer surf que salen en las pelis. Es más como una inundación rápida que crece y crece y crece sin parar. Si lo ves venir, ya lo tienes encima.

En este caso, bien, tenemos un problema. Cuentas con muy poco tiempo. Correr ya no vale porque, así seas Usain Bolt, el agua es más rápida que tú. Lo primero, intenta agarrarte con fuerza a algo que flote, lo que sea. No permitas que te atrape dentro de un vehículo: los vehículos vuelcan enseguida y te ahogas, además de que las carreteras y caminos se colapsan en un plis. Ni tampoco en un edificio bajo (como un bungaló, caseta, chiringuito, chalecito, nave o demás): si te quedas ahí dentro, el agua simplemente seguirá subiendo hasta llegar al techo y ahogarte. Sal como puedas. Si puedes encaramarte a algo alto, cualquier cosa, pues arriba. Una vez te veas en el agua, no intentes pelear contra ella. No puedes ganar: el mar es infinitamente más fuerte que tú y sólo lograrás agotarte enseguida. Déjate llevar, intentando mantener la cabeza fuera del agua (obvio) y evitar los golpes contra otros objetos que pueda estar arrastrando. No sueltes tu salvavidas, por precario que sea. Si no te engancha nada, lo más probable es que la ola al retroceder se te lleve mar adentro. Calma, hay personas que han sido rescatadas después de varios días en el mar, aferradas a su trozo de madera. Es normal tener miedo, mucho miedo, pero no permitas que te venza el pánico. Si se nos apodera el pánico cometeremos estupideces, y si cometemos estupideces en una situación así, se acabó la partida. Jaque mate.

Cartel de información para tsunamis en Puerto Rico

Cartel de información para tsunamis en el bosque estatal de Guánica, Puerto Rico. Las instrucciones básicas son sencillas: corre todo lo que puedas, lo más alto que puedas, y si no puede ser, lo más lejos de la orilla que puedas. Foto: G. Gallice vía Wikimedia Commons.

Otra causa de mortandad es que el maremoto puede comportarse de manera distinta en diferentes lugares de la costa. Hay gente que lo ve subir poco en otro punto de la orilla y se piensa que está segura. Tú, ni caso: a correr hacia lo alto. El comportamiento de un tsunami depende de numerosos factores muy complejos, y a lo mejor en la otra punta de la playa sube sólo unos centímetros, pero donde estás tú te mete cinco metros. Así que ojito.

Jamás hay que olvidar que un maremoto puede componerse de múltiples olas y durar varias horas. La primera ola tampoco tiene por qué ser la peor de todas, y de hecho muchas veces no lo es. Hay gente que ha muerto porque creía que, al haber escapado de la primera, estaba a salvo de la segunda y sucesivas. Tampoco faltan las personas que perecieron al acudir o regresar al área devastada tras el primer impacto, para prestar auxilio o en busca de familiares, amigos, mascotas o bienes; al hacerlo, se encontraron de bruces con el segundo golpe o los siguientes. La zona afectada por un tsunami no es segura hasta que las autoridades científicas pertinentes no digan que es segura; y aún así, con cuidadín.

Lisboa reloaded.

En general, los especialistas con los que he consultado consideran mucho más plausible (y temible) una repetición del tsunami de Lisboa que del ocasionado por el deslizamiento BIG’95. La repetición del BIG’95 es sumamente improbable; no ha vuelto a haber otro en estos últimos once milenios y medio. Pero algo como lo del día de Todos los Santos de 1755 no sería tan raro. Fuertes terremotos en la falla de Azores-Gibraltar, con maremotos que alcanzaron las costas circundantes, ha habido unos cuantos más.

Para acabar de arreglarlo, en 1755 la zona de la Bahía de Cádiz estaba relativamente poco poblada y menos urbanizada. Ahora es todo lo contrario, con el Polo Químico de Huelva –prácticamente a nivel del mar– como guinda del pastel. La base naval de Rota, donde a menudo atracan buques a propulsión nuclear, tampoco es moco de pavo. Teniendo en cuenta que un submarino de la clase Los Angeles tiene un calado de 9,5 metros cuando está en superficie y el tsunami en esa zona podría andar por los 12 – 15, no sería nada extraño que lo sacara del puerto y lo plantase, pongamos, en medio del Arroyo del Salado. En este plan. Aunque el reactor estuviera asegurado y no hubiese sufrido daños, ya puedes imaginarte las carreras hasta cerciorarse, en un momento en el que harían falta recursos por todas partes.

Con submarino o sin él, el desastre sería mayúsculo en todo el sector. Uno de los problemas de estas catástrofes es que son a la vez improbables, impredecibles y veloces. Esto no es Japón, donde está claro que vas a tener un maremoto gordo de vez en cuando (aunque aparentemente los directivos de TEPCO no se habían enterado, o querido enterar…) En España, son tan improbables como para que asignar grandes recursos a prevenirlas se perciba como un despilfarro, sobre todo en una época donde hace falta tanto en tantas partes. Al mismo tiempo, su impredecibilidad y rapidez hacen que, cuando se producen, o lo tienes ya todo listo en el sitio o apenas da tiempo para nada y nos las comemos con patatas. Y luego todo el mundo chilla que cómo es que no se habían tomado medidas y tal.


Bibliografía:

  • Bernet, S.; Canals, M.; Alonso, B.; Loubrieu, B.; Cochonat, P.: The BIG-95 and CALMAR 97 shipboard parties, 1999. Recent slope failures and mass-movements in the NW Mediterranean Sea. En: Ollier, G.; Cochonat, P.; Mendes, L. (Eds.), Seafloor Characterization/Mapping Including Swath Bathymetry, Side-Scan Sonar And Geophysical Surveys. Third Eurpean Marine Science and Technology Conference. Session Report. EU, Lisboa, págs. 111-126.
  • Lastras, G.; Canals, M.; Hughes-Clarke; J. E.; Moreno, A.; De Batist, M.; Masson, D. G; Cochonat, P. (2002): Seafloor imagery from the BIG’95 debris flow, Western Mediterranean. Geology, 30, (10), 871-874. DOI: 10.1130 / 0091-7613 (2002)030<0871 : SIFTBD>2.0.CO;2.
  • Urgeles, R.; Lastras, G.; Canals, M.; Willmott, V.; Moreno, A.; Casas, D.; Baraza, J.; Bernè, S. (2003): The Big’95 debris flow and adjacent unfailed sediments in the NW Mediterranean Sea: Geotechnical-sedimentological properties and dating. Advances in Natural and Technological Hazards Research, vol. 19 (2003), págs. 479-487.
  • Canals, M.; Lastras, G., Urgeles, R; De Batist, M.; Calafata, A. M.; Casamora, J.L. (2004): Characterisation of the recent BIG’95 debris flow deposit on the Ebro margin, Western Mediterranean Sea, after a variety of seismic reflection data. Marine Geology, vol. 213, nos. 1–4, 15 de diciembre de 2004, págs. 235–255.
  • Atwater, B. F. et al: Surviving a Tsunami — Lessons from Chile, Hawaii, and Japan. United States Geological Survey, circular 1187, versión 1.1, 1999-2005.
  • Lastras, G.; Vittorio, F.; Canals, M.; Elverhøi, A. (2005): Conceptual and numerical modeling of the BIG’95 debris flow, Western Mediterranean Sea. Journal of Sedimentary Research, 2005, v. 75, 784–797. DOI: 10.2110 / jsr.2005.063.
  • Iglesias, O.; Lastras, G.; Canals, M.; Olabarrieta, M.; González Rodríguez, E. M.; Aniel-Quiroga, Í.; Otero, L.; Durán, R.; Amblàs, D.; Casamor, J. L.; Tahchi, E.; Tinti, S.; De Mol, B. (2012): The BIG’95 submarine landslide-generated tsunami: a numerical simulation. The Journal of Geology, vol. 120, nº 1 (enero 2012.) ISSN: 0022-1376.
64 Comentarios Trackbacks / Pingbacks (11)
¡Qué malo!Pschá.No está mal.Es bueno.¡¡¡Magnífico!!! (24 votos, media: 5,00 de 5)
Loading...
Be Sociable, Share!

Las tierras perdidas

Cuando ya había humanos en el mundo, hubo otras tierras, ahora desaparecidas.
Algún día, resurgirán.

Impresión artística de la Atlántida.

Impresión artística de la mítica Atlántida. La idea de los "continentes perdidos" con características mitológicas y civilizaciones idealizadas ha sido recurrente en la literatura. Si hubo "civiliizaciones antes de la civilización", no parece haber sobrevivido ningún rastro hasta el presente.

Todos hemos oído hablar de la Atlántida. Y puede que también de Lemuria, Mu y otros muchos continentes mitológicos con mayor o menor presunción de veracidad. Sin embargo, a tenor de todo lo que sabemos hoy en día sobre tectónica de placas, paleogeografía, paleoecología y demás, no parece muy probable que ninguno de ellos existiera realmente en tiempos recientes. Al menos, lo bastante recientes como para que hubiera gente por allí, alguien capaz de registrar su existencia. Nuestro planeta ha cambiado muchísimo a lo largo de sus 4.500 millones de años de historia y seguirá haciéndolo hasta que Sol se harte de hidrógeno y decida zampársenos a nosotros también. Pero lo hace muy despacio. En el medio millón de años que los homo sapiens llevamos bambando por aquí, los continentes y océanos apenas se han movido de donde están.

Y sin embargo, hubo otras tierras emergidas, muy probablemente ocupadas por nuestra especie en tiempos no demasiado lejanos. Varias fueron francamente grandes, tanto como lo que hoy en día ocupa el Mediterráneo entero. Algunas, desempeñaron con toda probabilidad papeles clave en nuestra historia sin los que ahora mismo seríamos muy distintos de como somos. Pero nada queda de ellas hoy en día. Al menos, nada que puedan ver nuestros ojos a plena luz del sol. Yacen, silenciosas y olvidadas, en las profundidades del mar. Son las tierras perdidas de la humanidad.

Los ciclos de glaciación y el caprichoso nivel del mar.

Ciclos glaciales de los últimos 650.000 años, evidenciados por la concentración de CO2 atmosférico. El nivel actual es superior a 380 ppm. Datos: ONRL, NOAA. (Clic para ampliar)

Ciclos glaciales de los últimos 650.000 años, evidenciados por la concentración de CO2 atmosférico. El nivel actual es superior a 380 ppm. Datos: ONRL, NOAA. (Clic para ampliar)

Al menos durante los últimos millones de años, la Tierra ha sufrido periodos constantes de glaciación seguidos por fases de descongelación. Actualmente estamos en una de estas fases de descongelación, más técnicamente llamadas periodos interglaciares, ahora potenciado hasta la locura por el calentamiento global provocado por los seres humanos. Nadie sabe muy bien qué leyes cósmicas o telúricas rigen la parte natural de estos ciclos, pero tenemos pruebas decisivas de su existencia, alcance y repetición, que viene a darse cada cien mil años aproximadamente.

En realidad, a periodos como el que vivimos ahora mismo los llamamos interglaciares porque no son lo habitual en nuestro planeta, al menos durante el Cuaternario –nuestra época geológica–. Lo habitual es la glaciación. La Tierra cuaternaria es un planeta algo más frío de lo que conocemos, cubierta por inmensos casquetes de hielo en sus polos; este ha sido su estado «normal» durante aproximadamente el 70% del tiempo, a lo largo de los últimos dos millones y medio de años como mínimo. Uno de esos polos, la Antártida, ha permanecido constantemente congelado a lo largo de todo este tiempo.

Durante estos prolongados periodos de glaciación, el nivel del mar global baja significativamente, hasta más de cien metros, incluso 120. La razón es sencilla: el agua se evapora de los océanos para acumularse en los polos bajo la forma de hielo, con lo que queda bloqueada allí y no puede regresar al mar. Y resulta que en la Tierra hay muchas zonas que se encuentran a menos de cien metros de profundidad bajo las aguas. Durante los periodos glaciales, estas regiones ahora submarinas quedan expuestas, por encima del nivel del mar. Y, como decía más arriba, algunas son francamente grandes. Tanto como subcontinentes enteros. Por ejemplo, el lugar perdido llamado Sundaland.

Sondalandia, el Mediterráneo tropical de los primeros humanos.

Sondalandia hoy y durante la última edad del hielo. (Clic para ampliar)

Sondalandia hoy y durante la última edad del hielo. En el gráfico no aparecen algunas islas de cierto tamaño que también debieron quedar emergidas durante el periodo. (Clic para ampliar)

Hoy en día, llamamos Sundalandia o Sondalandia (cutre-traducciones al castellano de Sundaland) a la extensa región de penínsulas, islas, islotes y atolones del Sudeste Asiático que rodea al Estrecho de la Sonda. Este estrecho fue enormemente estratégico durante una buena parte de la historia humana, y sólo recientemente ha sido reemplazado en su importancia por el cercano Estrecho de Malaca, el pórtico marítimo entre Europa y Asia que mantiene abierta y funcionando la aldea global (el Estrecho de Malaca es más profundo y permite el paso de buques más grandes).

En el presente, esta región está ocupada por los estados modernos de Tailandia, Indonesia, Malasia, Brunei, Camboya, Vietnam y  Filipinas, más la República Popular China a través de su presencia en algunas islas. Esto es, se corresponde a grandes rasgos con el Mar del Sur de China. Es una zona compleja, disputada y superpoblada con tantas esperanzas como problemas, a caballo entre el Primer, el Segundo y el Tercer Mundo. Para acabar de arreglarlo, se sospecha firmemente que algunas de estas aguas ocultan grandes bolsas submarinas de petróleo y gas natural, lo que no ayuda nada a atemperar los ánimos. Hay ya al menos una plataforma gasística operando allí y las broncas internacionales en torno a prospecciones y concesiones van y vienen cada poco tiempo, saldándose a menudo con la paralización de las actividades bajo la sempiterna amenaza de guerra. Son comunes las capturas de pesqueros y no tan pesqueros. No obstante, la última vez que corrió la sangre en serio fue en 1988, cuando China y Vietnam se liaron a tiros por un atolón de las islas Paracelso, situadas al norte de la región.

Pero en el pasado, toda esta Sondalandia estaba emergida del mar y formaba una gigantesca península o subcontinente que se extendía desde Bangkok y el actual delta del Mekong hasta más allá de Java y Borneo, más una buena porción de costas a lo largo de toda la cuenca. Muchos de los islotes, atolones y bajíos que ahora apenas asoman sobre el oleaje cuando baja la marea eran islas casi tan grandes como Creta y archipiélagos no muy distintos del Jónico.

La última vez que Sondalandia estuvo totalmente emergida de las aguas fue hace apenas quince o veinte mil años, a finales de la Glaciación de Würm, cuando ya había humanos de todas clases deambulando por allí. Dentro de un orden, uno puede dejar volar la imaginación ensoñando talasocracias y civilizaciones similares a las que surgirían en la cuenca del Mediterráneo diez mil años después… aunque desde luego, si las hubo, no hemos encontrado rastro alguno de su existencia. Quizás se encuentren ahora mismo sumergidas y olvidadas a cien metros bajo el mar. O, más probablemente, no.

Ciñéndonos a los hechos, parece difícilmente discutible que homo sapiens sapiens –nosotros– se expandió hacia Australia y el Pacífico a través de este subcontinente de Sonda, en el periodo que va desde los sesenta mil hasta los quince mil años antes del presente. Y, durante periodos glaciales anteriores, lo hicieron algunos otros antecesores nuestros como el homo erectus.

Los ríos de Sondalandia. (Clic para ampliar)

Los ríos arcaicos de Sondalandia. (Clic para ampliar)

Se debate el clima, flora y fauna exactos de Sondalandia. En general se cree que el clima próximo al ecuador durante los periodos glaciales era algo más frío y seco, o sea, más árido. Parece que pudo haber una extensa franja de sabana desde la actual Tailandia hasta casi Java, rodeada por pluviselva tropical a ambos lados y marismas de manglares en la costa. Esto de la franja de sabana es una idea sujeta a discusión en el seno de la comunidad científica. En todo caso, la tierra era –y es– arenosa y ácida, con lo que no pudo ser muy fértil; lo que los locales llaman actualmente kerangas, literalmente la tierra donde no crece el arroz. En estas kerangas suelen desarrollarse bosques de frondosas húmedas.

No obstante, Sondalandia estaba irrigada por varios grandes ríos, continuación de ríos presentes. El conjunto de los mismos se denomina el complejo fluvial de Molengraaff. Entre ellos se contaba el gigantesco río Siam, o sea, el Mekong y el Chao Phraya probablemente uniéndose con otros procedentes de Sumatra y la Península de Malaca para formar a continuación un inmenso delta que desembocaba al noreste de la actual isla Natuna Besar. Si su caudal fue la mitad de la suma de todos estos afluentes modernos, este paleo-río Siam habría llevado tanta agua dulce como el Volga, mucha más que el Indo o el Nilo, y fue uno de los ríos más largos del mundo. Otros ríos de la Sondalandia pleistocénica debieron ser el Molengraaff propiamente dicho (dos afluentes nacidos en el sur de Sumatra y Borneo para unirse y desembocar al sudeste de Natuna), uno corto siguiendo el trazado del Estrecho de la Sonda y otra densa red fluvial entre Java y Borneo.

La temperatura media en la región de la Sundalandia emergida sería unos 3ºC más fría que ahora y la precipitación, no muy superior a 1.000 mm anuales frente a los 2.000 o más actuales. Su área total pudo superar los 2.200.000 km2. La mayor parte se sumergió bajo las aguas hace más de diez mil años y no resurgirá hasta que entremos en una nueva Edad del Hielo.

Al sur de Sondalandia se encontraba otra importante plataforma emergida, llamada Suhalland (¿Suhalandia?), que unía las islas modernas de Australia y Nueva Guinea. Suhalandia fue, muy probablemente, un desierto árido.

Doggerlandia, la otra Tierra Media de Europa.

Mapa de Doggerlandia hacia finales del último máximo glacial (hace unos 10.000 años). No se representa la capa de hielo que cubría toda la parte norte.

Mapa de Doggerlandia hacia finales del último máximo glacial (hace unos 10.000 años). No se representa la capa de hielo que cubría toda la parte norte.

Saben los nativos desde tiempos de nuestros antepasados que hay un extenso, y rico, banco pesquero a poca profundidad situado entre las actuales Gran Bretaña, Holanda y Dinamarca. Lo llaman Banco Dogger (Dogger bank), por una palabra holandesa antigua que significa… eso, banco pesquero. :-D

Esta prominencia submarina, con unos 17.600 km2 de extensión, tiene menos de 40 metros de profundidad en todos sus puntos. Pero eso no es todo. El mar circundante, lo que ahora llamaríamos el Mar del Norte, no es mucho más hondo: tiene apenas 95 metros de profundidad media. Esto significa que cuando baja el nivel del agua durante los periodos glaciales, gran parte del Mar del Norte desaparece, Gran Bretaña se une a Irlanda y ambas se convierten en una península de la Europa continental a través de un extenso territorio emergido que en buena lógica suele llamarse Doggerland. En cañí podríamos bautizarlo como Doggerlandia. (Disculpadme, pero es que odio estas «traducciones forzosas» de cosas que, para empezar, jamás tuvieron nombre en español y algunas ni siquiera en ninguna lengua latina.)

La parte norte de Doggerlandia estaba cubierta por el casquete de hielo glacial. Sin embargo, el sur era una tundra parecida a la del norte de Rusia o Canadá actuales, muy probablemente poblada por los humanos europeos del Mesolítico: cromañón y neandertal (en varias ocasiones se han rescatado restos arqueológicos del fondo marino en este área). Había mamuts, dientes de sable y dos especies humanas que cazaban, recolectaban y pescaban por entre la nieve y el hielo, seguramente al estilo de los pueblos esquimales modernos. Estamos en pleno Pleistoceno. Al igual que ocurre con Sondalandia, el suelo debía ser muy arenoso, pobre y frágil, con lo que no es probable que surgiera ninguna clase de preagricultura (¡y eso sin contar el frío!). También había allí paleo-ríos, y especialmente una gran cuenca que unía el Támesis y el Rhin para desembocar un poco al sur del Canal de la Mancha moderno.

Doggerlandia pudo llegar a tener unos 250.000 km2 de extensión, aproximadamente la mitad que España, con una parte significativa tapada por los glaciares. Se cree que lo poco que iba quedando de ella para el 6.200 aC fue arrasado y sumergido por una serie de gigantescas inundaciones, tsunamis y corrimientos de tierra conocidos como los Corrimientos de Storegga, que separaron Gran Bretaña del continente europeo hasta hoy. Dado que tal cosa ocurrió ya casi en tiempos históricos, algunos opinan que bien podría ser este el origen de algunos de los muchos mitos de la gran inundación o diluvio universal. Claro que, en realidad, esto podría ser aplicable igual de bien a cualquier otro de estos territorios extensos sumergidos por el agua que estamos tratando en este post.

Beringia, el pasadizo intercontinental de la humanidad.

Pero la tierra perdida que seguramente representó un cambio más significativo para la humanidad fue el lugar ahora llamado Beringia.

La región ártica, con las tintas batimétricas corregidas para resaltar las tierras emergidas durante los periodos glaciales, incluyendo Beringia. En la inserción, detalle de la cobertura de hielo hace 18.000 años y en la actualidad. Mapas: IBCAO, NOAA. (Clic para ampliar)

La región ártica, con las tintas batimétricas corregidas para resaltar las tierras emergidas durante los periodos glaciales, incluyendo Beringia. En la inserción, detalle de la cobertura de hielo hace 18.000 años y en la actualidad. Mapas: IBCAO, NOAA. (Clic para ampliar)

Beringia, con indicación en verde de las tierras emergidas durante el último Máximo Glacial. (Clic para ampliar)

Beringia, con indicación en verde de las tierras emergidas durante el último Máximo Glacial. Estas tierras emergidas constituyeron un "puente" que pudo permitir a los pobladores siberianos desplazarse hacia América. (Clic para ampliar)

Como su nombre sugiere, Beringia se encontraba en el actual Estrecho de Bering, entre la Chukotka rusa y la Alaska estadounidense de hoy en día. Es decir, entre Eurafrasia y América, o el Viejo y el Nuevo Mundo, o como lo prefieras. Durante los tiempos humanos, antes de que hubiera navegación oceánica, el Estrecho de Bering ha constituído el único punto de contacto claro y –relativamente– sencillo con América. Existe la posibilidad de que se produjeran minúsculos contactos por otras vías, pero los estudios genéticos dejan meridianamente claro que todos los pobladores autóctonos de la América precolombina procedían de Siberia y entraron al Nuevo Mundo por el lugar que ahora lleva el nombre del danés al servicio de Rusia Vitus Bering.

Lo cual tiene su enjundia, porque esa no era la clase de migración que los humanos del Mesolítico pudieran emprender con facilidad. El Estrecho de Bering es un lugar maldito entre la tundra y el hielo, con un clima casi alienígena, donde incluso ahora vive muy poca gente. En pleno siglo XXI, la densidad de población de Chukotka es de apenas 0,07 habitantes por km2; dicho otra manera, unos 54.000 habitantes dispersos en un okrug casi tan grande como España e Italia juntas. La de Alaska, pese a incluir algunas zonas más meridionales y habitables, no llega a 0,5 habitantes/km2. Por comparar, la provincia menos poblada de España –Soria– tiene 9,2 habitantes/km2.

De un lugar tan inhóspito y deshabitado, ¿cómo surge una sociedad capaz de atravesar el mar en cantidades suficientes como para iniciar la colonización de un continente entero, contando tan solo con métodos paleolíticos? Bueno, pues porque no tuvieron que atravesar el mar.

Durante los periodos glaciales, una parte notable del Mar de Bering y otras costas circundantes salen a la superficie. Es un lugar infernal, pero un lugar infernal con tierra firme bajo los pies. Es decir, se convierte en una región emergida que los seres humanos podemos habitar de manera natural. De manera especialmente interesante, a pesar de hallarse tan al norte, las peculiaridades climáticas locales de la Beringia emergida permiten la aparición de un área libre de hielos en su parte central. Sigue siendo una tundra gélida, únicamente adecuada para mamuts lanudos, tigres de dientes de sable y esos bichejos duros de pelar que llaman homo sapiens: un espacio donde la gente puede más o menos vivir, cazar, desplazarse y, en suma, migrar.

La tundra de Chukotka en la actualidad (verano). El interior de Beringia podía ser un poco más árido, pero bastante parecido. (Clic para ampliar)

La tundra de Chukotka en la actualidad (verano). El interior de Beringia podía ser un poco más árido, pero bastante parecido. (Clic para ampliar)

Veámoslo con un poco más de detalle. Buena parte de Beringia estaba cubierta por las praderas de secano que se dan en la tundra. Esta especie de estepa apta para mamuts seguía muy hacia el oeste, hasta el sur de Europa y el Océano Atlántico. Y durante las edades del hielo, no se formaron glaciares en ella porque el clima era demasiado seco. De manera natural, los campos de hielo aparecían al borde de las costas en primer lugar. Pero entonces, la nieve y la lluvia tendían a caer en sus proximidades, creando así un apantallamiento que impedía el paso de las precipitaciones hacia el interior. En tales condiciones, no se pueden formar bosques. En su lugar aparece sólo hierba, aunque con grandes calveros. Pero es suficiente para que algunos herbívoros puedan sobrevivir. Y detrás de ellos, los cazadores y carroñeros. Como los humanos, por ejemplo.

El pasadizo de Beringia creó una especie de sistema de esclusas terrestres naturales para el avance de la humanidad hacia territorio americano. Conforme unas zonas se congelaban y otras se descongelaban, los habitantes de esta región (humanos, bisontes, mamuts y mastodontes) se habrían ido viendo empujados cada vez más y más hacia el sur, hasta adentrarse en la Costa Oeste, las Montañas Rocosas y las Grandes Praderas, lugares más amables desde donde las grandes migraciones transamericanas ya pudieron ocurrir.

Curiosamente, al norte y al sur de Beringia había zonas de aguas libres estacionales, durante el verano. El casquete polar de gran tamaño que cubre el Ártico durante los periodos glaciales tiende a concentrarse más al oeste, aproximadamente por el Mar de Barents, Mar de Kara y el Polo Norte geográfico. Esto hacía que los grandes ríos Obi y Yenisei quedaran embalsados en su desembocadura ártica, creando así el Lago Glacial de Siberia Occidental o Lago Mansiyskoye. Alguna hipótesis sugiere que hubo un gigantesco caudal circulando entre este Lago Mansiyskoye, el Mar Caspio (mucho más pequeño que hoy en día) y el Mar negro.

Hubo (y habrá, cuando llegue la próxima glaciación) otras tierras perdidas, pero ya de menor tamaño y relevancia. Por ejemplo, la actual Argentina se adentraba más en el Atlántico y su costa estaba más próxima a las Islas Malvinas (pero todo ello completamente cubierto por el hielo antártico). El Mar Rojo estaba cerrado casi por completo. El subcontinente indio, unido a Ceilán (Sri Lanka). Mallorca y Menorca se encontraban unidas, así como Córcega con Cerdeña. Buena parte de las Filipinas y algunas islas griegas, también.

El Mar de Azov no existía y el Mar Negro era completamente interior, con una extensión bastante menor que la actual; hay también alguna hipótesis sugiriendo que la reinundación del Mar Negro al avanzar el periodo interglacial presente estaría en el origen de las leyendas del diluvio universal, en vez de los corrimientos de Storegga indicados más arriba. La mayor parte del Báltico tampoco existía, pero da igual, porque se hallaba totalmente cubierto por el casquete de hielo. Japón estaba conectado al continente asiático por Corea y Sakhalin. El Mar de Okhotsk era mucho menor que en el presente.

Estas fueron las tierras perdidas, quizá en el origen de muchas leyendas posteriores, quizá no. Y, cuando la Tierra entre en otro periodo glacial, lo volverán a ser. Entre tanto, ya que estamos de vacaciones, podemos permitirnos el lujo de imaginar.

El mundo durante la última edad del hielo.

El mundo durante la última edad del hielo.

117 Comentarios Trackbacks / Pingbacks (57)
¡Qué malo!Pschá.No está mal.Es bueno.¡¡¡Magnífico!!! (67 votos, media: 4,75 de 5)
Loading...
Be Sociable, Share!

El Gran Morir

En comparación, lo de los dinosaurios no pasó de broma pesada.
Hace 251,4 millones de años, algo mató al 96% de las especies marinas, al 70% de los vertebrados terrestres
y a una inmensa cantidad de insectos y plantas. Fue el Gran Morir, y aún no tenemos claro por qué.

Impresión artística de la vida a orillas de un río pérmico.

Impresión artística, científicamente rigurosa, de la vida a orillas de un río del Pérmico medio. Casi todo esto y muchas cosas más desaparecieron con el Gran Morir. (Clic para ampliar)

Si los gorgonópsidos hubieran tenido noticieros como los nuestros, seguramente habrían puesto la noticia al final, justo antes de los deportes. O a lo mejor ni siquiera eso. Los volcanes son muy espectaculares y quedan guapos en la tele, pero esto comenzó más bien como una suave erupción de lava en la costa nororiental de Pangea. Ellos no tenían ninguna manera de saberlo, y sin embargo estaban ante el inicio de las temibles escaleras siberianas, el principio del acto final en el mayor proceso de extinción que se ha visto en el planeta Tierra jamás y que acabaría con ellos también. Los humanos, que no aparecimos por aquí hasta doscientos cincuenta millones de años después, la llamamos la extinción supermasiva del Pérmico-Triásico (P-Tr). Más brevemente, la Gran Mortandad.

O el Gran Morir. Porque eso fue exactamente lo que pasó: muerte a una escala planetaria, sobrecogedora, general. Si mañana hiciéramos estallar a mala baba todo lo que guardamos en nuestros arsenales más devastadores y sofisticados, no provocaríamos (en principio) nada ni parecido; nos vendría justito para extinguirnos a nosotros mismos, algo no muy meritorio, y relativamente poco más. Puede que el invierno nuclear subsiguiente llegara a producir una pequeña extinción. En cambio, el Gran Morir aniquiló al 96% de las especies marinas, al 70% de los vertebrados terrestres y a tantas plantas e insectos que aún andamos contándolos, entre otras cosas porque apenas quedó rastro de todos ellos. Y matar a tanto insecto sí que tiene mérito: son los seres pluricelulares más resistentes que hay.

Acabó con seres tan ubicuos y resistentes como los trilobites, que llevaban aquí 270 millones de años y ocupaban prácticamente todos los nichos ecológicos marinos. Al menos una tercera parte de los insectos desaparecieron, especialmente aquellos tan grandes típicos del periodo anterior. No hubo más escorpiones marinos, que dominaban el océano. Los blastozoos se fueron también. Los helechos con semilla se extinguieron y a las gimnospermas les costó una buena temporada reaparecer. No se generó carbón durante el periodo, a diferencia de lo ocurrido característicamente en el Carbonífero precedente, lo que invita a pensar que la práctica totalidad de las plantas turberas cayeron. Hasta el 60% de todas las especies vivas dejaron de existir. Puso un gigantesco punto y aparte a la historia de la vida en el planeta Tierra, al menos por encima del nivel de las bacterias y archaeas; tanto es así, que consideramos que el Paleozoico con toda su vida primitiva termina ahí. La recuperación fue muy lenta: más de treinta millones de años.

Verdaderamente, la extinción supermasiva del Pérmico-Triásico fue el Gran Morir. Y, como suele ocurrir con la muerte, también el principio del Gran Vivir que permitió el surgimiento de las formas de vida avanzadas. Eso nos incluye, claro, a ti y a mí: una extinción nos abrió el camino y otra nos lo cerrará, a menos que aprendamos a impedirlo alguna vez.

Mapamundi a finales del Pérmico.

Mapamundi terrestre a finales del Pérmico, cuando sucedió el Gran Morir. Las escaleras siberianas entraron en erupción en la costa oriental de la región de aguas poco profundas situada justo al norte. Fuente: Dr. Ron Blakey, profesor emérito de geología en la Universidad de Arizona del Norte. (Clic para ampliar)

Del Pérmico.

El Pérmico recibe su nombre por la ciudad de Perm, situada en Rusia a caballo entre Europa y Asia, alrededor de la que se encuentran una gran cantidad de fósiles de aquellos tiempos (sobre todo en los Montes Urales). Fue un periodo geológico con una duración de casi cincuenta millones de años (comenzó aproximadamente hace 299 millones de años y terminó hace unos 250, precisamente con esta extinción) en el que ocurrieron un montón de cosas interesantes, como la evolución claramente diferenciada de los saurópsidos –que darían lugar a los reptiles, incluyendo a los dinosaurios y luego a las aves– y los sinápsidos –donde se originaron los mamíferos, o sea, nosotros–.

En tiempos pérmicos, la deriva continental estaba empujando a todos los continentes contra sí mismos hasta constituir uno solo: un supercontinente gigantesco donde se concentrarían casi todas las tierras emergidas del planeta Tierra, al que llamamos Pangea. Este supercontinente estaba –lógicamente– rodeado por un superocéano aún mayor, que bautizamos como Panthalassa. Para cuando sucedió el Gran Morir, una región insular separatista a la que llamamos Cimmeria había comenzado a desprenderse, desarrollando el Océano Paleo-Tetis; mientras que, al norte, Siberia terminaba de formar la Pangea una y grande precipitándose hacia el sur.

El clima pérmico varió significativamente a lo largo de tanto millón de años, desde las glaciaciones del Carbonífero final, que había provocado el colapso de la pluviselva tropical, hasta la dislocación térmica masiva que coincidió con la gran extinción. Pero la presencia de un supercontinente tan grande como Pangea hizo que se mantuvieran algunas tendencias a lo largo de todo el periodo. Por ejemplo, el clima del interior de Pangea tendía a ser supercontinental, con veranos muy calurosos, inviernos gélidos y pocas precipitaciones, lo que daba lugar a un entorno muy seco. Esto estaba matizado por fortísimos monzones, con lluvias muy intensas pero muy estacionales, más importantes cerca de las costas. Con gran probabilidad, los vientos debían ser bastante más fuertes que en la actualidad, debido a las elevadas diferencias térmicas entre el interior de Pangea y las costas y mares de Panthalassa.

Estratos de arenisca del límite Pérmico-Triásico fotografiados en Runcorn Hill, Reino Unido.

Estratos de arenisca del límite Pérmico-Triásico fotografiados en Runcorn Hill, Reino Unido. (Nueva ventana o pestaña para ampliar)

La presencia de oxígeno atmosférico, que había llegado al 35% a finales del Carbonífero, descendió durante todo el Pérmico y cuando ocurrió el Gran Morir era del 16%, un poco menor que la actual (20%); seguiría descendiendo hasta bien entrado el Triásico, llegando a caer hasta el 12%. Se sospecha seriamente que esta variación del oxígeno atmosférico está estrechamente relacionada con los complejos fenómenos planetarios que condujeron a la catástrofe, y que bien podían haberse puesto en marcha mucho tiempo atrás.

Un paisaje típico de Pangea a finales del Pérmico podría estar constituido por un bosque de coníferas, helechos con semillas y gimnospermas donde revoloteasen grandes blatópteros, libélulas o caballitos del diablo, sin mariposas ni aves. Tampoco había flores aún. Por entre el follaje medrarían seres como los gorgonópsidos, los dicinodontes o los primeros arcosauriformes que antecedieron a los dinosaurios. Al fondo, algunos de los grandes pareiasaurios herbívoros. Seguramente a esas alturas ya no quedaban dimetrodontes, pero sí batracosaurios y temnospónlidos. Debido al bajo nivel de oxígeno, respirar nos resultaría tan difícil como en lo alto de una gran montaña de hoy en día o cosa parecida; por lo demás, no hay ninguna razón por la que no pudiéramos sobrevivir en el lugar. Seguramente las bacterias y virus de aquel tiempo no nos afectarían, dado que no habrían tenido ocasión de co-evolucionar con nosotros. En cambio, sería de lo más razonable evitar a cualquier cosa capaz de tirar bocados, que no eran pocas.

Así era nuestra Tierra vieja cuando lentamente comenzó la catástrofe ecológica más grande de todos los tiempos. Al parecer hubo varios pulsos de extinción consecutivos a lo largo de los veinte millones de años anteriores que habrían dejado a la vida en un estado convaleciente relativamente frágil. Pero el Gran Morir se concentró sobre todo en el último, de aproximadamente un millón de años de duración o puede que incluso menos. De hecho, muchos animales pudieron desaparecer en apenas 10.000 – 60.000 años, con la mortandad disparándose masivamente a partir de un determinado instante radiodatado hace 251.400.000 años, teniendo en cuenta un margen de error de treinta milenios arriba o abajo. A las plantas les costó un poco más, unos pocos cientos de miles de años. Y parece que hubo varios sub-pulsos, separados 730.000 y 1.220.000 años entre sí. Pero todo apunta a que se trató de un evento súbito, una gran catástrofe repentina en términos geológicos. Y no hay muchas cosas que le puedan hacer semejante mal, tan deprisa, a algo tan feraz, tan absurdamente resistente como la vida.


Mapamundi de la deriva continental terrestre a lo largo de 800 millones de años (650 conocidos del pasado y 150 proyectados hacia el futuro).

La escalera siberiana.

Las escaleras siberianas en la actualidad.

Las escaleras siberianas en la actualidad. Foto: Mikhail Maksimov (Clic para ampliar)

Las hipótesis sobre las causas del Gran Morir son muchas y variadas, pero para ser admisibles, deberían explicar algunos de los fenómenos observados durante este proceso. Y en el Gran Morir se produjeron varios fenómenos muy singulares, que ninguna de ellas explica hoy por hoy en su totalidad.

El primero de estos fenómenos observados en los estratos geológicos del periodo es una notabilísima alteración de las proporciones globales entre los isótopos carbono-12 y carbono-13 (fuente 1, fuente 2, fuente 3). En algún caso, el descenso de carbono-13 con respecto al carbono-12 llega al 42 ‰. ¿Y esto qué significa? Bueno, resulta que como ocurre con todos los átomos, se presentan en la naturaleza con una determinada proporción entre sus distintos isótopos. El carbono-12 constituye el 98,93% del carbono presente en el medio ambiente terrestre, mientras que el carbono-13 representa el 1,07%. Sin embargo, los seres vivos tienden a fijar una proporción menor del isótopo 13, y cada ser vivo lo hace además en unas cantidades determinadas; estas variaciones constituyen la llamada firma isotópica. Pero también, de manera muy característica, la presencia masiva de este carbono extremadamente bajo en isótopo 13 resulta típica en las grandes erupciones volcánicas y ciertos depósitos de gases subterráneos con origen orgánico.

Extraer una conclusión directa de esta variación de las proporciones entre el carbono-13 y el carbono-12 sería muy aventurado, pero hay algo que indica con claridad: el ciclo del carbono terrestre quedó brutalmente alterado durante la extinción supermasiva del Pérmico-Triásico. Estas alteraciones del carbono-13 se puede medir en los estratos geológicos correspondientes a todas las extinciones, pero en el caso del Gran Morir resulta espectacular: es del 2,5 – 10 ‰ a nivel global y en algunos puntos llega hasta el 42 ‰.

Entonces, inevitablemente, todo el mundo mira en la dirección de otro fenómeno monumental sucedido exactamente en ese mismo momento. Hace 251 millones de años comenzaba una de las mayores erupciones volcánicas de la historia terrestre, en las orillas del continente ancestral que ahora forma parte de lo que llamamos Siberia. Como apunté al principio, no se trató de una gran explosión, sino de la efusión rápida de grandes cantidades de lava caliente y poco viscosa a lo largo del siguiente millón de años. Por las formas características que forma la lava al solidificarse en estos casos, que recuerdan a una escalera, se denominan con la palabra sueca trapp (que significa eso mismo). Y por eso a esta enorme erupción se la conoce en todo el mundo como siberian trapps (en ruso original: Сибирские траппы), que a veces se ve (erróneamente) traducido al castellano como trampas siberianas pero en realidad quiere decir escaleras siberianas.

Extensión de las escaleras siberianas en un mapa actual.

Extensión de las escaleras siberianas en un mapa actual. (Nueva ventana o pestaña para ampliar)

Las escaleras siberianas son una de las dos erupciones más grandes ocurridas en aguas poco profundas o en la superficie terrestre de las que queda alguna pista (las hubo mayores, pero ocurrieron en el fondo oceánico, lo que matiza sus efectos). Se estima que proyectó entre uno y cuatro millones de kilómetros cúbicos de lava basáltica, cubriendo unos siete millones de kilómetros cuadrados de terreno, más una cantidad aún indeterminada pero extraordinariamente grande de gases de efecto invernadero entre los que se encontraba el CO2. Para hacernos una idea, la erupción explosiva conocida más potente de todas las épocas (Guarapuava – Tamarana – Sarusas, durante las escaleras de Paraná y Etendeka, hace unos 130 millones de años) proyectó al exterior unos 8.600 km3 de material. Es decir: entre cien y cuatrocientas cincuenta veces menos.

Digámoslo: es imposible pensar en una gran extinción, con un descenso acusado del carbono-13, y no pensar instantáneamente en una de las mayores erupciones de la historia de la Tierra que sucedía en ese mismo momento exacto. Sin embargo, tenemos un problema, y es que ni siquiera esa inmensa erupción basta para explicar una caída tan grande en el isótopo carbono-13, por varios órdenes de magnitud.

Casi con total seguridad, ambos fenómenos tienen que estar relacionados de algún modo. Sería una casualidad extraordinaria, absurda, si la mayor extinción de la historia de la Tierra coincide exactamente en el tiempo con una de las mayores erupciones volcánicas conocidas y ambos hechos no tuvieran vínculo alguno. Pero no es suficiente. Hace falta algo más, algo mucho mayor para explicar lo que ocurrió.

Avalancha de eventos a nivel de extinción.

Extinciones durante los últimos 542 millones de años.

Extinciones durante los últimos 542 millones de años, representadas como el porcentaje de géneros de un determinado periodo que no se encuentra en el registro geológico del siguiente. Puede observarse cómo el Gran Morir (P-Tr) destaca nítidamente sobre todas las demás.

Otra de las ideas que vienen inmediatamente a la cabeza, sobre todo desde que sabemos que a los dinosaurios se los cargó un meteorito, es que el Gran Morir fuera causado por otro de estos objetos que caen de los cielos. El problema es que no hay ningún indicio claro al respecto, y de manera muy específica no hay una capa de material de origen extraterrestre (como el iridio presente en el de los dinosaurios) en el estrato de la extinción supermasiva del Pérmico-Triásico. En ausencia de esta clase de evidencia, la hipótesis meteorítica para el Gran Morir no pasa de suposición o conjetura.

En estos momentos se postula un fenómeno en avalancha, que seguramente resultó activado por la erupción de las escaleras siberianas, pero que se amplificó enormemente debido a otros fenómenos. El primero de estos fenómenos, como ya hemos comentado, es que la vida terrestre estaba un tanto convaleciente de las miniextinciones precedentes y bajo presión por el constante descenso del oxígeno atmosférico a lo largo de todo el Pérmico. El segundo fue la formación del supercontienente Pangea, en el mismo periodo, que al concentrar las tierras emergidas en un solo lugar redujo la extensión y diversidad de las aguas poco profundas, que son las mejores para la vida. El tercero estaría relacionado con el punto exacto de erupción de las escaleras siberianas: en tierra, cerca de grandes depósitos de carbón y también de clatratos de hidratos de metano fijados al suelo.

Así, la lava basáltica producida en la gran erupción de las escaleras siberianas habría incendiado este carbón, emitiendo grandes cantidades de CO2 a la atmósfera. Pero no sólo eso: también habría liberado los hidratos de metano como un fusil de clatratos (ver también aquí). Este fenómeno –que, por cierto, podría estar repitiéndose ahora mismo– sí bastaría para explicar el enorme incremento de carbono pobre en isótopo 13 registrado durante el Gran Morir. También puede liberar, de una manera análoga, cantidades significativas del muy tóxico sulfuro de hidrógeno. Tanto el metano como el sulfuro de hidrógeno son potentes gases de efecto invernadero, con lo que la temperatura terrestre habría comenzado a ascender significativamente.

Listrosaurio

Animales como el Listrosaurio sobrevivieron al Gran Morir y sus descendientes evolutivos, también a la extinción de los dinosaurios. De ellos surgieron los mamíferos modernos, como tú y yo, por ejemplo.

La liberación del metano presente en los clatratos, además, puede tener otro efecto devastador para la vida cuando se produce en aguas relativamente poco profundas. Al burbujear a través del agua, le roba el oxígeno, produciendo anoxia oceánica que el incremento de la temperatura ocasionado por el calentamiento global empeora aún más (y que también ha sido medida en los estratos del Gran Morir). Así, lo que tendríamos en marcha es una especie de máquina natural de eventos a nivel de extinción que se retroalimenta a sí misma sin parar. Pudieron producirse otros sucesos paralelos más.

Estos modelo de causas múltiples y orígenes distintos pero encadenadas en torno a un elemento común, que se suelen llamar modelos del asesinato en el Orient Express, son los que probablemente expliquen mejor un fenómeno tan complejo y tan enorme como el Gran Morir. Ningún agente reconocible en ese momento y lugar pudo causar semejante mortandad por sí solo y tan rápidamente; en cambio, una sucesión de causas-efectos concatenados sí habría sido capaz. De esa forma, un fenómeno insuficiente pero poderoso –como la erupción de las escaleras siberianas– disparándose en el contexto adecuado habría puesto en marcha una máquina de la extinción a escala planetaria que sólo se detuvo cuando alcanzó un nuevo punto de estabilidad, un millón y pico de años después.

Aunque ya tenemos datos muy sólidos, el mecanismo exacto que es capaz de matar a tanta vida aún se nos escapa. Sin embargo, el registro fósil no deja lugar a dudas: a lo largo de la historia de la vida, algo –o, más probablemente, varios algos distintos– fue capaz de provocar grandes catástrofes ecológicas que se realimentaron a sí mismas hasta exterminar a órdenes de la vida enteros. Desde mi punto de vista, las enseñanzas son (al menos) dos. Una, que no comprendiendo bien cómo sucedieron pero sabiendo que un suceso relativamente menor y lento puede activar un mecanismo aniquilador mucho más grande y veloz, resulta arriesgadísimo apostar a que algo –algo que hagamos, por ejemplo– será incapaz de poner en marcha un proceso así. Y la otra, que de la muerte siempre surge la vida, una y otra vez, y seguirá haciéndolo mientras este planeta siga orbitando en torno a un Sol mínimamente estable; algo más profundo de lo que a primera vista pueda parecer.

216 Comentarios Trackbacks / Pingbacks (14)
¡Qué malo!Pschá.No está mal.Es bueno.¡¡¡Magnífico!!! (176 votos, media: 4,82 de 5)
Loading...
Be Sociable, Share!