Grafeno, el material de los sueños (con entrevista al Nobel de Física 2010)

Entrevista exclusiva a Kostya Novoselov, premio Nobel de Física 2010.

El premio Nobel de Física 2010, Kostya Novoselov, concede una entrevista exclusiva a La Pizarra de Yuri / Público.

El premio Nobel de Física 2010, Kostya Novoselov, concede una entrevista exclusiva a La Pizarra de Yuri / Público.

Aunque sea bastante lógico, no deja de resultarme curioso cómo abunda la gente altanera, áspera y suficiente entre los mediocres. En cambio, quienes realmente podrían permitirse el lujo de ir por la vida con la nariz un poco más levantada que los demás a menudo son amables, sencillos y cordiales. Este es el caso del doctor Konstantin Novoselov, que con 36 años ya puede incluir en su curriculum el Premio Nobel de Física 2010. Gracias a ese hecho, hoy puedo ofrecerte en la Pizarra de Yuri la primera entrevista exclusiva a un Nobel concedida a un blog en castellano (corrígeme si me equivoco y ha habido alguna antes; me interesaría mucho saberlo). La edición en papel de Público sacó un resumen el domingo pasado, pero esta es la versión completa.

Entrevistar a un premio Nobel es siempre un desafío y uno teme no acertar con las preguntas. Así pues, en esta ocasión consulté a más personas amables, que aportaron preguntas inteligentes. Entre estas personas se encuentran Pablo García Risueño (físico, Instituto Max Planck / Instituto de Química Física Rocasolano – CSIC / European Theoretical Spectroscopy Facility – Spanish node), Dani Torregrosa (químico, autor del blog Ese punto azul pálido) o David  (doctor en química, Universidad de Valencia); lo que hago constar con mi agradecimiento. Así, yo creo que ha quedado una entrevista mucho más chula. ;-) Si hay algún error en este post, es mío; si hay algún acierto, es de ellos.

Konstantin, que se hace llamar por el diminutivo Kostya, nació en Nizhny Tagil (URSS) siendo 1974. Actualmente investiga en el Laboratorio de Física de la Materia Condensada de la Universidad de Manchester, en el Reino Unido; tiene la doble nacionalidad ruso-británica. Ha trabajado en una diversidad de campos y muy notablemente en procesos magnéticos. Es coinventor de la cinta de salamanquesa (gecko tape), que sólo pega en un sentido, con diversos usos en nanocirugía, robótica y tecnologías aeroespaciales. Pero Kostya recibió el Nobel en 2010, junto al profesor Andrei Gueim, por sus “experimentos revolucionarios sobre el material bidimensional grafeno”. ¿Y qué es el grafeno?

Grafeno.

Estructura del "material bidimensional" grafeno.

Estructura del "material bidimensional" grafeno.

No es rigurosamente bidimensional, aunque así lo describa la Fundación Nobel y todo el mundo, incluso el propio Kostya. :-P A fin de cuentas, un átomo tiene espesor. Pero ese es todo su espesor: el grafeno es una estructura laminar compuesta por átomos de carbono en disposición hexagonal, unidos mediante enlaces covalentes producidos por hibridación sp2. Se trata de una alotropía del carbono, distinta del carbono amorfo, el vítreo o el diamante. Tampoco es exactamente un fullereno o un nanotubo (aunque el grafeno podría utilizarse para crear nanotubos, plegándolo en forma de cilindro).

Más parecido es al grafito, hasta el punto de que se podría considerar al grafito como una serie de capas superpuestas de grafeno; de hecho, al pintar líneas con un lápiz (cuya mina es de grafito) aparecen trazas de grafeno. No obstante, este no es un buen procedimiento para producirlo en cantidades significativas.

¿Y qué tiene de particular este grafeno? Muchas cosas. Por ejemplo, es el material más resistente medido jamás: 200 veces más que el acero. Pero, al mismo tiempo, es mucho más ligero y tan elástico como el caucho. En palabras de Andrei Gueim, “el grafeno es más fuerte y más tenaz que el diamante, y sin embargo puede estirarse en un cuarto de su longitud, como el caucho. El área que puede cubrir es la mayor que se conoce para el mismo peso.” Otros investigadores, como Ali Reza Ranjbartoreh (Universidad de Wollongong, Australia), dicen “No sólo es más ligero, más fuerte, más duro y más flexible que el acero; también es un producto reciclable, que se puede fabricar de manera sostenible, ecológico y económico.” En opinión de Ranjbartoreh, esto permitirá desarrollar coches y aviones que usen menos combustible, generen menos polución, sean más baratos de operar y resulten menos dañinos al medio ambiente.

Sus propiedades eléctricas y electrónicas resultan igualmente extraordinarias. Por ejemplo, los nanotubos de grafeno podrían reemplazar al silicio como semiconductor en los circuitos microelectrónicos avanzados; en 2008, el equipo de Gueim y Novoselov ya fueron capaces de construir con él un transistor de un nanometro, que tiene un solo átomo de espesor y diez de anchura. Ya por entonces Kostya declaró que esto podría muy bien hallarse en el límite físico absoluto de la Ley de Moore y añadió: “Está en torno a lo más pequeño que se puede hacer. Desde el punto de vista de la Física, el grafeno es una mina de oro. Podrías estudiarlo durante eras.” Conduce el calor tan bien como el diamante y es más transparente. También se le cree capaz de generar efecto Casimir. Muchos lo consideran el primer material del futuro. Pero será mejor que te lo cuente él. ;-)

Kostya Novoselov durante la conferencia de aceptación del Premio Nobel. Imagen: nobelprize.org

Kostya Novoselov durante la conferencia de aceptación del Premio Nobel. Imagen: nobelprize.org

El material de los sueños de Kostya Novoselov.

Konstantin Novoselov (centro) con Mikhail Trudin (izda) y Yuri Samarskiy (dcha). (Clic para ampliar)

Kostya Novoselov (centro) con Mikhail Trunin (decano del FOPF-MFTI, izda.) y Yuri Samarskiy (rector del MFTI, dcha.). Foto: Sergei Vladimirov. (Clic para ampliar)

Dr. Novoselov, quiero darle muchas gracias por responder a nuestras preguntas. Es muy raro tener la oportunidad de entrevistar a un premio Nobel. Y además a uno tan joven, con 36 años. Mientras, la mayoría de nosotros ni siquiera podemos  imaginar lo que se siente cuando alguien te dice: “Kostya, te han concedido el premio Nobel”. Por cierto, ¿qué se siente en un momento semejante?

Fue impresionante. Estaba muy impresionado y te das cuenta de que esto cambia tu papel para siempre. Y de que vas a tener que trabajar mucho para que no cambie también tu vida. Esto fue todo lo que se me ocurrió, que tenía que intentar que no cambiase mi vida.

¿Y lo consiguió?

Sí. De hecho, conseguí regresar a la normalidad y mi vida no es muy diferente ahora de como era antes.

Por cierto, ¿quién le dijo que le habían concedido el Nobel?

Me llamaron por teléfono. No estoy seguro de quién llamó exactamente, porque estaba verdaderamente impresionado. No lo recuerdo pero probablemente fue uno de los secretarios de la Fundación o el presidente de la Fundación.

Kostya, cuénteme el secreto: ¿cómo se gana un premio Nobel antes de los cuarenta?

No hay un secreto. La mejor receta, probablemente, me la dio un buen amigo y colega hace mucho tiempo: “si quieres ganar un premio Nobel, no pienses en ello”. Así que esa es una de las recetas: nunca pienses en ello y limítate a trabajar y divertirte con lo que haces.

A usted le han concedido el premio Nobel junto al Dr. Geim por realizar “experimentos revolucionarios sobre el material bidimensional grafeno”. ¿Qué es un grafeno?

Imagínate el material de tus sueños, el más fuerte, el más conductor, el más duradero… es increíble. El mejor camino a la teoría; eso es el grafeno. En la práctica es uno de los pocos tejidos bidimensionales que se pueden hacer con carbono y tiene todas estas propiedades fantásticas como conductividad, transparencia, fortaleza imperecedera…

¿Y qué hizo usted con este grafeno exactamente?

Estudiamos sus propiedades. Estudiamos principalmente sus propiedades electrónicas pero también algunas otras.

Sin embargo, originalmente usted estudiaba el electromagnetismo, ¿no?

He trabajado en varios campos distintos a lo largo de mi vida, así que cuando me lié con el grafeno no me supuso una gran diferencia. He trabajado en procesos magnéticos, superconductores, semiconductores… así que los grafenos sólo fueron otra cosa más.

Convénzame: ¿por qué debería invertir mi dinero en las investigaciones sobre el grafeno? ¿De qué manera va a cambiar nuestras vidas este nuevo nanomaterial?

Hay varias propiedades de este material que son únicas, mucho mejores que las de cualquier otro. Ya se puede pensar en sustituir todos los materiales existentes por grafenos, para conseguir mejores resultados en todas las aplicaciones avanzadas. Por ejemplo, a los materiales estructurales se les puede añadir unas fibras de carbono para hacerlos mucho más fuertes. O usarlo para las láminas conductoras de las pantallas táctiles: esa es otra área donde el grafeno puede resultar muy beneficioso. Pero las más importantes serán aquellas que no somos capaces de concebir todavía porque no teníamos los materiales adecuados. El grafeno es muy diferente de cualquier otro material, así que podemos ponernos a pensar en estas nuevas aplicaciones.

De todas estas posibles aplicaciones, ¿cuál cree usted que se desarrollará primero?

Ya hay varias aplicaciones en las que se está utilizando. Puedes comprar grafeno en varias empresas de Rusia, Europa, Asia… por ejemplo, para microscopios electrónicos de transmisión. Aunque esto es una aplicación menor. Probablemente, la primera aplicación a gran escala será en las pantallas táctiles.

¿Qué aproximación le parece más prometedora para producir grafenos industrialmente a buen precio?

Ya hay técnicas para producirlos en grandes cantidades. Por ejemplo, mediante crecimiento por CVT [deposición de vapor químico asistida por agua]… se está produciendo en grandes cantidades para muchas aplicaciones.

Con la crisis energética actual, y la energía nuclear comprometida a raíz de los sucesos de Fukushima, ha aumentado el interés en las energías renovables. ¿Serviría el grafeno para desarrollar nuevas células solares mucho más eficientes y baratas que las actuales? ¿Podría sentar las bases de una revolución energética?

El grafeno es sólo una parte de las células solares del futuro. Hay otras muchas partes que deben desarrollarse también. Queda un camino muy, muy largo para que se desarrollen células solares significativamente más eficientes.

Algunas personas han expresado su preocupación por los posibles riesgos para la salud, y especialmente los riesgos para la salud laboral, de esta clase de nanomateriales. ¿Qué opina?

Se puede observar mi vida y ver la evolución de mi salud. Probablemente, soy un conejillo de indias en estos experimentos. Me estoy exponiendo a estos materiales en el laboratorio todos los días, con bastante intensidad, así que podéis experimentarlo conmigo si queréis.

Por cierto, he oído que quiere usted cambiar de campo porque ya ha pasado mucho tiempo en este…

Sí. Te vas ralentizando. Estoy pensando en hacer alguna otra cosa.

¿Como por ejemplo…?

Eso prefiero guardármelo.

Tenía que intentarlo. ;-) Dr. Novoselov, a menudo se considera a los ganadores del premio Nobel como “heraldos de la ciencia” de cara al mundo, a la sociedad. ¿Se siente cómodo en este papel?

Todos tenemos la oportunidad de educar al público en materia científica. Esta es una de las muchas posibilidades que se incrementan cuando ganas el premio Nobel, y también una responsabilidad. Por ejemplo, es una pena ver cómo la gente sobrerreacciona con este asunto de Fukushima. Por desgracia, la gente que gana el premio Nobel , aunque tenga mejores posibilidades de educar al público, no tiene necesariamente la capacidad para hacerlo.

En algunos ámbitos existe una percepción de que la creatividad se está perdiendo en la ciencia moderna por un exceso de rigidez en la práctica cotidiana. ¿Cómo se puede aumentar la creatividad en el entorno de la ciencia moderna? ¿Se puede enseñar creatividad a las personas?

No se puede enseñar la creatividad a las personas. Cuando las personas vienen al laboratorio, intentamos liberar sus mentes para que hagan cualquier cosa que deseen hacer, con los únicos límites de su naturaleza y su imaginación. Y no creo que falte creatividad en estos momentos. Creo que recientemente se han logrado algunos de los mejores resultados científicos. No me parece que haya un problema con ese tema.

He oído hablar de sus “experimentos de los viernes”. ¿Puede decirnos en qué consisten?

Hacemos cosas raras que queremos hacer, intentamos cosas que no son convencionales. Cosas que probablemente parezcan bastante extrañas al principio, pero que pueden terminar convirtiéndose en algo grande. Simplemente, tratamos de liberar la mente.

¿Qué es más importante en estos “experimentos de los viernes”: la creatividad o el conocimiento guiado por la experiencia?

Nunca me planteo qué es lo más importante. Simplemente hago lo que me resulta interesante a mí.

Vamos a ir un poco más lejos. ¿Qué caminos le parece que está tomando la ciencia? ¿Qué grandes avances espera en el futuro próximo?

Yo sólo soy capaz de predecir el pasado, no el futuro. Pero el futuro está ahí y siempre es capaz de superar nuestras predicciones más descabelladas. Hay un montón de cosas ahí fuera donde podemos encontrar nuevas realidades.

Kostya, como usted sabrá, hay gente que piensa que la ciencia y la tecnología están avanzando demasiado, demasiado rápido. Temen los posibles efectos adversos sobre la gente, el medio ambiente y la vida en general. ¿Le gustaría decir algo a estas personas?

No se puede detener el progreso. No se puede detener la ciencia porque es parte de nuestra naturaleza, de nuestra curiosidad. Necesitamos a la ciencia, pero tenemos que asegurarnos de estudiar su impacto adecuadamente antes de usarla. Y esto se puede hacer siempre mejorando la ciencia, haciendo mejor ciencia. Hacer menos ciencia resulta mucho más peligroso que hacer más ciencia.

Yo suelo comentar que cuando una sociedad deja de avanzar, no sólo se estanca, sino que de inmediato comienza a retroceder; y que esto es especialmente cierto para el progreso científico. ¿Está de acuerdo conmigo? :-D

A las personas nos encantan las cosas nuevas. Siempre nos obligamos a usar cosas nuevas, a pensar en cosas nuevas. Es absolutamente inevitable. Si se deja de utilizar la ciencia, estas cosas nuevas no serán científicas, y esto es mucho más peligroso que utilizar las nuevas respuestas científicas.

No quiero robarle más tiempo, doctor. Por cierto, ¿llegó a conocer al hamster Tisha? ;-)

Sí. Era un hamster bastante metomentodo.

Tengo entendido que nació usted en Nizhny Tagil, ¿no?

Sí, así es.

Nació en Nizhny Tagil y desde allí salió al mundo para estudiar el material de sus sueños y con ello ganar el premio Nobel. Me parece algo fabuloso.

Muchas gracias.

Muchas gracias a usted de nuevo, Kostya. Большое спасибо.

Entrevista anterior: Sergei Krásnikov, astrofísico de Pulkovo, proponente de los tubos de Krásnikov para casiviajar en el tiempo.

73 Comentarios Trackbacks / Pingbacks (178)
¡Qué malo!Pschá.No está mal.Es bueno.¡¡¡Magnífico!!! (57 votos, media: 4,79 de 5)
Loading...
Be Sociable, Share!

Fuego

Una de las más viejas herramientas tecnológicas de la Humanidad
es también un interesantísimo y espectacular fenómeno químico
que nos introduce en las leyes de la termodinámica,
la física cuántica y la naturaleza de la entropía y el tiempo.

Llama de una vela

En una vela, la mecha entra en combustión con el oxígeno del aire para formar la llama.

Todos lo conocemos, casi todos nos hemos quedado hipnotizados viéndolo arder alguna vez. Desde la humilde cerilla o el hogar que da nombre a nuestras guaridas hasta las erupciones volcánicas, las tormentas ígneas de los grandes desastres naturales o humanos y las inmensas llamaradas del Sol, monumentales como muchos planetas Tierra, el fuego está ahí desde que hubo un ahí. Hasta cierto punto, se puede decir que este universo surgió con una gran ignición. ¿Qué es el fuego? ¿Por qué calienta e ilumina? Y, ¿de qué modos distintos llegó a sernos tan útil en nuestra evolución final?

De la naturaleza del fuego.

En realidad, las llamaradas solares o el Big Bang no son fuego en sentido estricto, sino fenómenos físicos de naturaleza distinta que sólo coinciden con él en que son capaces de emitir luz y calor. Hoy vamos a centrarnos en lo que los humanos hemos conocido como fuego desde tiempo inmemorial: esa cosa fantasmal que arde ante nuestros ojos con llamas bailarinas y nos calienta, nos ilumina y nos quema.

En principio, el fuego es un fenómeno químico bastante sencillo: rigurosamente hablando, consiste en la oxidación rápida y exotérmica de la materia mediante el proceso denominado combustión, aunque no haya llama ni humo ni ninguna de sus otras características más visibles. Vamos a ver lo que significa esto.

Una parte significativa de los átomos y moléculas que componen la realidad material que conocemos pueden combinarse con el oxígeno del aire, del agua o de cualquier otro lugar para producir óxidos. Aquí tenemos que quitarnos una idea preconcebida de la cabeza: la herrumbre u orín que vemos en los metales oxidados no es el óxido, sino sólo un tipo de óxido. Hay muchísimos más, que no tienen ese aspecto ni parecido. El agua, por ejemplo, es un óxido. H2O, ¿recuerdas? Dos átomos de hidrógeno primordial combinados con uno de oxígeno estelar. De hecho, se puede llamar sistemáticamente al agua monóxido de dihidrógeno (y también ácido hidroxílico y de otras maneras), lo que ha dado lugar a una deliciosa broma pedagógica que aprovecha el temor de mucha gente a todo lo que suene a química. Nuestro propio organismo está lleno de óxidos muy distintos desempeñando un montón de funciones biológicas, como por ejemplo en la respiración de cada una de nuestras células.

Agua

El universo está lleno de óxidos producidos como resultado de combustiones; por ejemplo, el agua, una combinación de hidrógeno y oxígeno.

En realidad, la oxidación puede darse con cosas que no son oxígeno; pero la que se da con oxígeno es muy común y la primera que se descubrió, hasta el punto de darle nombre a todo el fenómeno. Hay óxidos naturales y artificiales por todas partes, pues se trata de una de las reacciones más corrientes de la química que nos formó y nos mantiene aquí.

Cuando esta reacción de oxidación produce energía en forma de calor, siguiendo las leyes de la termodinámica química, decimos que es exotérmica y la llamamos combustión. La combustión puede ser muy lenta o muy rápida, y en ella siempre hay una sustancia que actúa de combustible y otra que actúa de oxidante o comburente. Como vivimos en la corteza de un mundo donde el oxígeno está bastante presente hoy en día, este oxígeno resulta ser el comburente más común a nuestro alrededor.

El combustible puede ser cualquier materia capaz de combinarse con el oxidante o comburente emitiendo calor en el proceso. Algunos de los combustibles más eficaces que existen se basan en el carbono, también muy abundante en la Tierra. De manera muy significativa, está presente en todo lo que vive (la vida en la Tierra está sustentada completamente en el carbono) o estuvo vivo alguna vez, desde la leña hasta el carbón o el petróleo y el gas natural. No en vano estas últimas sustancias se denominan hidrocarburos; es decir, compuestos de carbono e hidrógeno, que oxidan –se queman– muy bien con el oxígeno.

Nuestro propio cuerpo, muy rico en compuestos del carbono, sería un buen combustible si no fuera porque el 45-75% de agua que contiene tiende a detener la combustión (apagarla). El agua tiende a detener la combustión porque ya está quemada (oxidada); por tanto, no puede arder y además se mete por medio, bloquea y enfría la oxidación del resto de las sustancias que impregna. Este es el motivo de que, mal que les pese a muchos, el motor de agua no pueda ser.

El proceso de la combustión produce una o varias sustancias que incorporan los componentes del combustible y el comburente, aunque reorganizados de una manera distinta. Estas sustancias pueden ser de muchos tipos, pero las más conocidas son el sólido que llamamos ceniza (aunque, por ejemplo, podríamos considerar también al agua como una ceniza fría de hidrógeno y oxígeno) y una serie de componentes gaseosos que escapan en forma de llama y humo (el humo también suele arrastrar una parte de las cenizas más volátiles). La llama y el humo pueden ser visibles o invisibles por completo al ojo desnudo, según las propiedades de cada combustión en particular. Estas sustancias, si han ardido por completo, ya no pueden volverse a usar como combustible o comburente porque han completado la reacción y no les queda energía química para ceder.

En el corazón de la llama.

Como dije más arriba, la combustión puede ser muy lenta o muy rápida. Cuando es muy rápida, puede llegar a convertirse en una deflagración; y si es tan veloz que genera una onda de choque supersónica, entonces hablamos de detonación o explosión (aunque no todas las explosiones son el resultado de este tipo de reacción). Por ejemplo, la combustión muy rápida de un hidrocarburo del tipo de la gasolina con el oxígeno del aire en un motor de combustión interna –como en un coche o una moto– provoca una deflagración que mueve el pistón y con él al resto del motor.

Funcionamiento de un motor de combustión interna.
La ignición de una mezcla de hidrocarburos y oxígeno atmosférico
aporta la energía necesaria para moverlo.

Cuando la combustión es moderadamente rápida pero no tanto, entonces nos encontramos con el fuego que conocemos como tal. Y su parte más llamativa y fascinante es, naturalmente, la llama. La llama está compuesta por los gases calientes y las cenizas más volátiles que son resultado de la combustión y se alejan de la misma siguiendo principios físicos corrientes como la convección y las leyes que gobiernan el comportamiento de los gases.

Incandescencia

Los objetos muy calientes –como este hierro al rojo vivo o el filamento de la bombilla– emiten luz por incandescencia, un fenómeno cuántico.

Pero, ¿por qué brilla y calienta? Si no quisiéramos profundizar, podríamos decir simplemente que los objetos calientes emiten energía en forma de calor y luz, punto. Lo llamamos calor e incandescencia, y la mayoría de la gente se conforma con eso, pero nosotros no. ¿De qué forma una reacción química como la combustión puede producir luz y calor?

Cuando un cuerpo –sólido, líquido, gaseoso, lo que sea– aumenta su temperatura, es porque los átomos y moléculas que lo forman se han excitado. Un átomo desexcitado por completo estaría en estado fundamental y se hallaría a la mínima temperatura posible: aproximadamente 273,15ºC bajo cero, lo que llamamos el cero absoluto. Por eso esta es la temperatura más baja posible en nuestro universo: nada puede estar más inmóvil que quieto por completo, ni tener menos energía que ninguna energía en absoluto.

Sin embargo, el cosmos está lleno de energía capaz de provocar excitación y no hay nada en él que esté o pueda llegar al cero absoluto teórico: lo impide la Tercera Ley de la Termodinámica. Hasta el espacio profundo, vacío casi por completo, viene a estar a unos 270 grados bajo cero. Esos tres grados de diferencia (2’725 para ser exactos) se los aporta la radiación del fondo cósmico, que es resultado del Big Bang que nos fundó y omnipresente a este lado de la realidad. En los laboratorios humanos, con técnicas muy sofisticadas, se ha logrado alcanzar la friolera –literalmente– de cien billonésimas de grado por encima del cero absoluto. Y sin embargo, no es el cero absoluto. Todo lo que existe en este universo está en algún grado de excitación, aunque sea ínfimo.

En el momento en que algo está excitado, por poco que sea, decimos que se encuentra a una determinada temperatura; y además, puede transferir una parte de esa energía que lo mantiene excitado a otros cuerpos. Esta transferencia es lo que llamamos calor, y constituye uno de los mecanismos más esenciales mediante los que funciona la realidad. Sin calor, no habría entropía y este universo permanecería eternamente congelado en un absurdo estado inicial sin posibilidad alguna de variar hacia ningún otro estado; y, por tanto, desprovisto también de tiempo. Estaríamos ante un universo fallido. Por eso la Termodinámica es tan importante. Pero, ¿cómo pasa el calor a estos otros cuerpos, como por ejemplo nuestra piel, para que podamos sentir el calorcito de la hoguera (o el calor del Sol a través del vacío cósmico, de tal modo que la vida pueda existir)? ¡Ah! Aquí ya tenemos que profundizar un poquito más y adentrarnos en los valles extraños de la mecánica cuántica.

Calor cuántico.

Imagen infrarroja de una serpiente en torno a un brazo humano

Imagen infrarroja de una serpiente enrollada en torno a un brazo humano. Al ser un animal de sangre fría, la serpiente emite menos radiación térmica que un animal de sangre caliente como el humano. La radiación térmica es una forma de radiación electromagnética (fotónica), producida por los electrones saltando entre los distintos estados de excitación de los átomos que componen los cuerpos.

Una de las proposiciones más esenciales de la física cuántica dice que, en la escala de lo muy pequeño, la realidad no funciona de manera suave y continua sino abruptamente, a saltos entre distintos estados. Esto es: las cosas no ocurren de manera lineal, sino de cuanto en cuanto. Sí, exactamente por ese motivo se llama física cuántica; imaginativa que es la gente.

Entre otras cosas, los átomos que componen la materia están formados por dos partículas cargadas: el protón, con carga positiva, y el electrón, con carga negativa (más el neutrón, que no viene a cuento ahora). Estas partículas son lo bastante pequeñas para comportarse de manera cuántica. Particularmente, el electrón sólo puede existir en unos determinados orbitales alrededor del núcleo atómico (donde están los protones y neutrones). Es decir: o está en uno o está en otro, pero no está en el medio, ni pasa por el medio, ni nada parecido. Sí, ya, no es nada intuitivo eso de que algo pueda ir del punto A al punto B sin pasar por el camino intermedio (aunque, para empezar, el electrón existe como una nube de probabilidad con incertidumbre cuántica, o sea que ya te puedes hacer una idea de cómo va esto…).

Cuando un átomo es excitado (se calienta), sus electrones comienzan a saltar de cuanto en cuanto hacia orbitales cada vez más exteriores; si se excita mucho, terminarán por perderse y diremos que está ionizado. Cuando empieza a enfriarse, estos electrones –si no han escapado– retornan hacia los orbitales inferiores. Y aquí está el secreto: cada vez que un electrón salta a un orbital exterior lo hace porque absorbe un fotón, y cada vez que vuelve a uno inferior emite un fotón. Es decir: cuando algo se calienta absorbe fotones (de la radiación térmica circundante), pero en el momento en que empieza a enfriarse los emite hacia el exterior.

Habiendo fotones de por medio, estamos ante radiación electromagnética. El calor, la interacción más esencial de este universo, la que permite la entropía y el tiempo, se vehicula mediante esta forma de radiación electromagnética que llamamos radiación térmica, compuesta por estos fotones. Cuando un átomo recibe y absorbe fotones, sus electrones marchan a orbitales exteriores salto fotónico a salto fotónico: así es como se excita, se calienta. Y en cuanto comienza a enfriarse, de vuelta hacia un estado más fundamental, sus electrones (si no se han perdido) regresan también salto fotónico a salto fotónico, emitiendo uno cada vez. Por tanto, cuando un átomo recibe radiación térmica absorbe fotones y se calienta; y cuando se enfría, los vuelve a emitir, lo que calentará a su vez a otros átomos situados a su alrededor. Este fenómeno es uno de los campos de estudio fundamentales de la electrodinámica cuántica.

Por eso el fuego calienta. Por eso el Sol calienta. Por eso el universo está caliente y tiene entropía y tiempo. Por eso, también, tu cuerpo está caliente y es capaz de calentar. Lo hacen estos humildes, minúsculos fotones saltando de átomo en átomo cada vez que un electrón cambia de orbital. Desde el inicio del tiempo y para siempre jamás.

De la luz multicolor y la física cuántica.

Llama en gravedad cero

En gravedad cero, la convección no aleja de la mecha los productos incandescentes que producen la luz, lo que resulta en una llama esférica.

Este fenómeno de la electrodinámica cuántica explica por qué el calor se transfiere de unos cuerpos a otros: es obra de la radiación electromagnética térmica, a una frecuencia situada generalmente en el rango de los infrarrojos. Por eso, las cámaras que pueden ver en el infrarrojo detectan los cuerpos calientes.

¿Y la luz? Bueno, en apariencia la respuesta debería ser fácil: la luz no es más que esta misma radiación electromagnética a mayor frecuencia. Diríamos –y creíamos antiguamente– que, conforme aumenta la temperatura, los electrones brincan cada vez más rápido, los fotones se emiten a frecuencia mayor y la emisión térmica va desplazándose hacia el rango de la luz visible e incluso el ultravioleta –que son también radiación electromagnética, sólo que a una frecuencia superior–. Así, se pasaría de proyectar calor a emitir asimismo luz y…

…y tenemos un problema. No te supondrás que iba a ser tan sencillo, ¿no? :D

En apariencia debería ser así. Pero ya hemos visto que esto de la cuántica se comporta de maneras extrañas. Cuando un objeto sólido se calienta lo bastante, en efecto, la frecuencia de la radiación electromagnética que emite aumenta y pasa del infrarrojo a las regiones inferiores de la luz visible de color rojo: decimos que está al rojo vivo. Si se calienta aún más, la frecuencia sigue subiendo y va pasando a proyectar luz amarilla, después blanca (cuando decimos que está al blanco) y finalmente azul. Esto estaba ya estudiado a finales del siglo XIX: la Ley de Desplazamiento de Wien definía la frecuencia a la que la radiación es mayor para cada temperatura determinada y la potencia total emitida quedaba determinada por la Ley de Stefan-Boltzmann. Todo controlado, ¿eh?

Va a ser que no. Porque si la temperatura sigue aumentando, lógicamente la frecuencia tendría que seguir aumentando hacia el ultravioleta. Y en ese momento debería volverse invisible, puesto que el ojo humano no puede ver la radiación ultravioleta. Sin embargo, esto no ocurre: por muy caliente que esté un cuerpo, sigue siendo visible con su brillo blanquiazul hasta que se consume por completo, si es que se consume. ¡Oops! Parece que tenemos un problema aquí.

A principios del siglo XX, se intentó resolver este problema mediante la Ley de Rayleigh-Jeans. Y funcionaba bien, pero sólo hasta cierto punto, pues lamentablemente predecía que un cuerpo que estuviera en condiciones de equilibrio térmico con el ambiente circundante emitiría… energía infinita. Ajá, infinita. Como a todas luces esto no sucede en la realidad, sino más bien todo lo contrario (la luminosidad y por tanto la energía emitida por los objetos calientes comienza a reducirse a partir de cierta temperatura, mientras que el color se queda estancado en el azul), significa que toda nuestra comprensión de cómo funciona el mundo estaba mal de alguna manera muy retorcida: estábamos ante una violación mayor de las leyes físicas conocidas en su tiempo, la llamada catástrofe ultravioleta.

No te lo vas a creer: hubo que descubrir un nuevo ámbito de comprensión de la realidad para darle explicación. Este es ni más ni menos el origen de la física cuántica, o casi.

Catástrofe ultravioleta

La "catástrofe ultravioleta". Según la ley clásica de Rayleigh-Jeans, un cuerpo negro ideal debería emitir cada vez más luz conforme aumenta la frecuencia (o disminuye la longitud de onda) debido al incremento de temperatura, hasta un punto en el que estaría irradiando energía infinita. Como esto evidentemente no sucede en la realidad, hizo falta la ley cuántica de Planck para explicarlo.

Fue el supuestamente poco cuántico Einstein quien propuso aplicar la Ley de Planck, primera de la mecánica cuántica, para resolver este rompecabezas cósmico por fin. Y funcionó. Si la energía térmica emitida no lo hace de manera continua, sino en paquetes discretos –los condenados cuantos– con una energía proporcional a la frecuencia, entonces todo vuelve a tener sentido. Pues en el modelo clásico, esta energía quedaba distribuida uniformemente a lo largo de todo el rango de emisión y terminaba acumulándose hasta el infinito; mientras que en el modelo cuántico sólo lo hace en unos modos específicos, correspondientes a estos estados cuánticos discretos.

Dicho de otra manera: la energía electromagnética no sigue la descripción lineal clásica, sino que sólo puede oscilar o emitirse en paquetes discretos (cuantos) de energía proporcional a la frecuencia. Como resultado, el número de modos posibles para una energía determinada en oscilación a alta frecuencia se reduce, y con ella la energía promedio a tales frecuencias. Finalmente, la potencia radiada cae a cero y la potencia total emitida es finita (no infinita, como predecía la física clásica y obviamente no podía ser). Así, la Ley cuántica de Planck describe lo que sucede exactamente en la realidad.

Estos paquetes o cuantos de energía radiada se llaman fotones. Y así fue como comenzamos a comprender profundamente no sólo la luz y el calor, sino también la entropía y el tiempo que rigen nuestra existencia y evolución.

Fuego sobre la Tierra.

Los primeros indicios fósiles del fuego que conocemos en el planeta Tierra surgen con la aparición de las plantas terrestres, fuera del mar, hace unos cuatrocientos setenta millones de años. Antes de eso, no había muchas cosas que pudieran arder fuera del agua; y dentro del agua, las cosas arden fatal. Pero, sobre todo, la presencia de estas plantas aéreas incrementaron enormemente la presencia de oxígeno en la atmósfera. Cuando el oxígeno libre en el aire pasó del 13%, empezaron a producirse los primeros incendios forestales por las causas naturales corrientes, consumiendo parte de esta flora que había salido del mar. Dada su poca densidad y altura, no se piensa que estos incendios fueran muy espectaculares. Sin embargo, su combustión lenta comenzó a producir carbón vegetal; y este carbón vegetal nos informa de la presencia del fuego antiguo sobre la faz de nuestro planeta desde por lo menos el Silúrico.

No fue hasta la aparición de los grandes bosques, en el Devónico, cuando comenzaron a ocasionarse importantes incendios forestales. Sin embargo, hay que esperar hasta el Carbonífero –con mucha biomasa terrestre y mucho oxígeno aéreo– para ver fuegos a gran escala capaces de formar relevantes yacimientos de carbón (y hasta el 20% del carbón formado por este procedimiento es carbón vegetal fosilizado, lleno de evidencias y pistas sobre la larga evolución de la vida en el planeta Tierra).

Incendio forestal visto desde la estación espacial

Un incendio forestal en Utah, Estados Unidos, visto desde la Estación Espacial Internacional. Observatorio de la Tierra, NASA.

Hacia finales del Pérmico, durante el Gran Morir, los niveles de oxígeno atmosférico cayeron acusadamente y con ellos el número e intensidad de los fuegos; a principios del Triásico parece haber una significativa carencia de producción de carbones en la Tierra, lo que nos invita a pensar en una biomasa muy reducida tras la gran extinción. El fuego vuelve a hacer aparición con fuerza entre el Jurásico y el Cretácico. No obstante, la imaginería popular sobre un infierno global durante la extinción que se cargó a los dinosaurios es infundada: no hay indicios de que los incendios fueran más fuertes o extensos en este periodo que en los inmediatamente anteriores o posteriores.

Los custodios del fuego.

El fuego, por tanto, era un fenómeno generalizado y corriente cuando los primeros humanos aparecimos por aquí. Y desde el principio, estuvo vinculado a nuestra historia, con hondos significados simbólicos, religiosos, filosóficos y –por supuesto– de orden práctico.

Existen indicios de la presencia del fuego en las comunidades humanas, y quizás un cierto dominio del mismo, desde hace aproximadamente un millón y medio de años. En el yacimiento de Chesowanja (Kenia), poblado por homo erectus, se han encontrado restos de una especie de cerámica primitiva cocida a una temperatura de entre doscientos y cuatrocientos grados; no obstante, se trata de pruebas inconcluyentes. Por el contrario, no cabe la menor duda sobre su uso generalizado a partir del rango de los 200.000-400.000 años, y de hecho es uno de los elementos fundamentales para distinguir entre las culturas del Paleolítico Inferior y las del Paleolítico Medio.

El control del fuego aportó cambios significativos al comportamiento humano. Su calor y su luz nos permitió adentrarnos en lugares más fríos y en el corazón de la noche, ayudó a espantar animales peligrosos o molestos y mejoró nuestra nutrición mediante la ingesta de proteínas cocinadas. Richard Wrangham, de la Universidad de Harvard, piensa que el cocinado de determinados tubérculos permitió la evolución de dientes más pequeños y cerebros más grandes, junto a un aporte de energía adicional que nos dio alas para salir a cazar más a menudo.

En realidad, son incontables las cosas que el dominio del fuego hizo por nosotros, empujándonos constantemente hacia adelante por la senda de la humanidad y la civilización. El fuego es, seguramente, la tecnología estrella de la especie humana. Sin él, nunca habríamos desarrollado la cerámica, la metalurgia o cualquier otra tecnología capaz de sacarnos del Paleolítico, por no mencionar la electricidad, el motor de combustión interna, el vuelo aeroespacial o… la física cuántica, por ejemplo. También ha sido, con frecuencia, un destructor de civilización por vías accidentales o violentas; y hasta de esa destrucción surgieron más cosas nuevas. El fuego viaja con nosotros desde que empezamos a ser lo que somos; y seguirá acompañándonos en nuestro camino, bajo cualquiera de sus formas, por siempre jamás.

53 Comentarios Trackbacks / Pingbacks (15)
¡Qué malo!Pschá.No está mal.Es bueno.¡¡¡Magnífico!!! (82 votos, media: 4,78 de 5)
Loading...
Be Sociable, Share!